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ABSTRACT2

The remarkable performance of Convolutional Neural Networks on image segmentation tasks3
comes at the cost of a large amount of pixelwise annotated images that have to be segmented4
for training. In contrast, feature-based learning methods, such as the Random Forest, require5
little training data, but never reach the segmentation accuracy of CNNs. This work bridges the6
two approaches in a transfer learning setting. We show that a CNN can be trained to correct the7
errors of the Random Forest in the source domain and then be applied to correct such errors in8
the target domain without retraining, as the domain shift between the Random Forest predictions9
is much smaller than between the raw data. By leveraging a few brushstrokes as annotations in10
the target domain, the method can deliver segmentations that are sufficiently accurate to act as11
pseudo-labels for target-domain CNN training. We demonstrate the performance of the method on12
several datasets with the challenging tasks of mitochondria, membrane and nuclear segmentation.13
It yields excellent performance compared to microscopy domain adaptation baselines, especially14
when a significant domain shift is involved.15

Keywords: Microscopy segmentation, Domain Adaptation, Deep Learning, Transfer Learning, Biomedical segmentation16

1 INTRODUCTION

Semantic segmentation – partitioning the image into areas of biological (semantic) meaning – is a ubiquitous17
problem in microscopy image analysis. Compared to natural images, microscopy segmentation problems18
are particularly well suited for feature-based (“shallow”) machine learning, as the difference between19
semantic classes can often be captured in local edge, texture or intensity descriptors (Berg et al. (2019);20
Arganda-Carreras et al. (2017); Belevich et al. (2016)). While convolutional neural networks (CNNs)21
have long overtaken feature-based approaches in segmentation accuracy and inference speed, interactive22
feature-based solutions continue to attract users due to the low requirements to training data volumes,23
nearly real-time training speeds and general simplicity of the setup, which does not require computational24
expertise.25

CNNs are made up of millions of learnable parameters which have to be configured based on user-provided26
training examples. With insufficient training data, CNNs are very prone to overfitting, “memorizing”27
the training data instead of deriving generalizable rules. Strategies to suppress overfitting include data28
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augmentation (Ronneberger et al. (2015)), incorporation of prior information (El Jurdi et al. (2021)),29
dropout and sub-network re-initialization (Taha et al. (2021); Han et al. (2016)) and, in case a similar task30
has already been solved on sufficiently similar data, domain adaptation and transfer learning. In the latter31
case, the network exploits a large amount of labels in the so called “source” domain to learn good parameter32
values for the task at hand, which are further adapted for the unlabeled or sparsely labeled “target” domain33
through unsupervised or weakly supervised learning. For microscopy images, the adaptation is commonly34
achieved by bringing the distributions of the source and target domain data closer to each other, either by35
forcing the network to learn domain-invariant features (Roels et al. (2019); Liu et al. (2020); Long et al.36
(2015)) or by using generative networks and cycle consistency constraints (Januszewski and Jain (2019);37
Zhang et al. (2018); Chen et al. (2019)). Alternatively, the domain shift can be explicitly learned in a part38
of the network (Rozantsev et al. (2018)). In addition to labels in the source domain, pseudo-labels in the39
target domain are often used for training (Choi et al. (2019); Xing et al. (2019)). Pseudo-labels can be40
computed from the predictions of the source domain network (Choi et al. (2019)) or predictions for pixels41
similar to source domain labels (Bermúdez-Chacón et al. (2019)).42

