
Contribution of linear and nonlinear mechanisms to predictive motion

estimation

Belle Liu1, Arthur Hong1,2, Fred Rieke1,4, and Michael B. Manookin3,4,*

1Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
2Neuroscience Graduate Program, University of Washington, Seattle, WA 98195
3Department of Ophthalmology, University of Washington, Seattle, WA 98109

4Vision Science Center, University of Washington, Seattle, WA 98109
*Corresponding author

ABSTRACT. Successful behavior relies on the ability to use information obtained from past
experience to predict what is likely to occur in the future. A salient example of pre-
dictive encoding comes from the vertebrate retina, where neural circuits encode informa-
tion that can be used to estimate the trajectory of a moving object. Predictive computa-
tions should be a general property of sensory systems, but the features needed to iden-
tify these computations across neural systems are not well understood. Here, we iden-
tify several properties of predictive computations in the primate retina that likely gener-
alize across sensory systems. These features include calculating the derivative of incom-
ing signals, sparse signal integration, and delayed response suppression. These findings
provide a deeper understanding of how the brain carries out predictive computations and
identify features that can be used to recognize these computations throughout the brain.
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INTRODUCTION

Sensory regions of the brain provide a window to the1

outside world, allowing animals to infer information2

about the external environment and, ultimately, to in-3

teract with that environment. A central tenet of sensory4

neuroscience, the notion of feature selectivity, states5

that neuronal responses depend on a relatively small6

number of features present in the incoming stimulus7

(Fairhall et al., 2006; Sharpee et al., 2004; Pillow and Si-8

moncelli, 2006; Barlow et al., 1964; Zhang et al., 2012;9

Hubel and Wiesel, 1959). Indeed, there is strong evi-10

dence that the brain has evolved the ability to efficiently11

encode incoming sensory inputs bymatching neural re-12

sponse properties to the structure of the natural envi- 13

ronment and specifically those aspects of nature with 14

the greatest behavioral relevance (Barlow, 1961; Rieke 15

et al., 1995; Olshausen and Field, 1996; Lewicki, 2002; 16

Machens et al., 2005; Laughlin, 1981; Fairhall et al., 2001; 17

Reinagel, 2001; Machens et al., 2001; Vinje and Gallant, 18

2002; Chacron et al., 2003; Escabí et al., 2003). 19

A strong version of this hypothesis further posits that 20

the informationmost useful for guiding behavior is that 21

information from the past that can be used to estimate 22

future states of the environment—the predictive infor- 23

mation (Bialek et al., 2001; Salisbury and Palmer, 2016; 24

Tishby et al., 1999). Predictive encoding in sensory sys- 25

November 9, 2021 | 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467979doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural signatures of predictive encoding Liu et al.

tems is currently best understood in the context of vi-26

sual motion estimation, where retinal neurons use the27

past positions of a moving object to estimate its future28

trajectory (Berry et al., 1999; Johnston and Lagnado,29

2015; Leonardo and Meister, 2013; Palmer et al., 2015;30

Schwartz et al., 2007; Liu et al., 2021). Predictive com-31

putations should also be present in other sensory sys-32

tems (Sachdeva et al., 2021; Bialek et al., 2001; Salisbury33

and Palmer, 2016; Singer et al., 2018; Chalk et al., 2018).34

For example, an animal foraging for food must utilize35

the spatiotemporal patterns of odours in the environ-36

ment to estimate the location of a food source (Vergas-37

sola et al., 2007; Vickers, 2000; Koehl et al., 2001; Ze-38

lano et al., 2011). A deeper mechanistic understanding39

of predictive computations is needed to identify these40

computations across neural systems.41

Here, we combine neural recordings, dimensionality42

reduction techniques, and neural circuit modeling to43

identify neural signatures of predictive encoding. We44

demonstrate that four cell types in the primate retina45

that show efficient predictive encoding share a common46

set of low-dimensional features that govern their light47

responses. These features include both linear and non-48

linear properties. Several of these features, including49

the calculation of temporal derivatives, sparse signal50

integration, and delayed suppression of the neural re-51

sponse, are signatures of predictive encoding that may52

generalize across sensory systems.53

RESULTS

Common features of retinal receptive fields54

We studied how both linear and nonlinear properties55

of the spatiotemporal receptive field contribute to mo-56

tion encoding in On- and Off-type parasol and smooth57

monostratified ganglion cells in the macaque monkey58

retina. We focused on these cells because they provide59

input to brain regions that contribute to motion pro-60

cessing in primates and they efficiently encode predic-61

tive motion information (Rodieck and Watanabe, 1993;62

Crook et al., 2008; Schiller et al., 1990; Billington et al.,63

2011; Liu et al., 2021). To estimate their receptive-field64

properties, we recorded spike responses in these cells 65

to a spatiotemporal noise stimulus consisting of adja- 66

cent bars presented over the receptive field center and 67

surround regions (grid size, 19 × 1; bar width, 50 µm; 68

height, 730 µm). The contrast of each bar was drawn 69

from a Bernoulli distribution on each stimulus frame 70

(contrast, ±50%; see Methods). 71

The stimulus set used included stimuli with spa- 72

tiotemporal correlations and stimuli lacking net correla- 73

tions (Liu et al., 2021). However, the nature of the spa- 74

tiotemporal correlations precluded the use of classical 75

dimensionality reduction techniques. Maximally infor- 76

mative dimensions, an information-theoretic technique, 77

does not suffer from this limitation and we utilized this 78

method to estimate the spatiotemporal filtering proper- 79

ties of each cell (Sharpee et al., 2004; Williamson et al., 80

2015; Paninski, 2003). This technique calculates the set 81

of spatiotemporal filters or kernels that best preserve 82

information about the stimulus in a cell’s spike out- 83

puts (Sharpee et al., 2004; Williamson et al., 2015; Pil- 84

low and Simoncelli, 2006; Paninski, 2003). The idea is 85

that a single neuron is insensitive to most of the pos- 86

sible stimuli that can be generated; instead the neu- 87

ron’s limited stimulus selectivity can be described with 88

a relatively small number of spatiotemporal kernels 89

(Figure 1, Figure S1). These kernels form a simpli- 90

fied (low-dimensional) description of the spatiotempo- 91

ral patterns that produce spiking in a cell and thus pro- 92

vide useful insights into the cell’s encoding properties. 93

Our goalwas to obtain a low-dimensional representa- 94

tion describing the relationship between the input stim- 95

ulus and the spike output of each cell. However, the 96

computational overhead of the maximally informative 97

dimensions algorithm is very high, andwewere limited 98

to three spatiotemporal kernels in our receptive field es- 99

timation (Sharpee et al., 2004; Williamson et al., 2015). 100

For each cell, we computed the three spatiotemporal 101

kernels that preserved the greatest amount of informa- 102

tion about the stimulus in the spike output of the cell. 103

The kernels were ordered by their informativeness with 104

the first/dominant kernel preserving the greatest infor- 105
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Figure 1. Example of the maximally informative dimensions technique for dimensionality reduction. (A) To illus-
trate the technique, we generated a hypothetical two-dimensional stimulus space with the blue dots indicating all
of the raw stimuli and the orange dots indicating the subset of raw stimuli that elicited a spike. The probability
distributions for the raw and spike-triggered stimuli are shown for four projection angles. The distributions showed
the greatest separation at 45 degrees, which corresponds to the angle by which the data were artificially rotated.
(B) The maximally informative dimensions technique seeks projections that maximize the information that a single
spike conveys about the stimulus. This single-spike information is equivalent to the Kullback-Leibler divergence
between the spike-triggered and raw stimulus distributions (green). Divergence values are shown for the 45 degree
projection prior to integration. Integration produces a single value in bits spike–1. (C) Polar plot showing the single-
spike information as a function of projection angle for the stimulus space in (A). Information peaked at 45 degrees.
(D) The probability of observing a spike given a stimulus is equal to the ratio between the spike-triggered and raw
stimulus distributions multiplied by the probability of observing a spike.

