bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs

Mikhail Karasikov!23, Harun Mustafa'?3, Gunnar Rétsch’2345* and André Kahles!»23*

! Department of Computer Science, ETH Zurich, Zurich, Switzerland
2 Biomedical Informatics Research, University Hospital Zurich, Zurich, Switzerland
3 Swiss Institute of Bioinformatics, Lausanne, Switzerland
4 Associate faculty in the Department of Biology at ETH Zurich, Zurich, Switzerland
5 ETH AI Center, ETH Zurich, Zurich, Switzerland
*Joint corresponding authors
andre.kahles@inf.ethz.ch, Gunnar.Ratsch@ratschlab.org

Abstract. High-throughput sequencing data is rapidly accumulating in public repositories. Mak-
ing this resource accessible for interactive analysis at scale requires efficient approaches for its
storage and indexing. There have recently been remarkable advances in solving the experiment
discovery problem and building compressed representations of annotated de Bruijn graphs where
k-mer sets can be efficiently indexed and interactively queried. However, approaches for represent-
ing and retrieving other quantitative attributes such as gene expression or genome positions in a
general manner have yet to be developed.

In this work, we propose the concept of Counting de Bruijn graphs generalizing the notion of
annotated (or colored) de Bruijn graphs. Counting de Bruijn graphs supplement each node-label
relation with one or many attributes (e.g., a k-mer count or its positions in genome). To represent
them, we first observe that many schemes for the representation of compressed binary matrices
already support the rank operation on the columns or rows, which can be used to define an inherent
indexing of any additional quantitative attributes. Based on this property, we generalize these
schemes and introduce a new approach for representing non-binary sparse matrices in compressed
data structures. Finally, we notice that relation attributes are often easily predictable from a
node’s local neighborhood in the graph. Notable examples are genome positions shifting by 1 for
neighboring nodes in the graph, or expression levels that are often shared across neighbors. We
exploit this regularity of graph annotations and apply an invertible delta-like coding to achieve
better compression.

We show that Counting de Bruijn graphs index k-mer counts from 2,652 human RNA-Seq read
sets in representations over 8-fold smaller and yet faster to query compared to state-of-the-art
bioinformatics tools. Furthermore, Counting de Bruijn graphs with positional annotations losslessly
represent entire reads in indexes on average 27% smaller than the input compressed with gzip -9
for human Illumina RNA-Seq and 57% smaller for PacBio HiFi sequencing of viral samples. A
complete joint searchable index of all viral PacBio SMRT reads from NCBI's SRA (152,884 read
sets, 875 Gbp) comprises only 178 GB. Finally, on the full RefSeq collection, they generate a
lossless and fully queryable index that is 4.4-fold smaller compared to the MegaBLAST index. The
techniques proposed in this work naturally complement existing methods and tools employing de
Bruijn graphs and significantly broaden their applicability: from indexing k-mer counts and genome
positions to implementing novel sequence alignment algorithms on top of highly compressed and
fully searchable graph-based sequence indexes.

Availability: https://github.com/ratschlab/counting_dbg

1 Introduction

The sequencing of DNA and RNA has become a commodity in the portfolio of biomedical data acquisition
techniques, leading to an increase both in the demand and availability of sequencing data [44]. Often,
independent from the original research questions that individual data sets were created to answer, they
find a second life as a valuable source for other analyses [45, [33]. Thus, methods for the efficient storage
and indexing of sequence data are urgently needed. In the past years, various approaches have been
proposed to address this problem. On the one side there are methods that extract relevant information,
such as expression counts from vast cohorts of (RNA)-Sequencing data, and summarize it in aggregated
form [I3]. On the other side stand approaches that provide a full-text index of the sequencing data and
allow to retrieve metadata for arbitrary sequence queries [9, [22], which is of great practical relevance

https://github.com/ratschlab/counting_dbg
https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

2 M. Karasikov et al.

for projects generating large sequence cohorts [I5, [I]. As a balance between compressibility and access,
methods using k-mer decompositions of the input sequences have proven very successful [36, [0 22] 29].
In this work, we will focus on approaches representing such k-mer sets as annotated sequence graphs,
which we will briefly review in the following, discussing benefits and limitations of existing approaches.

1.1 Annotated genome graphs

To fully represent all information of a sequencing sample for interactive study, two components are
necessary: i) an index representing the sequence information, allowing for the query of presence; and ii)
a structure containing additional metadata, such as the biological label of a sequence or the location
of a sequence within a genome context (commonly referred to as genome coordinate) [31], 26] [4]. Both
components can be represented jointly or in separate data structures.

Conceptually, a de Bruijn graph is fully represented by its k-mer set. In practice, all k-mers must
also be indexed and assigned unique numeric identifiers to allow for association with any metadata (e.g.,
counts or coordinates). Such indexes can be either represented explicitly as a hash table-like structure
(e.g., Counting Quotient Filter [38]) or a self-index (e.g., the space-efficient BOSS representation [§]). The
label information on the other hand can be encoded separately. The numeric k-mer identifiers provided
by the k-mer index generate an address-space that can be used by a separate data structure holding the
metadata, e.g., linking the k-mers to their presence in different input sources [32], 30, [22].

Other approaches, such as Bloom filters [12] [0} [7], do not require numeric k-mer identifiers. However,
the lack of any address-space for structuring additional metadata limits their uses to only answering
approximate k-mer membership queries. Thus, in this work we consider the approach encoding the
metadata in a separate structure called graph annotation and focus on its efficient representation.

In addition, we further extend the notion of genome coordinates and introduce k-mer coordinates,
representing the occurrence positions of a certain k-mer in the input stream. This stream may be a single
genome, a list of sequencing reads, or an entire collection of arbitrary sequences. All (not only distinct)
k-mers from the input are naturally ordered, and knowing this order allows reconstructing the original
sequences from their corresponding paths in the graph, which we call sequence traces. Indeed, the first
k-mer provides the first k& characters of the first sequence, and every k-mer with the following coordinate
can be used to reconstruct the next character of the sequence, while the end of the sequence can be
encoded with a skipped coordinate. Hence, by representing k-mer coordinates, we encode traces of the
input sequences in the graph and thereby make the index fully lossless.

1.2 Graph annotations

Approaches for representing relations between k-mers and input files have been extensively explored
in the past decade [20, B2 B] 23] 2 14]. Motivated by the experiment discovery problem, which is to
find a sequencing library within a large collection based on a query pattern, these methods encode
binary metadata attributes (e.g., the membership of a k-mer to a certain sequence or file) in a sparse
binary matrix. Depending on the number of k-mers and files, this matrix can have up to ~ 10'? rows
(corresponding to distinct k-mers) and ~ 107 columns (corresponding to different files or, in general,
labels) [22]. However, it can be highly compressed thanks to its sparsity [32] 3] 23] 2, [14].

Supplementing a de Bruijn graph with this type of binary graph annotation provides an excellent
tool for answering k-mer membership queries. However, any quantitative information of the original data
is lost. In particular, queries relating to the exact occurrence position in a sequence or relating to how
often the queried sequence is present in a sample can not be answered with binary annotations.

To address this problem, methods for representing non-binary graph annotations have recently started
to emerge, but very few have been proposed so far. On the one end stands gPBWT, which supplements
genome graphs and enables lossless encoding of haplotypes [34]. On the other end, REINDEER [30]
represents approximate k-mer counts in genome graphs by averaging them within each unitig of the
sample de Bruijn graphs and compressing them via run-length encoding. Unfortunately, these methods do
not cover the entire spectrum of needs. In particular, REINDEER does not represent genome coordinates
and does not provide a lossless representation of input sequences. In contrast, gPBWT does provide a
lossless representation, but the time complexity of querying quantitative information on a pattern would
be linear in the number of its occurrences, making it less well suited for indexing large read collections.