In contrast, Random Forest (RF), one of the most popular “shallow” learning classifiers (Fernández-43
Delgado et al. (2014)), does not overfit on small amounts of training data and trains so fast that in practice44
no domain adaptation strategies are applied – the classifier is instead fully retrained with sparse labels45
in the target domain. However, unlike a CNN, it cannot fully profit from large amounts of training data.46
The aim of our contribution is to combine the best of both worlds, exploiting fast training of the Random47
Forest for domain adaptation and excellent performance of CNNs for accurate segmentation with large48
amounts of training data. We use the densely labeled source domain to train many Random Forests for49
segmentation and then train a CNN for Random Forest prediction enhancement (see Figure 1). On the50
target domain, we train a new Random Forest from a few brushstroke labels and simply apply the pre-51
trained Prediction Enhancer (PE) network to improve the probability maps. The enhanced predictions are52
substantially more accurate than the Random Forest or a segmentation CNN trained only on the source53
domain. Furthermore, a new CNN can be trained using enhanced predictions as pseudo-labels, achieving54
an even better accuracy with no additional annotation cost. Since the Prediction Enhancer is only trained on55
RF probability maps, it remains agnostic to the appearance of the raw data and can therefore be applied to56
mitigate even very large domain gaps between source and target datasets, as long as the segmentation task57
itself remains similar. To illustrate the power of our approach, we demonstrate domain adaptation between58
different datasets of the same modality, and also from confocal to light sheet microscopy, from electron59
to confocal microscopy and from fluorescent light microscopy to histology. From the user perspective,60
domain adaptation is realized in a straightforward, user-friendly setting of training a regular U-Net, without61
adversarial elements or task re-weighting. Furthermore, a well-trained Prediction Enhancer network can62
be used without retraining, only requiring training of the Random Forest from the user. Our Prediction63
Enhancer networks for mitochondria, nuclei or membrane segmentation tasks are available at the BioImage64
Model Zoo (https://bioimage.io) and can easily be applied to improve predictions of the Pixel65
Classification workflow in ilastik or of the Weka Trainable Segmentation plugin in Fiji.66

2 METHODS

Our approach combines the advantages of feature-based and end-to-end segmentation methods by training67
a Prediction Enhancer network to predict one from the other. On the target dataset, retraining can be limited68
to the feature-based classifier as its predictions – unlike the raw data – do not exhibit a significant domain69
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Figure 1. a) Training on the source dataset: many Random Forests are trained by subsampling patches
of raw data and dense groundtruth segmentation. Random Forest predictions are used as inputs and
groundtruth segmentation as labels to train the Prediction Enhancer CNN to improve RF segmentations.
b) Domain adaptation to the target dataset: a RF is trained interactively with brushstroke labels. The pre-
trained PE is applied to improve the RF predictions. Optionally, PE predictions are used as pseudo-labels
to train a segmentation network for even better results with no additional annotations, but using a larger
computational budget.

shift if the same semantic classes are being segmented. In more detail, we propose the following sequence70
of steps (see also Figure 1):71

1. Create training data for the Prediction Enhancer CNN by training multiple Random Forests on random72
samples of the densely labeled source domain.73

2. Train the Prediction Enhancer using the RF predictions as input and the ground-truth segmentation as74
labels.75

3. Train a Random Forest on the target dataset with a few brushstroke labels and use the pre-trained76
Prediction Enhancer to improve the predictions.77

4. Use the improved predictions as pseudo-labels to train a CNN on the target dataset. This step is optional78
and trades improved quality for the computational cost of training a CNN from scratch.79

Note that the Prediction Enhancer only takes the predictions of the Random Forest as input. Neither80
raw data nor labels of the source dataset are needed to apply it to new data. Our method can therefore81
be classified as source-free domain adaption, but the additional feature-based learning step allows us82
to avoid training set estimation or reconstruction, commonly used in other source-free or knowledge83
distillation-based approaches like Liu et al. (2021); Du et al. (2021). At the same time, we can fully profit84
from all advances in the field of pseudo-label rectification (Zhang et al. (2021); Prabhu et al. (2021); Wu85
et al. (2021); Zhao et al. (2021)), applying those to pseudo-labels generated by the PE network.86
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2.1 Prediction Enhancer87

The Prediction Enhancer is based on the U-Net architecture (Ronneberger et al. (2015)). To create training88
data, we train multiple Random Forests on the dense labels of the source domain, using the same pixel89
features as in the ilastik pixel classification workflow (Berg et al. (2019)). To obtain a diverse set of shallow90
classifiers we sample patches of various size and train a classifier for each patch based on the raw data and91
dense labels. Typically, we train 500 to 1000 different classifiers. Next, we train the U-Net following the92
standard approach for semantic segmentation, using Random Forest predictions (but not the raw data) as93
input and the provided dense labels of the source domain as the groundtruth. To create more variability, we94
sample from all previously trained classifiers. We use either the binary cross entropy or the Dice score as95
loss function.96

Segmentation of a new dataset only requires training a single Random Forest; its predictions can directly97
be improved with the pre-trained Prediction Enhancer. Here, we use ilastik pixel classification workflow,98
which enables training a Random Forest interactively from brushstroke user annotations.99