mation about the stimulus. These kernels showed con-106

sistent spatial features across cells (Figure 2). The dom-107

inant spatial kernels for all cell types were well approx-108

imated by a Gaussian function. The dominant temporal109

kernels were biphasic and peaked at a time lag of ap-110

proximately 40 ms, consistent with previous measure-111

ments from parasol and smooth monostratified gan-112

glion cells (Rhoades et al., 2019; Pillow and Simoncelli,113

2006; Chichilnisky and Kalmar, 2002).114

One of the additional kernels showed a spatial profile115

consistent with the first derivative of a Gaussian func-116

tion with a positive-going lobe at negative x-values and117

a negative-going lobe at positive x-values. This deriva-118

tive kernel typically occurred as the second kernel in119

Off-type cells and the third kernel in On-type cells. The120

other kernel typically occurred as the third kernel in 121

Off-type cells and the second kernel in On-type cells 122

(Figure 2B). The temporal kinetics of this kernel were 123

delayed relative to the other two kernels. This delay 124

was approximately 20 milliseconds relative to the first 125

kernel (time-to-peak re to first kernel, –22.4 ± 3.0 ms; n 126

= 78 cells; p = 9.8 × 10–10, Wilcoxon signed rank test). 127

Receptive field kernels share a common nonlinearity 128

The dimensionality reduction technique that we used 129

to estimate the spatiotemporal kernels assumes that 130

outputs of these kernels are summed prior to passing 131

through a common nonlinearity (Sharpee et al., 2004; 132

Williamson et al., 2015). We tested this by comparing 133

the shapes of this shared nonlinearity with the non- 134
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Figure 2. Primate ganglion cells show several significant receptive-field kernels. (A) Spatiotemporal kernels for On
and Off smooth monostratified and parasol ganglion cells were determined using an information-theoretic analysis
technique. The dominant kernel showed a classical Gaussian spatial profile (top row). The spatial profiles of the
second (middle row) and third kernels (bottom row) extracted resembled the first and second derivatives of aGaussian
function, respectively. The scaled temporal component of the first kernel is shownwith the second and third kernels
to illustrate the differences in kinetics (green); the sign of the first kernel was inverted in the second row tomatch the
sign of the second kernel. (B) Goodness-of-fit comparison (r2) for a Gaussian function versus the first derivative
of a Gaussian. The comparison is shown for the first three spatial kernels. Circles and error bars indicate mean ±
SEM.

November 9, 2021 | 4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467979doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural signatures of predictive encoding Liu et al.

sp
ik

e 
pr

ob
ab

ili
ty

stimulus projection

onto first kernelstimulus projectiononto second kernel

shared nonlinearityA
sp

ik
e 

pr
ob

ab
ili

ty

stimulus projection

onto first kernelstimulus projectiononto second kernel

separate nonlinearities

B

sp
ik

e 
pr

ob
ab

ili
ty

stimulus projection

onto first kernelstimulus projectiononto third kernel

separate nonlinearities

sp
ik

e 
pr

ob
ab

ili
ty

stimulus projection

onto first kernelstimulus projectiononto third kernel

shared nonlinearityC D

Figure 3. Receptive-field kernels share a common nonlinearity. (A) Two-dimensional nonlinearities illustrating
the interactions between the individual kernels for an On smooth monostratified cell. The x and y axes represent
the normalized projection of the stimulus onto the individual kernels. The z-axis represents the probability that
the cell fired at least one spike. The average spike probabilities for the kernels are shown in orange. The shared
nonlinearity was determined by binning the projections and computing the cell’s probability of discharging a spike
in each bin (top). The separable nonlinearity was calculated from the outer product of the average probability
curves and normalizing such that the total spike probability matched that of the shared nonlinearity (bottom). (B)
Sections through the shared nonlinearity in (A) shown relative to the average probability (orange). The sectionswere
multiplied by a scale factor to match to the average probability (bottom). The relatively poor match to the average
probability indicates that a significant portion of the kernel outputs are combined prior to passing through a shared
nonlinearity. (C-D) Two dimensional nonlinearities, as in (A-B), showing interactions between the first and third
kernels.

linearities computed for a model in which the output135

of each kernel passed through a separate nonlinearity136

prior to summation (Figure 3; see Methods).137

These nonlinearities represent interactions between138

the kernels in determining the cell’s spike output; both139

forms of interaction can be captured by computing a140

two-dimensional surface relating the kernel outputs to141

the spike response. The x-axis and y-axis represent the142

stimulus projections onto the two kernels being exam-143

ined (k>i s) and the vertical axis shows the spiking prob-144

ability of the cell for those stimulus projections.145

Comparing the two-dimensional nonlinearities illus-146

trates whether the kernels have separate nonlinearities147

or share a common nonlinearity. If the kernel outputs 148

pass through separate nonlinearities before being com- 149

bined, then the individual nonlinearities would provide 150

a satisfactory description of spiking behavior in the neu- 151

ron and the shared and separate nonlinearitieswould be 152

similar. However, if the kernels shared a common non- 153

linearity, the separately computed nonlinearity would 154

differ from the shared nonlinearity. 155

Indeed, these nonlinearities differed substantially in- 156

dicating that the outputs of the kernels were dominated 157

by a single, shared nonlinearity (Figure 3). For exam- 158

ple, if the kernel outputs passed through separate non- 159

linearities prior to being combined, sections through 160
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a particular axis of the two-dimensional nonlinearity161