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 3

1.3 Sequence-to-graph alignment

Many tools have used de Bruijn graphs as indexes for alignment to collections of sequences [27] [5, 28] 42|
22], applying the seed-and-extend paradigm with varying seed filtration and extension strategies. Some
strategies extract sequences from the index onto which a sequence-to-sequence alignment is performed [27,
9], while others traverse the graph and compute [22] or approximate [28,[42] an alignment score. However,
very few of these methods index global coordinates in reference genomes to avoid alignments to spurious
paths in the graph, which would be especially helpful when aligning to complex regions in the graph
with many short overlapping unitigs. To our knowledge, deBGA [27] and PufferFish [4] (PuffAligner [5])
are the only de Bruijn graph-based tools that index global coordinates. The more recent PuffAligner,
employs a co-linear chaining approach inspired by minimap2 [26] to effectively select a good candidate
location for alignment, and to limit alignment to query regions between seed hits. However, both deBGA
and PuffAligner are designed for indexing long reference genomes and optimize for query performance,
thus making only limited use of compression techniques and reducing their scalability. Lastly, both use
k-mer hash tables to index the unitig set, restricting the minimum seed length to k.

1.4 Our contributions

In this work, we consider the problem of representing numeric attributes assigned to each k-mer—label
relation in graph annotations. We call such annotations extended graph annotations, emphasizing that
each label is supplemented with an attribute, which may include a single or multiple numeric values. In
particular, we focus on indexing a) k-mer counts, representing the number of times a k-mer occurs in a
certain sequencing sample, and b) k-mer coordinates, where the attributes represent all the occurrence
positions of a k-mer in a sequence, a genome, or a collection thereof. Notably, the latter makes a fully
lossless representation of the input sequences. Together with the underlying de Bruijn graph, such ex-
tended graph annotations make up an abstract data structure which we call a Counting de Bruijn graph.
We demonstrate the advantage of such an index by devising a sequence-to-graph alignment algorithm
called TCG-Aligner (Trace-Consistent Graph-based Aligner) that avoids spurious paths and correctly
estimates the alignment score even when aligning sequences with repeats to loops in the graph.

2 Methods

In this section, we present methods and techniques ultimately employed to efficiently represent extended
graph annotations in compressed data structures, allowing for querying them without full decompression.
Assume each node-label relation (4, j) is supplemented with an attribute a; ;, representing a single or
multiple numeric values. Naturally, such annotations can be represented as a sparse matrix, and thus, the
first question to be answered is how such matrices can be represented to minimize the memory footprint,
while still allowing for efficient queries without full decompression.

2.1 Succinct representation of sparse matrices

Here we propose a general approach for the efficient compressed representation of sparse matrices and,
in particular, extended graph annotations, which supplement each binary relation kmer-label (4, j) with
an attribute a; ; (Figure , left). This attribute may be a single numeric value (e.g., the number of
times k-mer ¢ occurs in experiment j) or a set of numbers (e.g., all positions where k-mer i occurs
in genome j). Without loss of generality, we assume a very high sparsity of the annotation matrix and
decompose the initial annotation into two components schematically shown in the right part of Figure[TJA:
i) a binary indicator matrix representing the indexes of the entries present in the matrix, and ii) the
relation attributes a; ; stored in a separate data structure, typically in form of a compressed array. The
indicator matrix is then represented with a scheme supporting the rank operation on its columns or rows
(depending on the layout of the attribute values), defining an ordering on the (7, j) pairs and enabling
access to the attribute values stored in separate arrays in the consistent order.

Note that the layout of the attribute arrays can be different depending on the rank operation sup-
ported by the indicator matrix. Namely, this can be the rank on its columns (shown in Figure [1f), rows,
or their concatenation. Thus, this scheme allows for compressing the indicator matrix using a large class
of approaches for the compressed representation of binary relations, which have already been applied
for representing binary graph annotations: ColumnCompressed [23], Multi-BRWT [23], BinRelWT [6],
RowFlat (the scheme employed in VARI [32]), all of which support a rank operation on the non-zero
entries in a certain layout.

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

4 M. Karasikov et al.

A. General scheme for multiple columns

Li Ly Ly (" B, B, B,
TAA| |21]os 1 1
01,2 1 C. Representation of one column with sets, e.g., k-mer coordinates
az,1lazz2 111
I (" n N
az,) 1 i _ D, Ay
3. 1 | - (1] (2]
crr | feafose 1)1 L] B
Arrays of 2 1 A — —
TTA |as.1]a52|02,3 11111 attributes .ﬂ — 10
Attributes Indicator matr g A\T w 1 a
_(Mult-BRWT) J 2 - = 8
T | -
- - 1 3
q Ao A TAG 31711 1]]
B. Representation of one column with integers ! _°_ L 7
e O] 11
- oo 5 &
— 1 1
1] = 1 1
| Ay . T
u n - B
] rank(By, i) || ||] B
= L) . —
1 — — Delimiters Attribute
7 - . k-mer coordinates or Indicator values
| | 18 base calling quality scores column
I'T 18 1 \ /
TTA 18 1
= Non-zero
Counts Indicator counts
column
~__

Fig. 1: The proposed representation of sparse matrices in compressed form. Panel A: General scheme for sparse
matrices with abstract attributes, where the non-assigned attributes are eliminated by an indicator binary matrix
stored in a compressed representation (e.g., Multi-BRWT) supporting the rank operation on its columns to enable
the access to the corresponding attribute for any given cell of the matrix. These attributes are stored separately,
typically in a form of compressed arrays. Panel B: The scheme applied to a single column with integer values
(e.g., k-mer counts) and the query algorithm (e.g., the count of k-mer ¢ is retrieved as Ai[rank(Bi,¢)]). Empty cells
in grey represent zeros. Panel C: The scheme applied to a single column where each cell is a set of numbers, or a
tuple (e.g., representing k-mer coordinates). The ”zero” attributes (empty sets) are eliminated with an indicator
bitmap and the non-empty sets are encoded in an array that holds all numbers and a delimiting bitmap.

Succinctness of the proposed scheme Notably, the proposed decomposition does not change the
entropy of the data, which suggests that it also does not change the theoretical minimum of the number
of bits required to store the matrix by representing the two components separately.

To prove this formally, consider the problem of representing a sparse matrix of size n x m with s ”non-
zero” entries from universe A and other nm — s entries set to a fixed "zero” value that does not belong
to A. As there are (mgn) ways to pick s out of mn positions for non-zero values, where each can store one
of |A| possible values, the total number of such matrices is ("")|A|*. Hence, the minimum number of
bits required to encode any such matrix is M, (n,m, s) := [logy(("")|A|*)] ~ log, (") + slogy |Al. On
the other hand, the indicator matrix in the proposed scheme (Figure) can be reshaped into a vector
encoded in the succinct Raman-Raman-Rao (RRR) representation [39] taking asymptotically log, (")

bits, which together with an optimal coding of the attributes, makes up the same space complexity
~ M,(n,m,s). We now can make the following claim (see the proof in the Supplemental Material).

Theorem 1. If both the indicator matrix and the arrays of attributes are represented succinctly, the
proposed scheme also is a succinct representation of the matriz. That is, there is no other data structure
that could represent any such matriz with asymptotically fewer bits.

Base representations Now, we will show that the commonly used Compressed Sparse Column (CSC)
format (e.g., used in NumPy [I]]) is a special case of our proposed scheme. CSC stores the matrix-entries
in three arrays: i) an array containing all non-zero values in the order they appear in the rows of the
matrix, ii) an array with their column indexes, and iii) a compressed array delimiting the positions
in the first two arrays corresponding to different rows of the matrix. One can see that the first array
corresponds to the attribute arrays in our scheme, while the other two essentially encode the indicator
matrix, making our scheme at least as efficient as the basic CSC format. Our scheme, however, allows
for additional freedom in choosing specific encodings for the attribute arrays and the indicator matrix.