2.2 Further domain adaptation with pseudo-labels100

The Prediction Enhancer can improve the segmentation results significantly, as shown in section 3.101
However, it relies only on the Random Forest predictions, and can thus not take intensity, texture or other102
raw image information into account. To make use of such information and further improve segmentation103
results, we can use the predictions of the Enhancer as pseudo-labels and train a segmentation U-Net on the104
target dataset. We use either Dice score or binary cross entropy as loss and make the following adjustments105
to the standard training procedure to enable training from noisy pseudo-labels:106

• use the RF predictions as soft labels in range [0, 1] instead of hard labels in {0, 1}.107

• Add a consistency loss term similar to (Tarvainen and Valpola (2017)) that compares the108
current predictions to the predictions of the network’s exponential moving average. See also109
subsubsection 2.2.1.110

• Use a simple label rectification strategy to weight the per-pixel loss based on the prediction confidence.111
See also subsubsection 2.2.2.112

The combined loss function is defined as113

Lfull
R = LR(φf (x), ŷ) + LR,c(φf (x), φg(x)) (1)

with consistency term LR,c (see next section) and rectified pseudo labels ŷ (Equation 6). LR denotes either114
binary cross entropy (BCE) or Dice loss (dice).115

2.2.1 Consistency Loss Term116

For training with pseudo-labels we introduce a consistency term in the loss function, which is based on117
the ”Mean Teacher” training procedure for semi-supervised classification Tarvainen and Valpola (2017) .118
This method adds a loss term between the prediction of the network and its exponential moving average119
(EMA) to promote more consistent predictions across training iterations. We make use of this method for120
training a segmentation network φf with parameters θf from pseudo-labels. Its EMA is φg parametrized by121

θg ← αθg + (1− α)θf , (2)

This is a provisional file, not the final typeset article 4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467925doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467925
http://creativecommons.org/licenses/by/4.0/


Matskevych et al. From shallow to deep

where we set the smoothing coefficient α to 0.999 following Tarvainen and Valpola (2017).122

Given that we are comparing the per pixel predictions of the current network and its EMA, we use the123
loss function that is also employed for comparing to the pseudo labels: we either use the Dice loss124

LDice,c(pf , pg) =
2
∑N

i pf,i pg,i∑N
i p2f,i +

∑N
i p2g,i

(3)

or the binary cross entropy loss125

LBCE,c(pf , pg) =
1

N

N∑
i

pg,ilog(pf,i) + (1− pg,i)(1− log(pf,i)). (4)

Where x denotes the input image, pf = φf (x), pg = φg(x) and N is the number of pixels. The combined126
loss function is127

LR(x, y) = LR(φf (x), y) + LR,c(φf (x), φg(x)), (5)

with pseudo-labels y and R either Dice or BCE.128

2.2.2 Label Rectification129

Label rectification is a common strategy in self-learning based domain adaptation methods, where130
predictions from the source model are used as pseudo-labels on the target domain. Rectification is then131
used to correct for the label noise. Several strategies have been proposed, for example based on the distance132
to class prototypes in the feature space (Zhang et al. (2021)) or prediction confidence after several rounds133
of dropout (Wu et al. (2021)).134

Here, we adopt a simple label rectification strategy based on the prediction confidence to weight the135
pseudo-labels y (which correspond to the predictions of the enhancer):136

ŷk = ωk yk, (6)

where k is the class index. For the case of foreground/background segmentation k ∈ {0, 1} and we define137
the per-pixel weight for the foreground class as138

ω1 = 1− abs(p1 − η1). (7)

Here, p1 is the foreground probability predicted by the segmentation network and η1 the exponentially139
weighted average of foreground predictions:140

η ← λ η + (1− λ) ∗ mean(S), whereS = {p1(x)|x ∈ X and y1(x) > 0.5}. (8)

Here, X is the set of all pixels in the current batch and we set λ = 0.999 in all experiments. The weight ω0141
for the background class is computed in the same manner.142

Frontiers 5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467925doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467925
http://creativecommons.org/licenses/by/4.0/


Matskevych et al. From shallow to deep

3 RESULTS

3.1 Data & Setup143

We evaluate the proposed domain adaptation method on challenging semantic segmentation problems,144
including mitochondria segmentation in EM, membrane segmentation in EM and LM as well as nucleus145
segmentation in LM. Table 1 summarizes all datasets used for the experiments.146