should be scaled versions of the average along that axis.162

However, this was not the case, indicating that a sig-163

nificant proportion of the kernels were combined prior164

to passing through a common nonlinearity (Figure 3B).165

Thus, these results indicate that the outputs of each of166

these kernels are combined before passing through a167

single, dominant nonlinearity (Turner et al., 2018).168

Receptive field modes improve predictive motion en-169

coding170

Many dimensionality reduction techniques, including171

principal components analysis, are technically valid172

only when the stimulus contrasts are drawn from173

a Gaussian distribution. Information-theoretic tech-174

niques such as the maximally informative dimensions175

approach employed here do not suffer from this limita-176

tion and function properly with non-Gaussian stimuli177

containing correlations (Sharpee et al., 2004; Pillow and178

Simoncelli, 2006;Williamson et al., 2015). We confirmed179

this by recording an uncorrelated stimulus in which the180

bar contrasts were drawn from a Gaussian distribution;181

this stimulus was recorded alongwith our normal stim-182

ulus set in the same cell. We then calculated the kernel183

bases separately for three different stimulus-response184

sets using the maximally informative dimensions ap-185

proach: 1) the uncorrelated Gaussian stimulus, 2) the186

uncorrelated stimulus with bar contrasts drawn from187

a Bernoulli distribution, and 3) the stimulus set with188

spatiotemporal correlations included (Figure 4). Con-189

sistent with theoretical reports, the kernel bases were190

very similar for the three different stimulus conditions191

tested—each of the three kernels showed similar spa-192

tiotemporal structure across the conditions (Sharpee193

et al., 2004; Williamson et al., 2015).194

The kernels computed by the maximally informative195

dimensions algorithm describe a low-dimensional re-196

gion of stimulus space in which a neuron shows sensi-197

tivity to changes in the stimulus features. To determine198

whether the kernel bases computed for different stimuli199

defined similar stimulus subspaces, we computed the200

canonical angles between the kernel bases. An angle of 201

zero degrees occurs when the bases reside on precisely 202

the same subspace and an angle of 90 degrees corre- 203

sponds to subspaces that are uncorrelated (that is, or- 204

thogonal) with each other. The calculated angles be- 205

tween the different kernel bases ranged between 7-14 206

degrees, indicating that subspaces spanned by the ker- 207

nel bases were similar but not identical (Figure 4B). 208

To determinewhether these differences in the kernels 209

translated to fundamental differences in predictive mo- 210

tion encoding, we computed the time-lagged mutual 211

information for the kernel bases and pairwise and di- 212

verging motion correlations that elicited predictive en- 213

coding in parasol and smooth monostratified ganglion 214

cells (Liu et al., 2021). This technique measures the in- 215

formation that the spike output of a cell contains about 216

the stimulus at both past and future time lags [(Palmer 217

et al., 2015); see Methods]. 218

The model output was determined by projecting the 219

stimulus onto the kernel basis, summing the kernel out- 220

puts, and passing the result through a one-dimensional 221

nonlinearity. This nonlinearity was estimated directly 222

by calculating the spike rate conditioned on the stim- 223

ulus projection onto the kernel basis (see Methods; 224

Figure S1). The resulting mutual information curves 225

strongly overlapped for the computed kernels. The pre- 226

dictive information was also similar for each computed 227

set of kernels (Figure 4C, shaded region). This result in- 228

dicates that the slight differences in the estimated ker- 229

nels do not translate to large differences in predictive 230

motion encoding. 231

The computed kernels formed a simplified descrip- 232

tion (i.e., low-dimensional basis) of the spatiotemporal 233

features that best explain the spike responses of these 234

neurons. However, it was not clear whether the ad- 235

ditional kernels would improve encoding of predictive 236

motion information relative to the condition in which 237

only the dominant kernel was used. To test this, we pro- 238

jected the motion stimuli onto these kernels and passed 239

the output through the one-dimensional nonlinearity 240

(Figure 5). This process was repeated in each cell for 241
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Figure 4. Kernel bases computed with different stimulus classes show similar structures and comparable predictive
information encoding. (A) Spatiotemporal kernels in the same cell were estimated for an uncorrelated Gaussian
stimulus (top row), an uncorrelated stimulus containing contrasts drawn from a Bernoulli distribution (center row),
and with spatiotemporal correlations included (bottom row). The kernel bases computed by the maximally infor-
mative dimensions algorithm were similar for the different stimulus classes. (B) Computed angles between the
subspaces spanned by the kernel bases in (A). A rotational angle of zero degrees would occur if the kernel bases
spanned precisely the same subspace whereas an angle of 90 degrees would occur if the bases were uncorrelated.
Rotational angles ranged between 7-14 degrees. (C) Time-lagged mutual information between the stimulus con-
taining pairwise and diverging motion correlations and the output of the kernel bases in (A) computed using the
Gaussian stimuli (purple), the uncorrelated stimuli (blue) or the entire stimulus set which included correlated stim-
uli (red). The shaded regions show the predictive information. The information curves for the kernel bases strongly
overlapped, indicating that the subtle differences in bases did not strongly affect predictive motion encoding.

four distinct kernel combinations (bases): 1) a basis242

that comprised only the dominant spatiotemporal ker-243

nel, 2) a basis that comprised the first and second ker-244

nels, 3) a basis that included the first and third kernels,245

and 4) a basis that included all three kernels. We then246

calculated the mutual information between the outputs247

of these four model bases and the motion stimuli (see248

Methods). Moreover, we separately calculated the in-249

formation encoded about the past stimulus (i.e. past in-250

formation) and future stimulus trajectories (i.e., predic-251

tive information). To determine whether the additional252

kernels improved motion encoding, we normalized the253

information values relative to the condition in which a254

single basis kernel was used (Figure 5).255

We found that the additional kernels showed distinct 256

effects on the encoding of past versus predictive mo- 257

tion information (Figure 5B). The additional kernels ei- 258

ther weakly increased or had no effect on the encoded 259

past information relative to the condition in which only 260

the dominant kernel was used. These additional ker- 261

nels did, however, increase predictive motion encoding 262

with predictive information increasing by an average of 263

>35% with the addition of the second and third ker- 264

nels. These results indicate that the additional recep- 265

tive field kernels improvemotion encoding in these gan- 266

glion cells—particularly predictive motion encoding. 267

To determine whether the spatial and temporal com- 268

ponents of the kernel basis were interchangeable, we 269
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Figure 5. Additional receptive-field kernels improve predictive motion encoding. (A) Top, Spatiotemporal filtering
of the stimulus in the model was performed using three space-time separable kernels estimated for each cell. The
outputs of these spatiotemporal filters were summed and passed through a shared nonlinearity to produce a low-
rank estimate of the neural response (R∗). Different weight combinations were used to estimate the contribution
of the kernels to encoding. Bottom, Time-lagged mutual information curves for the different kernel combinations
in the model shown. Shaded regions indicate the predictive information. The greatest predictive information was
observed when all three spatiotemporal kernels were combined. (B) Population analysis showing the change in
encoded information for different kernel combinations relative to the use of the dominant kernel alone. Results are
shown for On parasol (n = 20), Off parasol (n = 24), On smooth monostratified (n = 27), and Off smooth monos-
tratified (n = 7) cells. Inclusion of the second and third kernels in the low-rank receptive field estimate generally
improved information encodingwith the greatest improvement occurring for predictive information. Circles and er-
ror bars indicatemean± SEM. Single asterisks indicate p-values <0.05 and double asterisks indicate p-values <0.005
(Wilcoxon signed rank test). (C) Model identical to that in (A) except that the temporal components of second and
third kernels were swapped. (D) Mutual information curves for the original kernels (blue) from the model in (A)
versus the swapped kernels from the model in (C). Shaded regions indicate the predictive information. Swapping
the temporal kernel components decreased the encoding of predictive information.
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swapped the temporal components of the second and270