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 5

Encoding the columns of the indicator matrix with succinct RRR bit vector representations [39]
asymptotically achieves the theoretical minimum in space. Extra compression can be achieved in practice
by exploiting column-correlations using the Multi-BRWT scheme [23].

In practice, we use succinct bitmaps to represent the columns of the indicator matrix during con-
struction. Subsequently, we convert the matrix to the Multi-BRWT representation, to reduce its final
size and enhance the query speed. Typically, we compress the attribute arrays with simple bit-packing
or universal coding such as Directly Addressable Codes (dac_vector) [10], supporting the direct access.

Representing attributes with multiple numeric values The scheme described above effectively
erases zero-entries from the matrix and stores any non-zero entries in a separate data structure (Fig-
ure[1]A). We note that this approach generalizes beyond single integers as matrix entries. In particular, it
allows entries to be number sets, and hence, can be used for representing k-mer coordinates, where each
k-mer may occur in multiple positions of a genome or, more generally, a collection of input sequences.

Without loss of generality, Figure schematically shows how the entries of such matrices can be
encoded and queried, using a single column as example. All tuples (entries) are concatenated into a
single dense array storing all values together, and an additional delimiting bitmap is used to separate
the different tuples. The dense array together with the delimiting bitmap represents a single array of
attributes in the general scheme as shown in Figure [TA.

2.2 Diff-compression of extended graph annotations

Similar to the case of binary annotations, extended graph annotations often possess a certain structure
that can be exploited for their compression. Indeed, attributes of nodes in the graph can often be
approximated with high accuracy from the attributes of their neighbors. For example, k-mer counts,
being an aggregate function of contiguous paths induced from reads, usually change incrementally, and
hence, can be approximated by averaging the counts of their adjacent k-mers. Another example is k-mer
coordinates, which simply shift by 1 at each node along the paths of the de Bruijn graph derived from
the input sequences, which we call traces. Hence, one can construct an expected set of coordinates at a
node if the set of coordinates at its adjacent node is known or can be reconstructed recursively.

Leveraging similarity of annotations of neighboring nodes For the case of binary annotations,
transformations assuming likely similarity between annotations of adjacent nodes in the graph and re-
placing them with relative differences have been explored in Mantis-MST [2] and RowDiff [14]. The
RowDiff algorithm conceptually consists of two parts. First, for each node with at least one outgoing
edge, it arbitrarily picks one of them and marks its target node as a successor. The subset of edges lead-
ing to the assigned successor nodes form a spanning tree of the graph. Second, it replaces the original
annotations at nodes with their differences to the annotations at their assigned successor nodes. This
delta-like transform is applied to all nodes in the graph except a small subset of them (called anchors).
These anchor nodes keep the original annotation unchanged and serve to terminate every path composed
of successors and break the recursion when reconstructing the original annotations (inverse transform).

Here, we devise a generalization of the RowDiff scheme to the case of extended graph annotations. We
design an invertible transform, which losslessly compresses them by effectively removing the information
that can be reconstructed from a neighborhood in the graph. Our generalization goes in two directions.
First, we generalize the diff-operation to act on arbitrary sets and define specific functions for the two
specific cases considered in this work: k-mer counts and k-mer coordinates (genome positions). Second,
we propose a more efficient algorithm for the anchor assignment (see Supplemental Section [2) and a
data-driven procedure for assigning successor nodes instead of assigning them randomly as in RowDiff
(see Supplemental Section. Note that these are also applicable to binary annotations and enable better
compression. In addition, we consider schemes admitting the aggregation of multiple successors at forks
before computing the diff (see Supplemental Section . This essentially replaces the diff-paths with trees
and, by design, helps improve the compression at forks, where some of the traces branch out and carry
their annotations away, increasing the diff.

Generalized diff-transform for graph annotations Suppose the nodes in the graph are annotated
with attributes from a set A. Consider a node v holding an attribute a(v) € A and its successor node
Usuce holding an attribute a(vsuec) € A. To define a diff-transform of the graph annotation, we need to
specify an invertible diff-operation & : Ax A — A acting on pairs of attributes and replacing the original

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

6 M. Karasikov et al.
L1 12 L3 / o Lo 1 1910 L1:18 1112 L3 “L11213
18] |15 : L1 L3 15 . L3 15 18] |15 1] 1] 123
10 1 18]..[19]

-1f12]
161

11 1 10

R L11] Universal coding
10 1 (e.g. Elias delta
or dac_vector)

v
v

17|11 2: 44 2: 44
16
1 L1: 16

18|11
18|10|15

Invertible sparsification of count annotations

L(S(U) := L(v) — L(Vsucc) Diff-transformed Multi-BRWT
Lv) eN™ - Lwez™

Original counts

Fig.2: A schematic diagram illustrating encoding of k-mer counts in m columns with the proposed approach.
Circles represent nodes of a de Bruijn graph. Edges are shown as arrows. Red nodes represent anchor nodes
and red edges represent paths to row-diff successors. The transformed counts are shown in red (e.g., compare
Ly : —1 for k-mer GCT after the transform and L; : 17, L : 11 before). Then, the diff-transformed matrix is
decomposed into an indicator binary matrix stored in the compressed Multi-BRWT representation supporting
the rank operation on the columns and arrays storing non-zero diffs.

annotation a(v) with its delta relative to the annotation at the successor: a®(v) := a(v) © a(vsuce). The
invertibility of this transform entails the existence of an inverse transform @, such that (e ©d')®d’ = a
Va,a' € A, which makes it always possible to reconstruct the original annotation a(v) from the delta
a’(v) and the original annotation a(vsuec), which is, in turn, either reconstructed recursively (or stored
explicitly if vgyce 18 an anchor).

For sparsifying k-mer count annotations, where the labeling at each node is encoded by a row of
the integer count matrix, we use the simple vector difference as the diff operation. For the case of
coordinate annotations, each attribute a is a set of natural numbers (occurrence positions of a k-mer in
a genome or a file), that is, A = 2. At the same time, we naturally expect the coordinates to shift by
1 when transitioning from a k-mer to its adjacent successor. Thus, the diff operation & in this case is
the symmetric set difference between the coordinates at the successor node vgy. and the incremented
coordinates at node v:

a5(v) = (a(v) + 1) Aa(vsyce), (1)

where operator A denotes the symmetric set difference: AAB = (AU B) \ (AN B). Note that we chose
Eq. over a probably more intuitive formula a’(v) := a(v)A(a(vsuee) — 1) to avoid negative numbers
and keep the result a®(v) in the same set A = 2N of subsets of positive coordinates.

2.3 Compressed extended graph annotations

In this section, we combine the techniques presented in the sections above and propose two memory-
efficient representation schemes for encoding quantitative data for two important practical cases of non-
binary graph annotations: k-mer counts (e.g., in read sets, representing gene expression levels) and k-mer
coordinates. Coordinates may represent positions of k-mers in genomes, any collections of sequences, or
in a file in general.

Representation of k-mer counts Formally, the task is to represent a matrix with integer entries,
where each entry corresponds to a kmer-label pair and encodes the k-mer’s count in the respective label.

We use the techniques presented above and, first, transform the initial count matrix with the gener-
alized diff-transform (see Section. The proposed method is schematically illustrated in Figure [2| As-
suming that adjacent nodes in the graph are likely to have identical or similar counts, we use the following
formula to compute the diff between two rows of the integer annotation matrix: L°(v) := L(v) — L(Vsucc)-
After this operation, the diff values L°(v) are often either zeros or integer values close to zero, thus
require fewer bits to represent compared to the original counts L(v).

Note, in work [21] developed independently in parallel to ours, a similar delta-like coding was con-
sidered for compression of k-mer counts in the framework of weighted rooted trees. This solution is close
to our diff-transform for the case of a single annotation column with k-mer counts.