Some of the datasets we use represent image stacks and could be processed as 3D volumes with different147
levels of anisotropy. We choose to process them as independent 2D images instead to enable a wider set148
of source/target domain pairs. If not noted otherwise, training from pseudo-labels is performed using the149
consistency loss term and label rectification (Equation 1). We use a 2D U-Net architecture (Ronneberger150
et al. (2015)) with 64 features in the initial layer, 4 downsampling/upsampling levels and double the151
number of features per level for all networks. The network and training code is based on the PyTorch152
implementation from Wolny et al. (2020). For all training runs we use the Adam optimizer with initial153
learning rate of 0.0002, weight decay of 0.00001. Furthermore, we decrease the learning rate by a factor154
of 0.2 if the validation metric is not improving for a dataset dependent number of iterations. We use155
binary cross entropy as a loss function for the mitochondria (subsection 3.2) and nucleus (subsection 3.4)156
segmentation and dice loss for the membrane segmentation (subsection 3.3).157

Name EPFL VNC MitoEM-R MitoEM-H Kasthuri CREMI

Organism/Tissue Mouse/Hippocampus Fruitfly/ventral nerve cord Rat/cortex Human/cortex Mouse/cortex Fruitfly/Brain
Modality FIBSEM ssTEM sbEM sbEM ssTEM ssTEM
Tasks Mitochondria Mitochondria, Membranes Mitochondria Mitochondria Mitochondria Membranes
Resolution 5×5×5 nm 45×5×5 nm 30×8×8 nm 30×8×8 nm 30×3×3 nm 40×4×4 nm
Reference Lucchi et al. (2013) Gerhard et al. (2013) Wei et al. (2020) Wei et al. (2020) Kasthuri et al. (2015) cremi.org

(a) Electron Microscopy datasets used in the experiments.
Name Root Ovules DSB-FL Monuseg

Organism/Tissue Arabidopsis/Lateral root Arabidopsis/ovules Various/nuclear stain Human/kidney
Modality Lightsheet Confocal Fluorescence Histopathology
Tasks Membranes Membranes Nuclei Nuclei
Resolution 0.25×0.1625×0.1625 µm 0.235×0.075×0.075 µm
Reference Wolny et al. (2020) Wolny et al. (2020) Caicedo et al. (2019) Kumar et al. (2019)

(b) Light Microscopy datasets used in the experiments.

Table 1. datasets used in the experiments

3.2 Mitochondria segmentation158

We first perform mitochondria segmentation in EM. We train the Prediction Enhancer on the EPFL159
dataset (the only FIB/SEM dataset in the collection) and then perform source-free domain adaptation on160
the VNC, MitoEM-R, MitoEM-H and Kasthuri datasets. For domain adaption, the Random Forest for161
initial target prediction is trained interactively in ilastik using a separate train split. The RF predictions are162
then improved by the PE and the improved predictions are used to as pseudo-labels for a U-Net trained163
from scratch (Pseudo-label Net). We compare to direct predictions of a U-Net trained for Mitochondria164
segmentation on the source domain EPFL (Source Net) and to the Y-Net (Roels et al. (2019)), a different165
method for domain adaptation, which is unsupervised on the target domain, but not source-free. We also166
indicate the performance of a U-Net trained on the target dataset as an estimate of the upper bound of the167
achievable performance (a separate train split is used).168
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Table 2 summarizes the resulting F1 scores (higher is better) for the source dataset and all target datasets.169
The Enhancer improves the Random Forest predictions significantly on all target datasets and the CNN170
trained from pseudo-labels further improves the results. The pseudo-label CNN always performs better than171
the source network or the Y-Net, which fails completely for the Kasthuri dataset where the domain gap is172
particularly large. Figure 2 shows an example of the improvements from RF to PE and PE to Pseudo-label173
Net.174

Model / Dataset EPFL VNC MitoEM-R MitoEM-H Kasthuri
Source Net 0.933 0.695 0.738 0.591 0.723
Y-Net - 0.713 0.781 0.678 0.0
RF 0.625 0.647 0.511 0.338 0.590
PE 0.824 0.840 0.705 0.624 0.778
Pseudo-label Net - 0.884 0.793 0.751 0.834
Target Net 0.933 0.891 0.939 0.920 0.942

Table 2. Results for mitochondria segmentation in EM. Quality is measured by the F1-score of the
mitochondria prediction (higher is better). EPFL dataset is used as the source for domain adaptation by the
Y-Net, Prediction Enhancer (PE) and Pseudo-label Net.