third bases and recomputed the time-lagged mutual271

information between the stimulus and the model out-272

put (Figure 5C). The mutual information curves for the273

original and swapped kernels were distinct, with the274

original kernel producing a larger amount of predic-275

tive information than the swapped kernel (Figure 5D,276

shaded regions). These results indicate that the particu-277

lar combination of spatial and temporal features present278

in themeasured kernels are important for predictive en-279

coding.280

The second kernel recovered in On smooth monos-281

tratified and On parasol cells was suppressive, as pos-282

itive projections along this kernel decreased the gan-283

glion cell spike outputs (Figure 3). This suppressive284

(second) kernel further showed a large (∼20 ms) de-285

lay in the peak response relative to the first kernel, and286

this delay likely explains the contribution of the kernel287

to predictive encoding for pairwise correlations. To test288

this hypothesis, we recomputed the model output af-289

ter shifting the second kernel in time and recalculated290

the mutual information between the model output and291

the stimulus (Figure 6). The peaks of the shifted ker-292

nels are shown relative to the peak of the first kernel293

to illustrate the effects of the time delay on motion en-294

coding. Indeed, information encoding varied as a func-295

tion of this time shift—predictive informationwas high-296

est when the second kernel peaked ∼20-30 ms after the297

first kernel. Thus, the time delay between the suppres-298

sive kernel and the first kernel improved information299

encoding.300

Whywould this time delay improve predictive encod-301

ing? The polarity of this kernel was opposite to that302

of the dominant kernel, suggesting that it suppressed303

spiking in the cell following a time delay. Delayed sup-304

pression of the spike response suppresses subsequent305

spiking and causes the peak spike response to occur ear-306

lier in time (Johnston and Lagnado, 2015; Berry et al.,307

1999; Leonardo andMeister, 2013; Schwartz et al., 2007).308

Our findings here further indicate that the timing of the309

temporal delay is critical to this mechanism. Short de-310

lays likely suppressedmany of the faster, more informa- 311

tive spikes, while long delays were likely ineffective at 312

speeding the peak spike response (see Discussion). 313

Nonlinear subunits produce derivative receptive field 314

modes 315

The spatial profiles of many cells in the visual cortex re- 316

semble the first derivative of a Gaussian function, sim- 317

ilar to the structure we observed in our ganglion cell 318

recordings (Figure 2). However, it was unclear how 319

components of the retinal circuit contribute to this spa- 320

tial structure. To investigate this question, we devel- 321

oped a subunit model of the bipolar cells providing 322

inputs to parasol and smooth monostratified ganglion 323

cells. Bipolar cell spatial properties were determined 324

from direct measurements of excitatory synaptic cur- 325

rents from ganglion cells (Manookin et al., 2018; Ap- 326

pleby and Manookin, 2020; Liu et al., 2021). Follow- 327

ing spatiotemporal filtering of the stimulus in themodel 328

bipolar cells, the input fromeach bipolar cellwas passed 329

through an input-output function that was either linear 330

or nonlinear, after which the outputs were pooled at the 331

level of the model ganglion cell. The model ganglion 332

cell responsewas then used to extract the receptive-field 333

structures as in Figure 2. 334

The first extracted filter for the linear subunit model 335

showed a Gaussian spatial structure and biphasic tem- 336

poral structure that was typical of the spike triggered 337

average from a parasol or smooth monostratified gan- 338

glion cell (Figure 7A). However, the additional filters 339

extracted from the analysis were dominated by noise 340

and lacked clear spatiotemporal structure. This result 341

indicated that the presence of receptive field subunits 342

alone was not sufficient to produce the additional ker- 343

nels that were present in our neural recordings and that 344

contributed to predictive motion encoding. 345

Which properties of the retinal circuit could give rise 346

to these additional receptive-field structures? The dif- 347

fuse bipolar cells that provide synaptic input to para- 348

sol and smooth monostratified ganglion cells show 349

strongly nonlinear relationships between their inputs 350
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BA

Figure 6. Relationship between the time lag of the second kernel and information encoding. (A) The relationship
between the time lag of the second kernel and information encodingwas investigated by shifting the second kernel to
adjust the time at which this kernel reached aminimum value relative to the peak of the first kernel. (B) Normalized
information for the model as a function of time shift in the second temporal kernel relative to the first kernel. The
encoded predictive information peaked at time lags near the time lag of the estimated second kernel (dashed line).

and their synaptic outputs (Turner and Rieke, 2016;351

Manookin et al., 2018). Thus, we tested whether this352

nonlinear processing contributed to the additional re-353

ceptive field modes. This nonlinear subunit model was354

identical to the linear subunit model except for the non-355

linear subunit output. Indeed, including a nonlinear-356

ity at the model bipolar cell output resulted in addi-357

tional receptive-field kernels that resembled the first358

derivative of a Gaussian function, similar to what was359

observed in our direct ganglion cell recordings (Fig-360

ure 7B).361

The kernels computed for the nonlinear subunit362

model showed a derivative structure, but the spatial363

extent of the structures were much smaller than those364

observed in our direct recordings and in the model in365

which the subunits were coupled (Figure 2, Figure 4,366

Figure 7C).Apossible explanation of this is that the ker-367

nel structures in Figure 7B are dominated by only a few368

of the subunits. To test this, we modified the model to369

increase the integration area in the model ganglion cell370

and recomputed the kernel estimates (Figure 8). For371

the nonlinear subunit model that lacked subunit cou-372

pling, tripling the diameter of the ganglion cell recep-373

tive field did not dramatically affect the size of the re-374

covered kernels (Figure 8A). Instead, the coupled sub-375

unit model with both coupling between the subunits376

and a nonlinearity at their outputs best reproduced the377

receptive field kernels measured from the direct record-378

ings. These findings indicate that both nonlinear input- 379

output functions of bipolar cells and electrical coupling 380

are necessary to explain both the shape and the extent 381

of the derivative spatial filters observed in parasol and 382

smooth monostratified ganglion cells. 383

Sparse spatial integration improves encoding of pre- 384

dictive motion information 385

With few documented exceptions (Manookin et al., 386

2015), the receptive field centers of cells in the primate 387

retina are well described by a single Gaussian function. 388

Smooth monostratified ganglion cells constitute a clear 389

exception to this rule—these cells show spotty receptive 390

fields that sparsely sample visual space, but the poten- 391

tial contributions of this sparsity to predictive encoding 392

is not understood. (Rhoades et al., 2019). To deter- 393

mine how sparse spatial sampling contributed to mo- 394

tion encoding, we extended our subunit model so that 395

the subunit outputs were either pooled using a Gaus- 396

sian receptive field or a sparse receptive field (Figure 9). 397

This sparse spatial receptive field was directly mea- 398

sured from an On-type smooth monostratified cell us- 399

ing an uncorrelated spatiotemporal noise stimulus (Fig- 400

ure 9B, left). Other than the spatial pooling component, 401

the two models were identical. We calculated the mu- 402

tual information between the model spike output and 403

stimulus for both models, and past versus predictive in- 404

formation were measured. 405
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Figure 7. Nonlinear subunits sufficient to produce Gaussian derivative spatial kernels. (A) First three spatiotem-
poral kernels recovered for a subunit model in which the input-output relationship of the model bipolar cells was
linear. The stimulus was 20 adjacent bars and the contrast of each bar was drawn pseudo-randomly from a Gaussian
distribution in each time bin. The stimulus was filtered through the spatiotemporal receptive field of each model
bipolar cell. The output of the filtering stage was then passed through the bipolar cell input-output function, after
which the subunit signals were pooled and summed at the level of the model ganglion cell. The first filter showed
a classical Gaussian spatial profile, but the second and third filters were dominated by noise and lacked any dis-
cernible spatiotemporal structure. (B) Spatiotemporal kernels for a model identical to that in (A) except that the
input-output function for the model bipolar cell subunits was a piecewise nonlinearity (i.e., ReLU). The second
kernel showed a spatial profile similar to the first derivative of a Gaussian function as was observed in the direct
ganglion cell measurements. (C) Kernels for a subunit model identical to (B) except that electrical coupling was
included between bipolar cell subunits. The derivative kernel was also observed, but was slightly smoother and
more diffuse than that observed in (B).

The sparse pooling and Gaussian pooling models406

showed distinct encodings of past versus predictivemo-407

tion information. Encoded past information was sim-408

ilar for the models (Figure 9C). However, a different 409

pattern was observed for predictive encoding—sparse 410

pooling of the subunit outputs produced a higher en- 411
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Figure 8. Electrical coupling between nonlinear subunits needed to explain spatial extent of receptive field kernels.
(A)Thefirst three spatiotemporal kernels computed for the nonlinear subunitmodel. Results are shown for ganglion
cell receptive field diameters of 0.4 mm (left column) and 1.2 mm (right column). The recovered kernels for the two
models were small relative to the ganglion cell receptive field diameter, suggesting that they primarily arose from
only a small number of subunits. (B) Results for the coupled subunit model, which was identical to that in (A)
except that the subunits were coupled. The recovered spatial structures increased with the ganglion cell receptive
field size and more closely resembled the measured receptive field kernels in parasol and smooth monostratified
ganglion cells. This indicates that subunit coupling could also contribute to the derivative receptive field structures.