After performing the diff-transform, we decompose the transformed count matrix into a binary matrix
of the same shape indicating the non-zero entries and a set of additional arrays containing those entries
(Figure [2] right), according to the scheme shown in Figure -B. The binary matrix is stored in the
compressed Multi-BRWT representation and the count arrays are stored separately.

Lastly, we note that the diff-transformed values in the count arrays may be negative. We, thus,
map them to non-negative integers to enable further compression with variable-length codes, using the

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 7
A. Enumeration of k—mers\ /B Invertible sparsification of coordinate annotation (sets), single column
ACTAGCTAGCTAG L(v), L{S('I,') eV « Annotations are sets 12}
. - B+
:ACT :AGC Sparsified - {} {}
:CTA :GCT Original >{—2—6—1—9}
:TAG :CTA _
:AGC :TAG
5:GCT
Add +1 to all y t t
:CTA coordinates in the set : Eg:ern‘i;e ________ Anchor node
-TAG s " » (no transform applied,
K L (7) = (L(I,‘) &) 1) A L(’I,‘Sm‘(') stores original arm(mt\om/

Fig. 3: Extraction of k-mer coordinates from sequence ACTAGCTAGCTAG for k=3 (panel A) and subsequent com-
pression with a diff-transform (panel B), where the coordinates at a node’s successor are expected to be the same
but incremented by 41, as these nodes are likely to be consecutive in the input sequence(s). The symmetric set
difference AAB := (AU B)\ (AN B) is used as a diff-operation. The inverse transform is performed losslessly by
L(v) = (L(vsuee)AL® (v)) © 1, which follows from the following property: (AAB)AB = A VA, B.

following invertible mapping: 2(|z| — 1) 4+ 1[x < 0], where 1[A] is a boolean predicate function, which
evaluates as 1 if the statement A is true and as 0 otherwise. After this mapping, we further compress
the count arrays using Directly Addressable Codes (dac_vector) [10].

Representation of k-mer coordinates Finally, in this section we describe how to efficiently encode
k-mer coordinates and thereby create a lossless index of the input sequences. We observe that aggregating
all sequences from a single source (or label) and encoding the enumerations of each k-mer is sufficient
to reconstruct the original sequences. We, thus, will consider this simplified case for brevity of the
description. However, our implementation does support the explicit indexing of multiple sources with
multiple annotation columns.

After all the k-mers are enumerated (Figure [3]A), the underlying de Bruijn graph is annotated and
the coordinates are stored in an array of lists (Figure) It is easy to see that most of the adjacent
pairs of k-mers are crossed by the same sequences, and hence, the successor k-mer usually has the same
coordinates as its predecessor k-mer incremented by —+1. Thus, it is most natural to define the diff-
operation for sparsifying coordinate annotations as described in Section Eq. . If this delta L‘S(v)
is an empty set, very few bits are needed to encode it. Otherwise, it would contain the information
necessary to losslessly reconstruct the coordinates at the predecessor from the known (or reconstructed
recursively) coordinates at the successor. This transformation step is schematically shown in Figure
and demonstrates how well the predictability of the coordinates at the successor nodes can be exploited
to compress the coordinate annotations.

After the coordinate annotation is transformed, the new attributes L?(v) € 2N are still subsets of
natural numbers, and hence, the full diff-transformed annotation matrix can be encoded with the same
general scheme as shown in Figure [T|C, right.

2.4 Sequence-to-graph alignment with k-mer coordinates

The usage of Counting de Bruijn graphs encoding k-mer counts or k-mer coordinates can greatly broaden
the range of problems to which de Bruijn graphs are currently applied. In this section, we extend the
sequence-to-graph alignment algorithm introduced in MetaGraph [22]. With these, we can not only ensure
that all aligned paths in the graph are trace-consistent, but can also construct seed chains (detailed below)
to more efficiently select good candidate positions for alignment and to reduce the number of base pairs
from the query which need to be aligned.

We start by generating the initial seed set. For low-error reads, these seeds consist of all maximal
unique matches of the query which are contained in graph unitigs (called uni-MEMs [27]) with a minimum
length of 19, as in [22]. For error-prone reads, we use all matches of length 19 as the seeds. For cases
where the k-mer size is greater than 19, all matches are made to the suffixes of k-mers [22].

We then use the coordinates to filter out all seeds which are not contained in a graph trace and
annotate each seed with all coordinate ranges corresponding to the entire seed. Then, we apply a dynamic
programming seed chaining algorithm similar to the approaches from Minimap2 [26] and PuffAligner [5]
(see Supplemental Algorithm [2)) to produce an initial partial alignment composed of a sequence of seeds
(a chain). Let C = (S1,...,Sn) be the highest-scoring chain. For a given seed S; matching ¢; characters

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

8 M. Karasikov et al.

Table 1: Comparison of the state-of-the-art methods for indexing raw sequencing data and the proposed approach
in three scenarios of indexing 2,586 RNA-Seq read sets: i) encoding k-mer presence/absence only (binary); ii)
encoding k-mer counts averaged over unitigs for each read set (smooth counts); and iii) encoding the original k-mer
counts (raw counts). Query time and peak RAM were measured while querying 100 random human transcripts
(= 90kpb in total). If a method was not applicable to a given annotation scenario, the table shows ’-’.

Index size Peak RAM during query Query time
Method binary [smooth| raw || binary [smooth raw binary|smooth| raw
counts |counts counts | counts counts |counts
Mantis-MST [2] |24.9 GB - -1125.1 GB - -|| 0.8s - -
RowDiff [14] 7.7 GB - - 8 GB - - 8.8 s - -
REINDEER [30][30.3 GB| 59 GB -1/58.9 GB|91.1 GB -1| 551.2 s| 813.5s -
This work 6.6 GB| 11 GB|21 GB|| 7 GB| 11 GB 21 GB 6.7 s 8.2s| 144 s

with initial node v;, we denote the corresponding position in the query by y;. We complete the alignments
between each pair S; and S;11 by extending S; using a modification of the extension algorithm from
MetaGraph [22] on the region of the query from y; to y;+1 + £;+1. To complete the alignment of ¢, we
extend Sy forward and S; backward until the end and beginning of g, respectively.

Our modification of the extension algorithm ensures that paths traverse along the corresponding
graph trace of the starting coordinates L(v;) (in practice, only a subset originating from the top labels
detecting among the seeds is used for faster alignment). More precisely, we construct a trace-consistent
alignment tree 7; = (V;, E;) rooted at v; on the fly during graph traversal similar to the one defined in
MetaGraph [22], where V; C V' x N contains all the nodes along the traces originating at v;:

Vi i={(v,0)}U{(v,8) € VXN | Lwv)N (L(v;) ®s) #0, W :(v',s—1) € V;},

and E; = {((v,s), (v,s+1)) € V; x V; | (v,v') € E} CV; x V; contains all the edges within these paths
(see Supplemental Section for more details). With this, we can reduce the alignment search space by
more effectively filtering seeds, refining the traversal search space, and by only performing alignment on
defined substrings of the query.

2.5 Implementation Details

The methods presented in this work were implemented within the MetaGraph framework https://
github.com/ratschlab/metagraph with basic compression algorithms and data structures from the
sdsl-lite library [I7]. The resources and scripts used to create figures and start experiments presented
in Section [3| are available at https://github.com/ratschlab/counting_dbg.

3 Results and Discussion

3.1 Indexing k-mer counts in 2,652 RINA-Seq read sets

For comparing our approach to the current state of the art, we used a set of 2,652 RNA-Seq read sets
from different human tissues that was originally composed by [43] and has since been widely used for
benchmarking methods indexing raw sequencing data [43], 38} 2].