Figure 2. Mitochondria predictions of the Random Forest trained in ilastik, Prediction Enhancer and
Pseudo-label CNN (“Segmentor”) as well as the groundtruth segmentation, on the MitoEM-H dataset. The
Enhancer was pre-trained on the EPFL dataset; EPFL raw data shown under Source.

For the mitochondria segmentation task we also check if training the PE on multiple source datasets175
improves results. Table 3 shows that this is indeed the case, especially for the Kasthuri dataset.176
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Source EPFL VNC MitoEM-R MitoEM-H Kasthuri
EPFL 0.811 0.786 0.627 0.505 0.612
EPFL, VNC 0.806 0.818 0.642 0.515 0.672
EPFL, VNC
MitoEM-R, MitoEM-H 0.833 0.832 0.675 0.586 0.720

Table 3. Mitochondria segmentation results for PE trained on multiple source datasets. The left column
indicates the source datasets, quality is measured with the F1 score.

3.3 Membrane segmentation177

We perform membrane segmentation both in EM and LM data. To evaluate membrane segmentations, we178
set up a Multicut based post-processing procedure following Beier et al. (2017) to transform the boundary179
segmentation into an instance segmentation, followed by evaluation with the Variation of Information180
(Meilă (2003)). We choose this more elaborate evaluation procedure as boundary segmentation is often181
used as the first step in instance segmentation pipelines and needs to be evaluated in this context. Simple182
evaluation by boundary F1 score is often not indicative of the actual quality of a boundary segmentation183
due to the large influence of seemingly small prediction errors, such as holes, on the follow-up instance184
segmentation. For the Variation of Information lower values correspond to a better segmentation.185

In EM we perform boundary segmentation of brain tissue using the VNC dataset as source and186
three different datasets from the CREMI challenge (cremi.org) as target. Table 4 shows that the PE187
significantly improves the RF predictions for all three target datasets. The network trained on pseudo-labels188
can further improve results, especially for CREMI B and C, which pose a more challenging segmentation189
problem due to more irregular and elongated neurites compared to CREMI A. Both PE and Pseudo-label Net190
perform significantly better than a segmentation network trained on the source dataset. The segmentation191
results of a segmentation network trained on a separate split of the target dataset are shown to indicate an192
upper bound of the segmentation performance. Figure 3 shows the improvement brought by the PE and the193
Pseudo-label Net on an image from CREMI C.194

Model / Dataset CREMI A CREMI B CREMI C
Source Net 1.031 2.089 1.925
RF 1.092 2.231 2.363
PE 0.856 2.107 1.819
Pseudo-Label Net 0.840 1.806 1.582
Target Net 0.559 0.739 1.055

Table 4. Results for boundary segmentation in EM. Quality is measured by the Variation of Information
(lower is better) after instance segmentation via Multicut post-processing. Source Net and PE are trained on
the VNC dataset and then applied to the three target datasets CREMI A, B and C. RF is trained interactively
with ilastik on each target dataset.

In LM we perform boundary segmentation of cells in a confocal image stack of Arabidopsis ovules. We195
use a light-sheet image stack of Arabidopsis roots as source data. Note that we downsample both roots196
and ovules datasets by a factor of 2 for these experiments to increase the field of view of the segmentation197
networks. While this leads to source and target datasets with different resolutions (native resolution is198
0.1625 µm for roots and 0.075 µm for ovules, see Table 1b) the size of the structure of interest matches199
best in this setting. Table 5 shows the results in the “Roots (LM)” column. While the PE improves the200
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Figure 3. Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer and Pseudo-
label Net, as well as the groundtruth segmentation, on the CREMI C dataset. The Enhancer was pre-trained
on VNC, VNC raw data shown under Source.