coding of predictive information relative to Gaussian412

pooling of the same subunit outputs. This result indi-413

cates that sparse spatial sampling biases predictive in-414

formation during neural encoding.415

Mechanisms that speed the neural response tend to416

increase the predictive encoding of motion (Berry et al.,417

1999; Schwartz et al., 2007; Leonardo andMeister, 2013;418

Johnston and Lagnado, 2015; Liu et al., 2021). Similarly,419

sparse spatial sampling could also cause spiking to oc- 420

cur earlier and, thus, increase predictive encoding. The 421

sparsity of smooth monostratified cell receptive fields 422

is characterized by areas of sensitivity concentrated at 423

the margins of the receptive field and a relative lack of 424

sensitivity in the center [see Figure 3 of (Rhoades et al., 425

2019)]. Thus, a sparse sampling may cause a cell to re- 426

spond earlier as a moving object encroaches upon the 427
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Figure 9. Sparse pooling of receptive-field subunits increases predictive motion encoding. (A) Subunit model orga-
nization. The stimulus was filtered by the spatiotemporal receptive field of each model bipolar subunit. A portion
of the response in each bipolar cell was shared with neighboring bipolar cells via electrical coupling after which
the model bipolar currents were passed through a piecewise nonlinearity. Pooling of these rectified signals then
occurred at the level of the model ganglion cell. (B) Pooling of the signals from model subunits occurred either
using a spatial receptive field profile that was directly measured in a smooth monostratified ganglion cell (left) or
using a two-dimensional Gaussian fit to the receptive field (right). Scale bars, 0.1 mm. (C) Top, Past information
encoded in bits spike–1 as a function of the amount of additive noise in the individual subunits prior to coupling
and the nonlinear output. Noise is shown as the ratio between the noise standard deviation and the signal standard
deviation. Gaussian pooling and sparse pooling produced similar amounts of past information encoding. Bottom,
Encoded predictive information for the two models. Sparse pooling of bipolar subunits produced higher encoding
of predictive information thanGaussian pooling across noise levels. (D) Cross-correlation between the left and right
halves of the receptive field for an uncorrelated stimulus (top) and a stimulus containing pairwise spatiotemporal
correlations (bottom). The uncorrelated stimulus produced lower correlation values for the sparse sampling versus
Gaussian sampling of the subunits (top). For the pairwise correlations, peak correlation values were similar, but
sparse sampling produced a larger shift in the temporal lag between the two sides of the receptive field, consistent
with the higher degree of predictive encoding in (C). (E) Simplifiedmodel of spatial sparsity in which the receptive
fieldwas comprised of two identical Gaussian hotspots that varied only in their spatial offsets (σ, 50 µm; offset, 0-200
µm). The hotspots independently integrated the subunit outputs. (F) Cross-correlation between the two hotspots
for the uncorrelated (left) and pairwise correlation stimuli (right). As separation between the hotspots increased,
the correlation decreased for the uncorrelated stimulus, but remained unchanged for themotion stimulus. However,
the peak of the cross-correlation occurred earlier for the motion stimulus as separation increased. (G) Correlation
as a function of hotspot offset for the uncorrelated stimulus (blue) and pairwise correlations (orange). (H) Timing
of the peak of the cross-correlation as a function of hotspot offset for the uncorrelated stimulus (blue) and pairwise
correlations (orange).
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edge of the receptive field than if the sampling were428

Gaussian with the highest sensitivity regions concen-429

trated toward the receptive field center.430

To test this idea, we computed the cross-correlation431

between the two halves of the model ganglion cell re-432

ceptive field during the stimulus with pairwise motion433

correlations. If the cell were responding earlier, then the434

peak of the cross-correlation would be shifted to ear-435

lier time points. Indeed, the cross-correlation peaked436

earlier for the model with sparse spatial sampling than437

for the Gaussian sampling model (Figure 9D). This re-438

sult indicates that the sparse integration model showed439

higher levels of predictive motion encoding relative to440

the Gaussian model, in part, because the sparsity of the441

receptive field caused motion responses to occur earlier442

in time (see Discussion).443

Neural adaptation enhances predictive encoding444

The Gaussian derivative spatial kernels that we ob-445

served in parasol and smooth monostratified cells in-446

crease a cell’s sensitivity to changes occurring across447

space. These cells also show strongly biphasic tempo-448

ral kernels, which further increase their ability to detect449

changes in time (Rhoades et al., 2019). Together these450

receptive field components, largely inherited from their451

presynaptic inputs, increase a cell’s ability to detect the452

changes in space and time that occur during visual mo-453

tion (Kuo et al., 2016; Manookin et al., 2018). Neural454

adaptation is an additional mechanism that increases a455

cell’s ability to detect changes in their inputs (Fairhall456

et al., 2001; Smirnakis et al., 1997).457

Adaptation adjusts a cell’s output to match the statis-458

tics of the incoming stimulus, which increases the cell’s459

sensitivity to changes in the stimulus. Indeed, adapta-460

tion was proposed as the principal mechanism for pre-461

dicting translational motion in the salamander retina462

(Berry et al., 1999; Schwartz et al., 2007; Leonardo and463

Meister, 2013). These previous studies examined the464

contribution of the gain control mechanism in the con-465

text of transient motion into and out of the receptive-466

field center and only to pairwise spatiotemporal correla-467

tions. Thus, the potential contribution of gain control to 468

predictive encoding for continuous motion and triplet 469

spatiotemporal correlations has not been carefully stud- 470

ied. 471

To investigate whether adaptation contributes to pre- 472

dictive encoding for diverging and converging spa- 473

tiotemporal correlations, wedeveloped a computational 474

model of smooth monostratified cells that included 475

this mechanism. We estimated the temporal filtering 476

and adaptation properties of bipolar cell inputs and 477

spike outputs of a ganglion cell by recording excitatory 478

synaptic currents or spike responses to a spatially uni- 479

form spot presented over the cell’s receptive field (Fig- 480

ure S3). The contrast of the spot was drawn randomly 481

from a Gaussian distribution in each stimulus period 482

(mean, 0.0; standard deviation, 0.3). The datawere then 483

analyzed using a generalized linear model (GLM) (Pil- 484

low et al., 2008; Paninski, 2004; Truccolo et al., 2005). In 485

addition to modeling the temporal filtering properties 486

of a cell, this model framework accounts for the mod- 487

ulation of neural output based on the recent history of 488

neural responses (an adaptation filter). For this reason, 489

generalized linear models have been useful inmodeling 490

adaptation in neurons (Latimer and Fairhall, 2020; We- 491

ber and Pillow, 2017; Latimer et al., 2019; Mease et al., 492

2013). 493

The generalized linear model comprised three pro- 494

cessing stages: 1) a temporal kernel that filtered the in- 495

coming stimulus, 2) a point nonlinearity that mapped 496

the output of the temporal filtering stage to a neural 497

output (spikes or conductance), and 3) an adaptation 498

filter that provided feedback to the output of the tem- 499

poral filtering stage based on the recent neural output. 500

This final stage behaved similarly to gain control mech- 501

anisms that suppress neural responses following strong 502

outputs (Latimer and Fairhall, 2020; Weber and Pillow, 503

2017). Tomeasure the time course of adaptive feedback, 504

we fit the adaptation filters with a single exponential. 505

The adaptation decayed rapidly for both spiking and 506

excitatory synaptic currents, indicating that this feed- 507

back suppressed neural responses on relatively short 508
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time frames (decay time constant: spiking, 5.9 ms; exci-509