We counted all 21-mers in each read set with KMC3 [24] and extracted canonical k-mers (defined as
the lexicographical minimum of a k-mer and its reverse complement) occurring at least a certain number
of times, using frequency thresholds from [38]. 66 out of the 2,652 read sets contained only reads shorter
than k& = 21 and, hence, could not be indexed. The remaining 2,586 read sets resulted in a de Bruijn
graph with a total of 3.9 billion canonical k-mers and an annotation matrix of density 0.27%.

We compared the Counting de Bruijn graph to REINDEER [30], which, to the best of our knowledge,
is the only published tool for indexing collections of samples with k-mer counts. We also compared against
two state-of-the-art methods limited to binary annotations: Mantis-MST [2] and RowDiff [14]. The latter
was used to highlight the effect of modifications made to the diff-transform presented in this work.

The results for all methods are summarized in Table[I] When compressing binary data, our approach
achieved a 4.5- and 5.5-fold size improvement over Mantis-MST and REINDEER, respectively. Compared

https://github.com/ratschlab/metagraph
https://github.com/ratschlab/metagraph
https://github.com/ratschlab/counting_dbg
https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 9

Table 2: The summary of different representations constructed from Virus PacBio HiFi read sets. The methods
generating searchable representations are highlighted in bold.

lMethod [Compression ratio[Size[Searchable‘
MegaBLAST 0.1x|125.85 bits/bp yes
PufferFish -s 0.4x| 21.82 bits/bp yes
BLAST 3.0x| 2.68 bits/bp yes
gzip -9 6.4x 1.25 bits/bp no
This work 14.7x| 0.54 bits/bp yes
Spring 38.4% 0.21 bits/bp no

to the original RowDiff scheme, it achieved a 20% improvement in annotation compression, which resulted
in an index-size reduction from 7.7 GB to 6.6 GB, thanks to our methodological improvements. The
advantage is maintained when indexing k-mer counts. Applying local neighborhood-smoothing of counts
along the unitigs of single-sample de Bruijn graphs, as introduced in REINDEER, our approach reduces
the state-of-the-art index size of 59 GB to only 11 GB. This effect becomes even more pronounced during
query, as REINDEER needs to inflate its index for access. As we maintain our representation compressed
at all times, we achieve an 8-fold reduction in memory usage during query. Even when the smoothing
step is omitted, which is not possible in REINDEER, our index takes only 21 GB, while performing a
lossless compression of the full k-mer spectrum of the input.

3.2 Indexing read sets from the SRA

Indexing all viral HiFi reads In this experiment, we fetched from NCBI SRA [25] all viral sequencing
samples sequenced with the PacBio Single Molecule Real-Time (SMRT) technology, including many
recently sequenced SARS-CoV-2 samples. Out of all 152,957 samples (accessed on 3 Oct 2021), we
could download 152,884 (99.95%) successfully. We will refer to this dataset as Virus PacBio SMRT.
Next, we filtered this set by selecting only high-fidelity read sets to ensure a low sequencing error rate
(Supplemental Section . This left 152,418 read sets (99.7%), which we refer to as Virus PacBio HiFi.
Note that here and in all other experiments, the headers of the reads (sequence names) and their quality
scores were removed before indexing or compressing with the tools tested, including gzip.

All 152,418 read sets combined contained a total of 717 Gbp (billion base pairs) and were compressed
(with headers and quality scores removed) with gzip -9 down to 112 GB, which corresponds to 1.25
bits per base pair (bits/bp), or a compression ratio of 6.4x over the ASCII coding (8 bits/bp). Far
better compression of 38x was achieved by Spring [I1], a specialized method for reads compression.
Note, neither gzip nor Spring enable search or alignment against the input data. Then, we individually
constructed lossless searchable representations of the read sets with Counting de Bruijn graphs over the
{A,C,G,T,N} alphabet with coordinate annotations, as well as BLAST databases and sparse PufferFish
indexes (see Table [2)). The BLAST database required on average 2.68 bits/bp, and constructing an
additional MegaBLAST index on top increased its size to an average of 125.85 bits/bp, while PufferFish
required on average 21.8 bits/bp. In contrast, the compression performance of Counting de Bruijn graphs
was even better than gzip -9. They required on average only 0.54 bits/bp (57% less than 1.25 bits/bp for
gzip -9), while at the same time being fully searchable. For a more detailed comparison of the top four
methods, see Supplemental Figure 3] We also did a similar evaluation of the methods on the full Virus
PacBio SMRT dataset (see Supplemental Table .

Indexing Illumina RNA-Seq reads To evaluate compression performance on short reads, we used
the RNA-Seq read sets described in Section [3.1] However, instead of indexing k-mer counts, here we
constructed Counting de Bruijn graphs with coordinate annotations. We indexed all 31-mers in each read
set without any other filtering. In total, 2,411 read sets (7.55 Tbp) were indexed, with the remaining
samples discarded due to containing reads of variable length or only reads shorter than 31.

Again, we compared the presented approach with two alternatives commonly used for compressing
read data: the general-purpose compressor gzip and the domain-specific Spring. The results are presented
in Supplemental Figure [5| and discussed in Supplemental Section [5} Notably, Counting de Bruijn graphs
generated on average 27% smaller representations of the input reads compared to gzip -9 (1.488 bits/bp
vs. 2.030 bits/bp, see Supplemental Table [3)).

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

10 M. Karasikov et al.

Table 3: Lossless indexing of RefSeq (rel. 97) with k-mer coordinates for the complete data set (32,881,422
accessions, 1.7 Tbp) and the set of all Fungi (69,034 accessions, 8.8 Gbp).

[Method || RefSeq (Fungi) || RefSeq (All)]

MegaBLAST||12.3 GB| 11.19 bits/bp||2,359 GB| 11.07 bits/bp
This work 3.3 GB|2.97 bits/bp|| 533 GB|2.50 bits/bp

Dependence on k-mer length To investigate the relationship of k-mer length on index size, we
compressed several representative read sets for 12 different k-mer lengths (Supplemental Figure @ We
chose one of the human RNA-Seq samples (SRR805801), representing low-error Illumina sequencing,
and a Sinorhizobium genome sequencing sample, representing higher-error PacBio long-read sequencing.
While for short, low-error reads the graph size slightly increases with k, the number of paths in the graph
grows as well, which makes the annotation size drop steadily, due to longer unitigs length. As a result,
the overall index size (combining graph and annotation) decreases with k. In contrast, the higher error
rate in PacBio reads (SRR3747284) leads to a very large number of k-mers in the graph, and hence, its
size. However, long reads with lower error (SRR13577847, PacBio HiFi) benefit from an increase of k.
As a practical consequence, the choice of a large k is beneficial for compression in most scenarios.

3.3 Lossless index of RefSeq with k-mer coordinates

To demonstrate the use of Counting de Bruijn graphs with coordinate annotations for indexing reference
genomes, we used a dataset consisting of all 32,881,422 reference sequence accessions from Release 97
of the NCBI RefSeq database [35]. Each sequence has been annotated with its associated accession
ID along with all k-mer coordinates (k = 31). This approach forms an alternative to the commonly
used MegaBLAST search tool, which requires an additional database index [31] for competitive high-
throughput search. The summary of both indexes is presented in Table (an extended version is available
in Supplemental Table . Using our method, the input of 1.7 Thp bases was losslessly represented in
a self-index comprising 533 GB, which is 4.4x smaller than the MegaBLAST index (Table [3). We also
present the performance for the subset of RefSeq containing all Fungi genomes, which we have used for
demonstrating sequence alignment in the following section.