RF predictions and the Pseudo-label Net further improves result, we find that the source net performs201
better than any of our methods in this case. This can be explained by the fact that the quality of the RF202
segmentation is, in contrast to previous experiments, far inferior to the quality of the source network and203
the improvements afforded by PE and pseudo-label training are not sufficient to surpass the segmentation204
quality of the source network. Qualitatively, the RF predictions can be seen in Figure 4; the predictions205
amplify most of the signal in the image. This leads to a over-segmentation in the downstream instance206
segmentation, resulting in low quality segmentation. Note that the overall quality of results reported here is207
inferior compared to the results reported in Wolny et al. (2020). This can be explained by the fact that all208
models only receive 2D input, whereas the state-of-the-art uses 3D models.209

We also experiment with a much larger domain shift and apply a PE that was trained on the EM dataset210
CREMI A as source. The results are shown in the “CREMI (EM)” column in Table 5. As expected, transfer211
of the source network fails, because it was trained on a completely different domain. However, the PE212
successfully improves RF predictions and pseudo-label training further improves the results. The fact213
that the PE only receives the RF predictions as input enables successful transfer in this case; while the214
image data distribution is very different in source and target domain, Random Forest probability maps215
look sufficiently similar. Furthermore, the resolution of the two domains differs by almost 3 orders of216
magnitude. However, the size of the structures in pixels is fairly similar, enabling successful domain217
adaptation. Figure 4 shows RF, PE and Pseudo-label Net predictions next to the source and target domain218
data.219
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Model / Source Root (LM) CREMI (EM)
Source Net 1.863 3.257
RF 2.442 2.442
PE 2.032 2.345
Pseudo-Label Net 1.982 2.309
Target Net 1.561 1.561

Table 5. LM-Boundaries and cross modality experiments: Variation of Information after applying simple
Multicut to the boundary predictions.

Figure 4. Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer and Pseudo-
label Net, as well as groundtruth segmentation, on the ovules dataset. The enhancer was pre-trained on
CREMI A, CREMI A raw data shown under Source.

3.4 Nuclei segmentation220

As another example of cross-modality adaptation, we perform a an experiment for nucleus segmentation221
between fluorescence microscopy images from Caicedo et al. (2019) (DSB-FL) and histopathology images222
of the human kidney from Kumar et al. (2019) (Monuseg). Table 6 shows the results for using Monuseg as223
source and DSB-FL as target (column “DSB-FL”) and vice versa (column “Monuseg”). Here, the PE only224
affords a negligible improvement in the F1 score over the RF predictions but training from pseudo-labels225
improves the scores. We assume that the transfer of the PE is not very effective in this case because of very226
different nucleus sizes between the two datasets. The large domain shift is apparent from the fact that the227
Source Net does not generalize to the target domain at all in both cases.228
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Source Method/Dataset DSB-FL Monuseg
Ilastik 0.661 0.601

DSB-FL Source Net - 0.014
Enhancer - 0.620
Pseudo-label Net - 0.654

Monuseg Source Net 0.001 -
Enhancer 0.661 -
Pseudo-label Net 0.719 -
Target Net 0.936 0.721

Table 6. Results of nucleus segmentation. DSB-FL columns shows results for domain adaptation from
Monuseg (Histopathology) to DSB-FL (Fluorescence), Monuseg column shows the opposite. The
segmentation quality is measured by the F1 score.

3.5 Ablation studies229

In the following, we perform ablation studies to determine the impact of some of our design choices on230
the overall performance of the method.231

First, we investigate if the consistency loss (CL, equation 4) and label rectification (LR, equation232
6) improve the accuracy obtained after pseudo-label training. We perform pseudo-label training for233
mitochondria segmentation on the VNC and MitoEM-R datasets using the PE trained on VNC to generate234
the pseudo-labels. We perform the training without any modification of the loss, adding only CL, adding235
only LR and adding both CL and LR. The results in Table 7 show that both CL and LR improve performance236
on their own. Combining them leads to an additional small improvement on VNC and to a slight decrease237
in quality on MitoEM-R.238

Method / Dataset VNC MitoEM-R
PE 0.840 0.705
Pseudo-labels 0.869 0.768
Pseudo-labels + CL 0.877 0.788
Pseudo-labels + LR 0.869 0.798
Pseudo-labels + CL + LR 0.884 0.793

Table 7. Results of pseudo-label network training using different loss functions. Mitochondria
segmentation with EPFL as source dataset and VNC, MitoEM-R as target datasets. Segmentation accuracy
is measured by the F1 score.