tatory currents, 5.0 ms; Figure S3D).510

To determine whether adaptation influenced predic-511

tive encoding for pairwise and triplet spatiotempo-512

ral correlations, we incorporated the empirically de-513

termined filters into our circuit model. The adapta-514

tion filters were implemented at one of two sites in the515

model—either at the bipolar cell or ganglion cell out-516

puts (Figure 10). The output of this filter was normal-517

ized to the same standard deviation as the output of518

the temporal filter so that the contribution of adaptation519

could be properly quantified. We tested whether the520

magnitude of adaptation affected predictive encoding521

by varying the weight of the adaptation filter (weight,522

0-1) with a weight of zero corresponding to a model523

lacking adaptation. We further tested for interactions524

between adaptation and neural sparsity by varying the525

fraction of time bins in which spiking occurred.526

These model simulations indicated that moderate527

gain control was beneficial to predictive motion encod-528

ing (Figure 10B, D). The computed predictive informa-529

tion peaked near adaptation weights of ∼0.2-0.4 and530

decreased at lower and higher values. This trend was531

observed for the models with both sparser and denser532

temporal coding (Figure 10B, D, top row), and it was533

also true for the models in which adaptation occurred534

at either the bipolar cell or ganglion cell outputs. Ob-535

serving these results across a range of model condi-536

tions highlights the benefit of moderate adaptation in537

predictive encoding. Thus, consistent with previous538

findings, moderate adaptation increased predictivemo-539

tion encoding (Berry et al., 1999; Schwartz et al., 2007;540

Leonardo and Meister, 2013).541

Mechanisms such as adaptation that speed the neu-542

ral response are generally considered beneficial to pre-543

dictive encoding (Berry et al., 1999; Schwartz et al.,544

2007; Leonardo and Meister, 2013). Similar to de-545

layed inhibition (Figure 6), following strong neural re-546

sponses, adaptationmechanisms provide negative feed-547

back, which decreases subsequent responses (Kim and548

Rieke, 2001; Fairhall et al., 2001; Baccus and Meister,549

2002). This effectively makes responses peak earlier 550

and increases the amount of predictive information in 551

the neural output. However, our results indicate that 552

adaptation is advantageous only within a fairly limited 553

range—when the magnitude of adaptation exceeded 554

∼40% of the spatiotemporal filter output, predictive en- 555

coding was suppressed. 556

This range in which adaptation supports predictive 557

encoding may reflect a tradeoff between speeding the 558

neural response by removing spikes (moderate adapta- 559

tion) and removing informative spikes that degrade in- 560

formation encoding (strong adaptation). For example, 561

moderate adaptation (weight, 0.3) increased the mu- 562

tual information at positive time lags relative to the un- 563

adapted condition, resulting in an increase in predictive 564

information (Figure S4). However, the excessive sup- 565

pression of spiking caused by strong adaptation caused 566

a net decrease in information at positive time lags rela- 567

tive to the unadapted condition. 568

DISCUSSION

A central pursuit of computational and systems neuro- 569

science is to understand the relationship between stim- 570

uli in the external environment and neural responses. 571

Here, we studied how properties of the retinal circuit 572

contribute to motion encoding in primates. We found 573

that several circuit properties collectively improved the 574

ability of parasol and smooth monostratified ganglion 575

cells to encode information about visual motion. This 576

improvement was particularly evident for predictive 577

motion encoding—the ability of the cell to convey in- 578

formation about the future trajectory of moving objects 579

(Figure 2, Figure 4, Figure 5, Figure 6, Figure 9). Non- 580

linear mechanisms such as the rectified synaptic release 581

from bipolar cells and adaptation further enhanced 582

predictive motion encoding (Figure 7, Figure 10, Fig- 583

ure S4). Thus, several properties of parasol and smooth 584

monostratified ganglion cells support accurate estima- 585

tion of trajectories of moving objects. 586

Several receptive-field properties that contribute to 587

predictive motion encoding are strong candidates for 588
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Figure 10. Moderate adaptation improves predictive encoding for spatiotemporal correlations. (A) Organization
of the bipolar cell adaptation model. An adaptation filter was applied to model signals based on the recent output
of each model bipolar cell subunit—stronger outputs resulted in greater suppression of model signals prior to the
output nonlinearity. (B) Contribution of bipolar cell adaptation to encoding of past and future (predictive) informa-
tion. Top, Surface showing the encoded predictive information as a function of the adaptation weight and temporal
sparsity (percentage of time bins containing a spike). Surfaces are shown for pairwise (left), diverging (middle), and
converging (right) spatiotemporal correlations. Bottom, Past and predictive information as a function of adaptation
weight. Curves are shown for a temporal sparsity value of 25% (top, solid line). (C) Organization of a model in
which adaptation occurs at the ganglion cell level. (D) Information curves as in (B) for the ganglion cell adaptation
model. Predictive information encoding peaked for adaptation weights of 0.2-0.4 and decreased at higher values.

contributing to predictive computations in other sen-589

sory regimes. For example, the spatiotemporal deriva-590

tive kernel improved predictive motion estimation, and591

similar derivative kernels are found in both the visual592

and auditory regions of the cortex (DeAngelis et al., 593

1993a,b; De Valois and Cottaris, 1998; deCharms et al., 594

1998; Singer et al., 2018). Furthermore, delayed sup- 595

pression of the neural response from adaptation mech- 596
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anisms and synaptic inhibition are common features597

of neural circuits throughout the brain. This suppres-598

sion contributes to prediction by speeding neural re-599

sponses and thus overcoming some of the temporal de-600

lays inherent in neural processing (Berry et al., 1999;601

Schwartz et al., 2007; Johnston and Lagnado, 2015). Fi-602

nally, sparse signal integration is another mechanism,603

identified here, that could contribute to predictive com-604

putations in other neural systems (Figure 9). This605

mechanism is discussed further in the following text.606

Linear receptive field properties improve motion esti-607

mation608

The encoding of correlations is at the core of the predic-609

tive computation. In principle, two points within the610

receptive field that are correlated with each other can611

participate in predictive encoding if the activity in one612

point at a particular time predicts the activity in the sec-613

ond point at a later time. Furthermore, this contribu-614

tion to predictive encoding would occur even if the re-615

lationship between the points is linear. Our previous616

work focused on the contribution of two circuit proper-617

ties to predictive motion encoding—electrical coupling618

and the bipolar cell synaptic output (Liu et al., 2021).619

The results presented here indicate that other receptive620

field properties also contribute to this computation.621

The spatial receptive fields of parasol and smooth622

monostratified ganglion cells consistently showed a623

spatial kernel resembling the derivative of a Gaussian624

function (Figure 2). This structure’s importance lies625

in the adjacent On and Off subregions within the re-626

ceptive field. The balanced weighting of these regions627

means that the output of this kernel will be weak or628

absent for stimuli that do not vary in intensity. How-629

ever, responses will be strong for stimuli that vary in630

their intensity, such aswhen the edge of an objectmoves631

through the receptive field. Indeed, this spatial re-632

ceptive field profile is common in cortical cells that633

contribute to motion processing (Adelson and Bergen,634

1985; Emerson et al., 1992; Reid et al., 1987, 1991; Rust635

et al., 2005).636

We treated this derivative spatial structure as a lin- 637

ear operator and assessed its contribution to motion en- 638

coding (Figure 5), but this structure can also arise as 639

a property of nonlinear signaling in bipolar cells (Fig- 640

ure 7). This bipolar cell origin is key to understanding 641

how stimuli will exercise the derivative spatial struc- 642

ture. While the derivative structures that we measured 643

were oriented along the long axis of the bars that were 644

presented, the orientation of this receptive field struc- 645

ture should be stimulus dependent. This pliancy differs 646

from the properties of motion sensitive neurons in the 647

visual cortex that show static receptive field orientations 648

(Adelson and Bergen, 1985; Emerson et al., 1992; Reid 649

et al., 1987, 1991; Rust et al., 2005). Thus, the represen- 650

tation of visual motion in parasol and smooth monos- 651

tratified ganglion cells is simultaneously less selective 652

and more flexible in its orientation than that found in 653

downstream visual areas. 654

Sparse spatial sampling improves predictive encoding 655

The spatial component of smooth monostratified gan- 656

glion cell receptive fields shows sparse sampling rel- 657

ative to many other mammalian ganglion cell types, 658

but the functional implications of this sparsity are not 659

known (Rhoades et al., 2019). We asked whether 660

sparse sampling contributes to motion encoding by 661

comparing twomodels that differed only in their spatial 662

sampling—a uniform Gaussian sampling and a sparse 663

sampling taken from direct receptive-field measure- 664

ments (Figure 9). Indeed, past and predictive informa- 665

tion encoding differed between these two models with 666

sparse sampling encoding more predictive information 667

than Gaussian sampling. 668

Sparse spatial sampling appears to benefit predictive 669

encoding, at least in part, by causing a cell to respond 670

earlier when a moving object encroaches on the edge 671

of the receptive field than for a smooth receptive field 672

(Figure 9D). Indeed, speeding of response kinetics is 673

a critical component of motion anticipation in the sala- 674

mander and fish retinas (Berry et al., 1999; Johnston and 675

Lagnado, 2015; Leonardo and Meister, 2013; Schwartz 676
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et al., 2007). Smoothmonostratified ganglion cells show677