3.4 Sequence-to-graph alignment with k-mer coordinates

lllumina (read length: 150) PacBio CLR (read length: 10000
D .00

>

We evaluated the accuracy of our algorithm for 10000
alignment to Counting de Bruijn graphs and
compared it to the state-of-the-art aligners. We

> ‘_T t
0.9975 ‘
S % ol
the ground truth for these alignments is known. i % e0o
} 0 10 10 10

used simulated reads as queries to ensure that
Given the human GRCh38 reference chromosome
22 [1] and the E. coli NC_000913. 3 [4()]] genomes,
we use ART [19] and pbsim [37] to simulate
2000 Ilumina-type and 200 PacBio-type reads of
lengths 150 and 10,000, respectively. After align-

ing each read back to their respective reference, o i
we compute the edit distance of the matching o e s g o Mot s o o
sequence to the ground-truth sequence (i.e., the
original reference segment from which the read
was Simu]ated) to measure alignment accuracy. Flg 4: Alignment accuracy on simulated Illumina- and
We run this comparison for our TCG-Aligner PacBio-type reads (E. coli NC_000913.3 and human

(See Section [2.4) and other state-of-the-art meth- chr22). The edit distance is measured between the align-
ods [22, 26, (16, 5 [31], run with default settings. ment (the returned path in the graph) and the ground-
e 7 truth sequence. In the top left subplot, the curves of vg-

and TCG-Aligner are superimposed.

)

e
3
o

NC_000913.3,
o o
© ©
© ©
N a
=]

Proportion of reads
o o
N (5]
a S

Proportion of reads

E. coli (

o
o
S

0 10" 10" 10 10° 10
Maximum edit distance to ground truth Maximum edit distance to ground truth

=

o
S
=)
=]

e

©

©
o
3
El

Human (chr22)

Proportion of reads
o o
N oo
a S

Proportion of reads

o o
© ©
~ 3
o
15

—— Minimap2 BLAST == PuffAligner === vg == MetaGraph (Ttﬁi?ﬁﬁ[;e'

As shown in Figure [4] the degree to which incor-
poration of coordinates in the alignment proce-

dure improves accuracy and query execution time
(see also Supplemental Tabl is dependent on the complexity of the target genome. This is evident for
the alignments of simulated E. coli reads, where the use of coordinates provides a limited improvement

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 11

in accuracy and query time due to the simplicity of the genome (see the top row of Figure [4] and
Supplemental Table [1)). On the other hand, as can be seen in the bottom row of Figure[d] it significantly
improves alignment accuracy and query time for human reads. 40.2% of human PacBio reads align to the
exact ground-truth sequence when using TCG-Aligner, compared to 0.49% with the MetaGraph aligner.

For MetaGraph and vg, the large edit distances of the PacBio read matches relative to the ground
truth are due to the aligners reporting shorter local alignments, rather than alignments of the full reads.
By incorporating coordinates to more effectively filter seeds, and by restricting the alignment search
space to graph traces, the TCG-Aligner provides improved accuracy and query execution time when
aligning against reference genomes.

3.5 Searching for the Delta variant of SARS-CoV-2 in SRA

Finally, to enable fast search in the entire collection of all 152,884 viral PacBio SMRT read sets from SRA
(see Section , we also indexed them in a joint Counting de Bruijn graph with coordinate annotation.
Being 178 GB in size and only 19% larger than the input reads without quality scores compressed with
gzip -9 (150 GB, 875 Gbp), our index provides a fully lossless representation of them and can be used for
search and alignment of arbitrary sequences. Notably, 152,272 (99.6%) of the indexed read sets originate
from BioProject PRINA716984, consisting of PacBio Sequel II sequencing runs from SARS-CoV-2 samples.

We queried DNA sequences flanking the nine defining mutations of the SARS-CoV-2 21A (Delta)
variant spike protein against this joint index to retrieve all the occurrences of its specific mutations
within the reads. In total, six sequences of length 59 and one of length 53 (to cover the deletion variants,
see Supplemental Section @ for a list of the sequences) were queried. Each sequence was matched to an
average of 107,892 samples and 7.68 million positions in the joint index. Despite the enormous number
of returned hits, the query took under 4 minutes on a single thread.

g le7
()]
'8 25000 | SARS-CoV-2 delta variant o 25
E I s All viruses E 20
: 20000 i - :
& 15000 | > 15
ﬁg 10000 _ i _ S 1.0
e b _ - [}
2 5000 - — - . g 0.5
E . e 0 I 2 0.0
z Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct
Upload Date (2021) SRA Query Date (2021)

Fig. 5: Detection of the delta variants of the SARS-CoV-2 spike protein in SMRT virus sequencing samples
deposited on the SRA. Left: The number of samples detected to contain (orange) and not contain (blue) the
SARS-CoV-2 delta variant. Right: The number of reads containing defining mutations contributed by samples
containing the SARS-CoV-2 delta variant.

In this experiment, for a given sample, we classified it as containing SARS-CoV-2 21A if, for each of
the defining mutations of the spike protein, there exists at least one read in the sample supporting that
variant. If a sample is classified as such, we enumerate all reads containing any of the defining mutations.
As shown in Figure [5] 90.5% of samples deposited after July 2021 contain each of the Delta variants of
the spike protein, leading to a sharp growth in the number of reads containing these variants. We would
like to note that this analysis is derived only from the dates on which these samples were uploaded to the
SRA, hence, cannot be used to determine when these variants actually emerged. Although this metadata
can be derived for further analysis, it is outside the scope of this work.

4 Conclusions

We have presented a novel approach for the efficient and compressed representation of quantitative
annotations on de Bruijn graphs. Together with the underlying graph, these annotations make up a data
structure which we call a Counting de Bruijn graph. It can be used to represent quantitative information
and, in particular, encode traces of the input sequences in de Bruijn graphs, which not only provides
a much higher flexibility of graph annotations, but also allows for the truly lossless representation of

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

12 M. Karasikov et al.

any set of input sequences in them. This offers a practical solution to a long-standing problem of many
methods employing de Bruijn graphs as a base structure and opens the doors to implementing novel
sequence alignment algorithms on top of them. Notably, the method is agnostic to the alphabet and
hence can be used not only for indexing nucleotide sequences but also amino acids or sequences over any
other alphabet.

In addition to the presented approach for the compressed representation of sparse non-binary matrices,
we have generalized the RowDiff scheme [I4] to non-binary graph annotations and optimized it by
improving the algorithms for anchor and successor assignment. We have considered and have shown
the advantages of the coding where multiple successor nodes may be assigned to each node. In future
extensions, the aggregating operator g could act not only on the immediate successors of the node but
on the whole tree of all successors spanning from it until the terminating anchor nodes. This would lead
to a significantly better compression, for instance, in the case of k-mer counts linearly increasing within
the paths in the graph. Moreover, an adaptive model can be trained with machine learning methods
to predict annotation at a node from its successors and their annotations to further reduce the deltas
stored explicitly in compressed data structures. We believe this has promising potential for this coding
to benefit from the recent advances in Deep Learning.

We devised an algorithm for aligning sequences to Counting de Bruijn graphs with coordinate anno-
tations, which avoids spurious paths. This algorithm correctly estimates the alignment score even when
aligning sequences with repeats to loops in the graph, which would be impossible with de Bruijn graphs
alone. Since sequences shared by many samples are represented by a simple path, de Bruijn graph-based
approaches can greatly reduce the overhead of aligning to collections of highly similar sequences, while
more traditional database search methods would align to each database entry independently. The added
availability of k-mer coordinates to the MetaGraph alignment framework [22] allows for various other
seeding or extension heuristics to be implemented, such as those used in MegaBLAST [3I]. While the
alignment method and evaluation presented here are restricted to graphs constructed from assembled
reference genomes, such seed extension methods can be adapted for alignment to de Bruijn graphs con-
structed from raw read sets, which, we believe, is a promising direction for future work.

Playing a similar role for indexing sequences in de Bruijn graphs as gPBWT does in the realm of
variation graphs and the indexing of pangenomes, we believe our approach is a significant step forward
for the representation of and the search in very large collections of sequences, addressing a still increasing
demand for interactive access to growing archives of biological sequences. We envision this as the first step
towards enhancing the performance of BLAST-based sequence searches using graph-based approaches.