Using the same experiment setup, we also investigate whether using the PE enhancer for generating the239
pseudo-labels is actually beneficial compared to using the RF trained on target or using the source network.240
Table 8 shows that using the PE for pseudo-label generation significantly improves over the two other241
approaches.242

3.6 Limitations243

The high number of layers, their interconnections and especially skip-connections between them allow244
the U-net to implicitly learn a strong shape prior for the objects of interest. This effect is exacerbated in our245
Prediction Enhancer network as it by design does not observe the raw pixel properties and has to exploit246
shape cues even more than a regular segmentation U-net. While this effect is clearly advantageous for247
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Pseudo-labels VNC MitoEM-R
RF 0.546 0.648
RF w/ CL + LR 0.584 0.656
Source Net 0.707 0.754
Source Net w/ CL + LR 0.794 0.765
PE 0.869 0.768
PE w/ CL + LR 0.884 0.793

Table 8. Results of pseudo-label network training using RF, Source Network and PE for label generation.
Mitochondria segmentation with EPFL as source dataset and VNC, MitoEM-R as target datasets.
Segmentation quality is measured by the F1 score.

same-task transfer learning, it can lead to catastrophic network hallucinations if very differently shaped248
objects of interest need to be segmented in the target domain. To illustrate this point, we show the transfer249
of a PE learned for mitochondria on the EPFL dataset to predict boundaries on the VNC dataset and vice250
versa in Figure 5. The PE amplifies/hallucinates the structures it was trained on while suppressing all other251
signal in the prediction.252

(a) Domain adaptation of a PE trained for
mitochondria segmentation on the EPFL dataset
to boundary prediction task on the VNC dataset.

(b) Domain adaptation of a PE trained for boundary
prediction on the VNC dataset to mitochondria
segmentation task on the EPFL dataset.

Figure 5. Failure case: different segmentation tasks in source and target datasets.
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4 DISCUSSION

We have introduced a simple, source-free, weakly supervised approach to transfer learning in microscopy253
which can overcome significant domain gaps and does not require adversarial training. In our setup, the254
feature-based classifier which is trained from sparse annotations on the target domain acts as an implicit255
domain adapter for the Prediction Enhancer network. The combination of the feature-based classifier and256
the prediction enhancer substantially outperforms the segmentation CNN trained on the source domain, with257
further improvement brought by an additional training step where the Enhancer predictions on the target258
dataset serve as pseudo-labels. Since the Enhancer network never sees the raw data as input, our method259
can perform transfer learning between domains of drastically different appearance, e.g. between light and260
electron microscopy images. By design, this kind of domain gap cannot be handled by unsupervised domain261
adaptation methods which rely on network feature or raw data alignment. Furthermore, even for small262
domain gaps and in presence of label rectification strategies, pseudo-labels produced by the Prediction263
Enhancer lead to much better segmentation CNNs than pseudo-labels of the source network. We expect264
these results to improve even further with the more advanced label rectification approaches which are now265
actively introduced in the field.266

The major limitation of our approach is the dependency on the quality of the feature-based classifier267
predictions. We expect that in practice users will train it interactively on the target domain which already268
produces better results than “bulk” training: in our mitochondria segmentation experiments, also shown in269
Table 2, there was commonly a 1.5-2 fold improvement in F1-score between interactive ilastik training270
in the target domain and RF training in a script without seeing the data. In general, the performance of271
the Prediction Enhancer will lag behind the performance of a segmentation network trained directly on272
the raw data with dense groundtruth labels except for very easy problems that can be solved by the RF273
to 100% accuracy. In a way, the Random Forest acts as a lossy compression algorithm for the raw data,274
which reduces the discriminative power for the Enhancer. However, the pseudo-label training step can275
again compensate for the “compression” as it allows to train another network on the raw data of the target276
domain, with pseudo-labels for potentially very large amounts of unlabeled data.277

For simplicity, and also to sample as many source/target pairs with full groundtruth as possible, we have278
only demonstrated results on 2D data, in a binary foreground/background classification setting. Extension279
to 3D is straightforward and would not require any changes in our method other than accounting for280
potentially different z resolution between source and target datasets. Extension to multi-class segmentation281
would only need a simple update to the pseudo-label training loss.282

In future work, we envision integration of our approach with other pseudo-label training strategies.283
Furthermore, as pseudo-label training can largely be configured without target domain knowledge, we284
expect our method to be a prime candidate for user-facing tools which already include interactive feature-285
based classifier training.286
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