sensitivity to stimuli falling only within limited regions678

within the receptive field, and these sensitive regions679

are separated by areas lacking sensitivity [(Rhoades680

et al., 2019); Figure 9B]. Moreover, these sensitive re-681

gions are typically found toward the edges of the re-682

ceptive field. Thus, objects moving into the margins of683

the receptive field will tend to contact a sensitive region684

and evoke responses before contacting less sensitive re-685

gions. This causes responses to occur earlier than if the686

cell were sampling spacewith aGaussian receptive field687

in which the strongest regions are located at the center.688

This sparse sampling does sacrifice some spatial acu-689

ity as a cell will not respond to objects falling in certain690

regions of the receptive field. However, cortical neurons691

likely have access to signals frommultiple ganglion cell692

types and these signals can then be combined in ways693

that allow cortical neurons to compute local motion sig-694

nals on a finer spatial scale (Movshon and Newsome,695

1996; Hubel and Wiesel, 1974). Thus, the spatial sam-696

pling in smooth monostratified cells may be sufficient697

for detecting visual motion and a benefit of this sparse698

sampling is that it promotes predictive encoding in a699

similar way to adaptation mechanisms—by biasing re-700

sponses to moving objects at the edge of the receptive701

field (Berry et al., 1999).702

Delayed suppression improves predictive encoding703

Several studies have highlighted adaptation (gain con-704

trol) as the key mechanism contributing to predictive705

motion estimation in salamander retina (Berry et al.,706

1999; Leonardo andMeister, 2013; Schwartz et al., 2007).707

However, another study in the fish retina indicated that708

feedforward inhibition played the principal role in this709

computation (Johnston and Lagnado, 2015). Our find-710

ings here indicate that both mechanisms can work in711

concert to improve motion estimation.712

The central idea is that these mechanisms work on713

different time scales to speed the neural response (Fig-714

ure 6, Figure 10, Figure S4). Adaptation provides rapid715

feedback following strong spiking, which suppresses716

subsequent spiking and causes the peak spike response 717

to occur earlier. This suppression occurs and decays 718

rapidly and thus acts on relatively short time scales (de- 719

cay time constant, 5.0-5.8 ms). Our results further indi- 720

cate that the strength of this feedback must be properly 721

tuned in order to be effective—strong adaptation sup- 722

pressed informative spikes and degraded information 723

encoding (Figure 10, Figure S4). 724

We also observed a suppressive kernel that showed 725

a temporal delay relative to the dominant kernel. This 726

kernel peaked approximately 20 ms after the dominant 727

kernel and showed more sustained kinetics than adap- 728

tation (Figure 2). For the purposes of this study we 729

do not claim that this kernel arises from amacrine cells, 730

but the temporal delay and effects on predictive coding 731

are qualitatively similar to those mediated by feedfor- 732

ward inhibition in the fish retina in that they both im- 733

proved predictive motion estimation [Figure 6; (John- 734

ston and Lagnado, 2015)]. Thus, this suppressive ker- 735

nel and adaptation can modulate neural dynamics on 736

different time scales and fine tune predictive motion in- 737

formation arising in the excitatory circuitry (Liu et al., 738

2021). 739
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METHODS

Experimentswere performedusing an in vitro, pigment-763

epithelium attached preparation of the macaque mon-764

key retina from three different macaque species of ei-765

ther sex (Macaca fascicularis, mulatta, and nemestrina).766

Tissues were obtained from terminally anesthetized an-767

imals that were made available through the Tissue Dis-768

tribution Program of the National Primate Research769

Center at the University of Washington. All procedures770

were approved by the University ofWashington Institu-771

tional Animal Care and Use Committee.772

Recorded cells were located in the macular, mid-773

peripheral, or peripheral retina (2-8 mm, 10-30° foveal774

eccentricity). Data were acquired using a Multiclamp775

700B amplifier (Molecular Devices), digitized using an776

ITC-18 analog-digital board (HEKA Instruments), and777

acquired using the Symphony data acquisition software778

(http://symphony-das.github.io). Other analyses of779

this dataset are published elsewhere (Liu et al., 2020,780

2021).781

Visual stimuli782

Visual stimuli were generated using the Stage software783

package (http://stage-vss.github.io) and displayed on784

a customized digital light projector (Appleby and785

Manookin, 2019, 2020). Stimuli were presented at786

medium to high photopic light levelswith average L/M-787

cone photoisomerization rates (R*) of ∼1.5 × 104 – 5.0788

× 105 s–1. 789

Receptive-field kernel estimation 790

Our goal was to describe the relationship between the 791

stimulus (s) and a cell’s spike output (r) using three 792

spatiotemporal kernels (K). The computing time re- 793

quired to run the algorithm made calculating more 794

than three kernels for each cell computationally in- 795

tractable. We estimated the kernels that maximized 796

the average information conveyed by a single spike 797

about the stimulus projected onto K (Sharpee et al., 798

2004; Williamson et al., 2015). First, the prior stimu- 799

lus distribution was determined by projecting the stim- 800

ulus onto a candidate kernel basis (p(K>s)) and the 801

spike-triggered distribution was determined by pro- 802

jecting the stimuli that elicited spiking onto this basis 803

(p(K>s|spike)). The single-spike information (Ispike) 804

was then determined by calculating the separation be- 805

tween these distributions using the Kullback-Leibler di- 806

vergence (Williamson et al., 2015). 807

I(K) =DKL

(
p
(
K>s|spike

)
‖ p
(
K>s

)) (1)

where DKL is the Kullback-Leibler divergence and 808

p
(
K>s

) and p
(
K>s|spike

) are the raw and spike- 809

triggered stimulus distributions projected onto K. 810

The nonlinear relationship between the stimulus pro- 811

jection onto the kernel basis (K) and the spike rate of 812

the cell was determined using an exponential mapping 813

between the stimulus projection onto the basis and the 814

spike output of the cell (r). To aid in fitting, the nonlin- 815

earity was parameterized using radial basis functions 816

(φ, Equation 2). 817

r = exp
( nφ∑

i=1
αiφi

(
K>s

)) (2)

where α are the linear weights on the radial basis func- 818

tions (Williamson et al., 2015). 819

Estimation of 1D and 2D nonlinearities 820

The shared nonlinearity between the kernels was de- 821

termined by computing the spiking probability condi- 822
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tioned on the stimulus projection onto the individual823

kernels. The individual kernel nonlinearities were then824

determined by computing the average spike probability825

along each kernel projection axis.826

The two-dimensional nonlinearity representing the827

condition in which each kernel had a separate nonlin-828

earity was then determined by taking the outer product829

of the average kernel nonlinearities (Equation 3), and830

then scaling this nonlinearity such that the total spike831

probability matched that of the shared nonlinearity.832

fseparable = p(spike|k>i s) p(spike|k>j s)> (3)

where ki and kj are the ith and jth spatiotemporal ker-833

nels.834

Spatial kernel modeling835

We modeled the spatial component of the kernel esti-836

mates as either a Gaussian function (Equation 4) or the837

derivative of a Gaussian (Equation 5).838

g(x,σ) = A

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
(4)