Towards this goal, several technical and conceptual hurdles are yet to be overcome. First, using de
Bruijn graphs of order k requires input sequences with a minimal input length of k, excluding datasets
with very short sequences. Second, for large sequence cohorts improved construction algorithms with
more efficient intermediate representations are needed, to decrease the 8 bytes per coordinate currently
required during construction. However, we are confident that these challenges are intermediate and that
Counting de Bruijn graphs will play a central role in making large sequence repositories fully accessible.

Acknowledgments

The authors would like to thank Mario Stanke, Matthis Ebel, Daniel Danciu, and Stefan Stark for
their helpful feedback. M. K. and H.M. are funded by the Swiss National Science Foundation grant
#407540-167331 “Scalable Genome Graph Data Structures for Metagenomics and Genome Annotation”
as part of Swiss National Research Programme (NRP) 75 “Big Data”. M. K., H. M., and A. K. are also
partially funded by ETH core funding (to G.R.).

Author contributions

The idea and design of Counting De Bruijn Graphs and their representation techniques were conceived
and developed by M.K., the TCG-Aligner was conceived and developed by H.M.. A.K. and G.R.
conceptualized and supervised the research and acquired funding. All authors contributed to writing the
manuscript and provided feedback on the algorithms, theory and experiments.

https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Bibliography

[1] Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z.J., Pollard, K.S.,
Sakharova, E., Parks, D.H., Hugenholtz, P., et al.: A unified catalog of 204,938 reference genomes
from the human gut microbiome. Nature biotechnology 39(1), 105-114 (2021)

[2] Almodaresi, F., Pandey, P., Ferdman, M., Johnson, R., Patro, R.: An efficient, scalable, and exact
representation of high-dimensional color information enabled using de bruijn graph search. Journal
of Computational Biology 27(4), 485-499 (2020)

[3] Almodaresi, F., Pandey, P., Patro, R.: Rainbowfish: A Succinct Colored de Bruijn Graph
Representation. In: Schwartz, R., Reinert, K. (eds.) 17th International Workshop on Algo-
rithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 88, pp. 18:1-18:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2017). |https://doi.org/10.4230/LIPIcs. WABI.2017.18, http://drops.dagstuhl.de/opus/
volltexte/2017/7657

[4] Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient index for the com-
pacted colored de bruijn graph. Bioinformatics 34(13), i169-i177 (2018)

[5] Almodaresi, F., Zakeri, M., Patro, R.: Puffaligner: A fast, efficient, and accurate aligner based on
the pufferfish index. Bioinformatics (2021)

[6] Barbay, J., Claude, F., Navarro, G.: Compact binary relation representa-
tions with rich functionality. Information and Computation 232, 19-37 (2013).
https://doi.org/https://doi.org/10.1016/j.ic.2013.10.003, https://www.sciencedirect.com/

science/article/pii/S0890540113001144

[7] Bingmann, T., Bradley, P., Gauger, F., Igbal, Z.: COBS: A Compact Bit-Sliced Signature Index.
In: International Symposium on String Processing and Information Retrieval. pp. 285-303. Springer
(2019)

[8] Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2012). https://doi.org/10.1007/978-3-642-33122-0_18

[9] Bradley, P., Den Bakker, H.C., Rocha, E.P., McVean, G., Igbal, Z.: Ultrafast search of all deposited
bacterial and viral genomic data. Nature biotechnology 37(2), 152-159 (2019)

[10] Brisaboa, N.R., Ladra, S., Navarro, G.: Dacs: Bringing direct access to variable-
length codes. Information Processing & Management 49(1), 392404 (2013).
https://doi.org/https://doi.org/10.1016/j.ipm.2012.08.003, https://www.sciencedirect.com/
science/article/pii/S0306457312001094

[11] Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M., Weissman, T.. SPRING: a next-
generation compressor for FASTQ data. Bioinformatics 35(15), 2674-2676 (12 2018).
https://doi.org/10.1093 /bioinformatics/bty1015, https://doi.org/10.1093/bioinformatics/
bty1015

[12] Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a Bloom
filter. Algorithms for Molecular Biology 8(1), 22 (9 2013). https://doi.org/10.1186/1748-7188-8-22,
http://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

[13] Collado-Torres, L., Nellore, A., Kammers, K., Ellis, S.E., Taub, M.A., Hansen, K.D., Jaffe, A.E.,
Langmead, B., Leek, J.T.: Reproducible rna-seq analysis using recount2. Nature biotechnology
35(4), 319-321 (2017)

[14] Danciu, D., Karasikov, M., Mustafa, H., Kahles, A., Réatsch, G.: Topology-based spar-
sification of graph annotations. Bioinformatics 37(Supplement_1), i169-i176 (07 2021).
https://doi.org/10.1093 /bioinformatics/btab330, |https://doi.org/10.1093/bioinformatics/
btab330

[15] Danko, D., Bezdan, D., Afshin, E.E., Ahsanuddin, S., Bhattacharya, C., Butler, D.J., Chng, K.R.,
Donnellan, D., Hecht, J., Jackson, K., et al.: A global metagenomic map of urban microbiomes and
antimicrobial resistance. Cell (2021)

[16] Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T., Jones, W,
Garg, S., Markello, C., Lin, M.F., Paten, B., Durbin, R.: Variation graph toolkit im-
proves read mapping by representing genetic variation in the reference. nature biotechnol-
ogy 36 (2018). https://doi.org/10.1038 /nbt.4227, https://www.nature.com/articles/nbt.4227.
pdf?origin=ppub

https://doi.org/10.4230/LIPIcs.WABI.2017.18
http://drops.dagstuhl.de/opus/volltexte/2017/7657
http://drops.dagstuhl.de/opus/volltexte/2017/7657
https://doi.org/https://doi.org/10.1016/j.ic.2013.10.003
https://www.sciencedirect.com/science/article/pii/S0890540113001144
https://www.sciencedirect.com/science/article/pii/S0890540113001144
https://doi.org/10.1007/978-3-642-33122-0{_}18
https://doi.org/https://doi.org/10.1016/j.ipm.2012.08.003
https://www.sciencedirect.com/science/article/pii/S0306457312001094
https://www.sciencedirect.com/science/article/pii/S0306457312001094
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1186/1748-7188-8-22
http://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22
https://doi.org/10.1093/bioinformatics/btab330
https://doi.org/10.1093/bioinformatics/btab330
https://doi.org/10.1093/bioinformatics/btab330
https://doi.org/10.1038/nbt.4227
https://www.nature.com/articles/nbt.4227.pdf?origin=ppub
https://www.nature.com/articles/nbt.4227.pdf?origin=ppub
https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

14 M. Karasikov et al.

[17] Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data
structures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (2014). https://doi.org/10.1007/978-3-319-07959-
228

[18] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M.,
Haldane, A., del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,
Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature
585(7825), 357-362 (Sep 2020). https://doi.org/10.1038/s41586-020-2649-2, https://doi.org/10.
1038/s41586-020-2649-2

[19] Huang, W., Li, L., Myers, J.R., Marth, G.T.: Art: a next-generation sequencing read simulator.
Bioinformatics 28(4), 593-594 (2012)

[20] Igbal, Z., Caccamo, M., Turner, L., Flicek, P., McVean, G.: De novo assembly and genotyping of
variants using colored de Bruijn graphs. Nature Genetics (2012). https://doi.org/10.1038 /ng.1028

[21] Italiano, G.F., Prezza, N., Sinaimeri, B., Venturini, R.: Compressed Weighted de Bruijn
Graphs. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd Annual Symposium on Combina-
torial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 191, pp. 16:1-16:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Ger-
many (2021). https://doi.org/10.4230/LIPIcs.CPM.2021.16, https://drops.dagstuhl.de/opus/
volltexte/2021/13967

[22] Karasikov, M., Mustafa, H., Danciu, D., Zimmermann, M., Barber, C., Ratsch, G., Kahles, A.:
Metagraph: Indexing and analysing nucleotide archives at petabase-scale. bioRxiv (2020)