δg(x,σ)
δx

=−A (x−µ)
σ3
√

2π
exp

(
− (x−µ)2

2σ2

)
(5)

where µ is the spatial offset of the receptive-field center839

in microns, σ is the standard deviation in microns, and840

A scales the amplitude of the resulting function.841

The spatial component of each kernel was fit with842

both functions and goodness-of-fit was determined by843

calculating the Pearson correlation (r2) between the fit844

and the raw data (see Figure 2).845

Generalized linear model846

Weused a generalized linearmodel framework to repre-847

sent temporal filtering and adaptation at either the bipo-848

lar cell synaptic output or the ganglion cell spike out-849

put. The time-varying neural response (rt) was mod-850

eled as a nonlinear function (f) of the projection of851

the temporal kernel (k) onto the stimulus (st) summed852

with the projection of a filter that captures the history-853

dependence of the neural response (h) onto the history854

of neural responses (yhistory,t). 855

rt = f

(
k>st +h>yhistory,t +µ

)
(6)

where the rows of st are time samples and the columns 856

are the stimulus vector in the 500 ms preceding time 857

t. Similarly, the rows of the response history matrix 858

(yhistory,t) are time samples and the columns are the 859

neural responses the 100 ms preceding time t. The 860

scalar variable µ represents the maintained neural re- 861

sponse. 862

For the excitatory synaptic signals measured in 863

voltage-clamp, the synaptic conductance was used in 864

place of the current so that positive values correspond 865

to increases in excitatory input. Conductance (g) was 866

calculated as the ratio of the synaptic current (I) and 867

the driving force: 868

g = I

Vm−Ecation
(7)

where Vm is the membrane potential (–70 mV) and 869

Ecation is the cation reversal potential (0 mV). 870

The kernel coefficients (k̂) were then estimated using 871

ridge regression: 872

k̂ = (s>s+λI)−1s>rt (8)

where I is the identity matrix and λ is the ridge param- 873

eter. 874

Computational model 875

We created a model of the diffuse bipolar cells that pro- 876

vide excitatory synaptic input to parasol and smooth 877

monostratified ganglion cells. A lattice of model bipo- 878

lar cells was created with a mean spacing of 32 mi- 879

crons (Boycott and Wässle, 1991; Tsukamoto and Omi, 880

2015, 2016). The spatiotemporal filtering and output 881

nonlinearities for the bipolar cells were determined by 882

direct measurements (Appleby and Manookin, 2020; 883

Manookin et al., 2018). The spatiotemporal receptive 884

field of each bipolar cell (F i) was generated from the 885

outer product of the Gaussian spatial component and a 886

biphasic temporal component and the linear response 887
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of each bipolar cell (ri) was determined by projecting888

the stimulus onto its receptive field.889

ri = F>i s (9)

Noise in the bipolar responses was simulated by890

adding Poisson fluctuations to the resulting bipolar cell891

responses and coupling between the cells was applied892

based on our direct measurements (Manookin et al.,893

2018). The response of each bipolar cell following cou-894

pling was determined by adding the change due to895

coupling to the response prior to coupling (R0; Equa-896

tion 10).897

Ri(t) =R0i(t) +
[

n∑
j=1

g
(
R0i(t)−R0j(t)

)
exp
(
−di,j/λ

)]
(10)

where g is the coupling gain or portion of the response898

shared between bipolar cells, λ is the coupling length899

constant, di,j is the pairwise Euclidean distance be-900

tween the ith and jth cells, and n is the total number901

of bipolar cells in the model.902

Responses in the model bipolar cell network were903

then normalized, and output thresholdingwas then ap-904

plied by setting values below the threshold equal to905

zero, and renormalizing the outputs between 0–1. A906

piecewise nonlinear function (i.e., ReLU) was then ap-907

plied to the thresholded responses:908

R(t) =

R(t), if R(t)> 0

0, otherwise
(11)

Mutual information calculations909

To compare encoding of past and predictive informa-910

tion, we estimated the amount of information that the911

neural response at a particular time (rt) provided about912

the stimulus at time, t′ (st′), where t′ = t+ ∆t using913

Equation 12. The mutual information was estimated at914

several different time lags (∆t) relative to the peak of915

the temporal filter (see (Liu et al., 2021)). 916

I(Rt;St′) =
∑

st′∈St′

∑
rt∈Rt

P (st′ , rt) log2

[
P (st′ , rt)

PR(rt)PS(st′)

]
(12)

where PR(r) is the distribution of responses in a sin- 917

gle cell, PS(s) is the stimulus distribution, and P (st′ , rt) 918

is the joint distribution of stimuli presented at time t′ 919

and responses r observed at time t. In other words, re- 920

sponses were fixed in time, the stimulus was shifted for 921

each time bin, and the mutual information was com- 922

puted at each of these time shifts (Palmer et al., 2015; 923

Bialek, 2012). These mutual information calculations 924

required converting the spatial dimensions of our stim- 925

uli into a single value for each time bin. We did this by 926

first identifying the four spatial regions of the stimulus 927

that were centered over the receptive field. Each of the 928

16 possible stimulus patterns for those four regions was 929

assigned a value between 0–15. 930
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SUPPLEMENTARY INFORMATION

p(kT s | spike)
p(kT s)

p(kT s | spike)
p(kT s)

Off parasol cell
(first kernel)

Off parasol cell
(second kernel)

Figure S1. Example of the maximally informative dimensions technique in an Off parasol ganglion cells. Bottom left,
A two-dimensional stimulus space depicting the raw stimuli (blue) and the stimuli that elicited spiking in an Off
parasol ganglion cell (orange). The black arrow indicates the centroid of the spike-triggered stimuli. The probability
distributions for the raw stimuli and the spiking stimuli were computed by projecting the stimuli along the first or
second stimulus axis (top left and bottom center, respectively).
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Figure S2. Kernel nonlinearities vary for different classes of spatiotemporal correlation. (A) Two-dimensional non-
linearities illustrating the interactions between the individual kernels for an On smooth monostratified cell. The
x and y axes represent the normalized projection of the stimulus onto the individual kernels. The color intensi-
ties represent the spiking probability of the cell for a particular location on the interaction map. Two-dimensional
nonlinearities are shown for all of the stimulus classes including uncorrelated noise. (B-D) Two-dimensional non-
linearities for converging correlations, pairwise correlations, and diverging correlations in the same cell as (A). The
shared and separate nonlinearities differed substantially, indicating that a model in which the kernel outputs passed
through separate nonlinearities prior to being combined did not adequately describe the kernel interactions. Fur-
ther, the shared nonlinearities varied slightly with stimulus class, suggesting that the contribution of the kernels
depended on the stimulus correlations.
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A
stimulus

response

stimulus
filter

+
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filter
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model organization B C D

Figure S3. Generalized linear model organization. (A) Gain control in smooth monostratified ganglion cells was
estimated using a generalized linear model (GLM). The input stimulus was filtered by a temporal kernel and passed
through a nonlinearity. Based on the output history of themodel at this stage, an adaptation filter provides feedback
to signals prior to the output nonlinearity. (B) Model parameters were estimated by presenting a spatially uniform
spot over the receptive field. Spot contrastwas drawn randomly from aGaussian distribution on each time step (top).
Excitatory synaptic currents were measured to estimate the filtering and adaptation properties of diffuse bipolar
cells (center) and spike output was also measured in the same On smoothmonostratified ganglion cell (bottom). (C)
Temporal kernels estimated from the excitatory synaptic currents and spike responses in (B). (D) Adaptation filters
estimated from the excitatory synaptic currents and spike responses in (B).

A

B

Figure S4. Moderate adaptation improves predictive encoding. (A) Mutual information (y-axis) encoded as a
function of time lag (x-axis) for pairwise anddiverging correlations. Curves are shown comparing themodel lacking
adaptation tomodelswithmoderate or high levels of adaptation. (B)Difference curves inwhich the past (green) and
predictive information (purple) are compared for the adapted versus unadapted curves in (A). Moderate adaptation
increased the encoding of predictive information while strong adaptation decreased this encoding.
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