[23] Karasikov, M., Mustafa, H., Joudaki, A., Javadzadeh-No, S., Rétsch, G., Kahles, A.: Sparse binary
relation representations for genome graph annotation. Journal of Computational Biology 27(4),
626-639 (2020)

[24] Kokot, M., Dtugosz, M., Deorowicz, S.: KMC 3: counting and manipulating k-mer statistics.
Bioinformatics 33(17), 2759-2761 (2017). |https://doi.org/10.1093/bioinformatics/btx304, http:
//dx.doi.org/10.1093/bioinformatics/btx304

[25] Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.LN.S.D.: The sequence read archive.
Nucleic acids research 39(suppl_1), D19-D21 (2010)

[26] Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094-3100
(2018)

[27] Liu, B., Guo, H., Brudno, M., Wang, Y.: debga: read alignment with de bruijn graph-based seed
and extension. Bioinformatics 32(21), 3224-3232 (2016)

[28] Luhmann, N., Holley, G., Achtman, M.: Blastfrost: fast querying of 100,000 s of bacterial genomes
in bifrost graphs. Genome biology 22(1), 1-15 (2021)

[29] Marchet, C., Boucher, C., Puglisi, S.J., Medvedev, P., Salson, M., Chikhi, R.: Data structures based
on k-mers for querying large collections of sequencing data sets. Genome Research 31(1), 1-12 (2021)

[30] Marchet, C., Igbal, Z., Gautheret, D., Salson, M., Chikhi, R.: REINDEER: efficient index-
ing of k-mer presence and abundance in sequencing datasets. Bioinformatics 36(Supplement_1),
i177-1185 (07 2020). https://doi.org/10.1093/bioinformatics/btaad87, https://doi.org/10.1093/
bioinformatics/btaad87

[31] Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R., Schéffer, A.A.: Database
indexing for production megablast searches. Bioinformatics 24(16), 1757-1764 (2008)

[32] Muggli, M.D., Bowe, A., Noyes, N.R., Morley, P.S., Belk, K.E., Raymond, R., Gagie,
T., Puglisi, S.J., Boucher, C.: Succinct colored de Bruijn graphs. Bioinformatics 33(20),
3181-3187 (02 2017). https://doi.org/10.1093 /bioinformatics/btx067, https://doi.org/10.1093/
bioinformatics/btx067

[33] Nayfach, S., Pdez-Espino, D., Call, L., Low, S.J., Sberro, H., Ivanova, N.N., Proal, A.D., Fischbach,
M.A., Bhatt, A.S., Hugenholtz, P.; et al.: Metagenomic compendium of 189,680 dna viruses from
the human gut microbiome. Nature Microbiology pp. 1-11 (2021)

[34] Novak, A.M., Garrison, E., Paten, B.:. A graph extension of the positional burrows—
wheeler transform and its applications. Algorithms for Molecular Biology 12(1), 18 (2017).
https://doi.org/10.1186/s13015-017-0109-9, https://doi.org/10.1186/s13015-017-0109-9

[35] O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Rob-
bertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O.,
Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., Farrell, C.M., Goldfarb, T., Gupta,
T., Haft, D., Hatcher, E., Hlavina, W., Joardar, V.S., Kodali, V.K., Li, W., Maglott, D., Masterson,
P., McGarvey, K.M., Murphy, M.R., O’Neill, K., Pujar, S., Rangwala, S.H., Rausch, D., Riddick,

https://doi.org/10.1007/978-3-319-07959-2{_}28
https://doi.org/10.1007/978-3-319-07959-2{_}28
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/ng.1028
https://doi.org/10.4230/LIPIcs.CPM.2021.16
https://drops.dagstuhl.de/opus/volltexte/2021/13967
https://drops.dagstuhl.de/opus/volltexte/2021/13967
https://doi.org/10.1093/bioinformatics/btx304
http://dx.doi.org/10.1093/bioinformatics/btx304
http://dx.doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.1093/bioinformatics/btx067
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467907; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Lossless Indexing with Counting de Bruijn Graphs 15

L.D., Schoch, C., Shkeda, A., Storz, S.S., Sun, H., Thibaud-Nissen, F., Tolstoy, I., Tully, R.E.,
Vatsan, A.R., Wallin, C., Webb, D., Wu, W., Landrum, M.J., Kimchi, A., Tatusova, T., DiCuc-
cio, M., Kitts, P., Murphy, T.D., Pruitt, K.D.: Reference sequence (RefSeq) database at NCBI:
Current status, taxonomic expansion, and functional annotation. Nucleic Acids Research (2016).
https://doi.org/10.1093 /nar/gkv1189

[36] Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., Phillippy,
A M.: Mash: fast genome and metagenome distance estimation using minhash. Genome biology
17(1), 1-14 (2016)

[37] Ono, Y., Asai, K., Hamada, M.: Pbsim: Pacbio reads simulator—toward accurate genome assembly.
Bioinformatics 29(1), 119-121 (2013)

[38] Pandey, P., Almodaresi, F., Bender, M.A., Ferdman, M., Johnson, R., Patro, R.: Man-
tis: A Fast, Small, and Exact Large-Scale Sequence-Search Index. Cell Systems (7 2018).
https://doi.org/10.1016/j.cels.2018.05.021, http://dx.doi.org/10.1016/j.cels.2018.05.021

[39] Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applications to Encoding
k-ary Trees and Multisets *. In: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms. pp. 233-242. Society for Industrial and Applied Mathematics (2002), http:
//delivery.acm.org/10.1145/550000/545411/p233-raman . pdf

[40] Riley, M., Abe, T., Arnaud, M.B., Berlyn, M.K., Blattner, F.R., Chaudhuri, R.R., Glasner, J.D.,
Horiuchi, T., Keseler, .M., Kosuge, T., et al.: Escherichia coli k-12: a cooperatively developed
annotation snapshot—2005. Nucleic acids research 34(1), 1-9 (2006)

[41] Schneider, V.A., Graves-Lindsay, T., Howe, K., Bouk, N.; Chen, H.C., Kitts, P.A., Murphy, T.D.,
Pruitt, K.D., Thibaud-Nissen, F., Albracht, D., et al.: Evaluation of grch38 and de novo haploid
genome assemblies demonstrates the enduring quality of the reference assembly. Genome research
27(5), 849-864 (2017)

[42] Schulz, T., Wittler, R., Rahmann, S., Hach, F., Stoye, J.: Detecting high-scoring local alignments
in pangenome graphs. Bioinformatics 37(16), 22662274 (2021)

[43] Solomon, B., Kingsford, C.: Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees. Journal of Computational Biology 25(7), 755-765 (7
2018). https://doi.org/10.1089/cmb.2017.0265, http://www.liebertpub.com/doi/10.1089/cmb.
2017.0265

[44] Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz,
M.C., Sinha, S., Robinson, G.E.: Big data: Astronomical or genomical? PLoS Biology (2015).
https://doi.org/10.1371/journal.pbio.1002195

[45] Su, X., Jing, G., Zhang, Y., Wu, S.: Method development for cross-study microbiome data mining:
challenges and opportunities. Computational and Structural Biotechnology Journal (2020)

https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1016/j.cels.2018.05.021
http://dx.doi.org/10.1016/j.cels.2018.05.021
http://delivery.acm.org/10.1145/550000/545411/p233-raman.pdf
http://delivery.acm.org/10.1145/550000/545411/p233-raman.pdf
https://doi.org/10.1089/cmb.2017.0265
http://www.liebertpub.com/doi/10.1089/cmb.2017.0265
http://www.liebertpub.com/doi/10.1089/cmb.2017.0265
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1101/2021.11.09.467907
http://creativecommons.org/licenses/by-nc/4.0/

	 Lossless Indexing with Counting de Bruijn Graphs

