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Abstract1

To avoid extinction, every species must be able to exploit available resources at2

least as well as the other species in its community. All else being equal, theory pre-3

dicts that the more distinct the niches of such co-occurring and competing species,4

the more species that can persist in the long run. However, both theoretical and5

experimental studies define a priori the nature and number of resources over which6

species compete. It therefore remains unclear whether or not species in empiri-7

cally realistic contexts are actually exploiting all or some of the niches available8

to them. Here we provide a mathematical solution to this long-standing problem.9

Specifically, we show how to use the interactions between sets of co-occurring plant10

species to quantify their implied “niche dimensionality”: the effective number of11

resources over which those species appear to be competing. We then apply this12

approach to quantify the niche dimensionality of 12 plant assemblages distributed13

across the globe. Contrary to conventional wisdom, we found that the niche dimen-14

sionality in these systems was much lower than the number of competing species.15

However, two high-resolution experiments also show that changes in the local envi-16

ronment induce a reshuffling of plant’s competitive roles and hence act to increase17

the assemblages’ effective niche dimensionality. Our results therefore indicate that18

homogeneous environments are unlikely to be able to maintain high diversity and19

also shows how environmental variation impacts species’ niches and hence their20

opportunities for long-term survival.21

Main22

Much of our current understanding of species coexistence derives from studying exploitation23

competition—competition between similar species for a shared pool of finite, limiting resources24

such as water, nutrients, light, or space1–6. In relatively constant environments, the coexistence25

of many species is thought to depend on two conditions above all others: there should be at least26

as many resources available as coexisting species7–9 and those species should have different27

niches (e.g., resource-use requirements)10–13. When species have distinct niches, intraspecific28

competition should exceed interspecific competition, preventing communities from becoming29

overrun by the most dominant competitor or competitors14,15. When species are functionally30

similar, in contrast, their coexistence requires an additional, external source of variability to31
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buffer against otherwise unfavorable years, habitats, or environmental conditions16,17.1

The theoretical basis linking niche differentiation to coexistence is quite clear18–21. The2

importance of niche differences for maintaining species diversity also has strong empirical sup-3

port22–24. However, we lack a clear picture of the effective number of niche dimensions that4

actually stabilize population dynamics in diverse natural communities. This is partly due to the5

fact that researchers traditionally select a priori the relevant resources or limiting factors over6

which species are thought to compete 8,25. Unfortunately, such approaches cannot guarantee7

that all relevant dimensions have been taken into account, or that those selected are even the8

most relevant ones in practice; even controlled scenarios can therefore overlook previously-9

unknown, but equally important, mechanisms. Alternatively, researchers have taken a more in-10

direct approach of relating the strength of competition and resource-use variation to differences11

in functional traits13 or evolutionary histories26, based on the assumption that these species12

characteristics are reasonable summaries of the multiple dimensions that compose a species’13

niche. Yet indirect, correlative approaches also cannot conclusively identify which resources14

are limiting8 or, more importantly, how many niche dimensions are realized27. It therefore re-15

mains unclear whether or not the interactions measured for any given ecological assemblage are16

indicative of highly distinct or highly similar species competing over a large or a small resource17

pool.18

Exhaustive inference of niche dimensionality in diverse empirical communities, as achieved19

by manipulation of all potential niche axes (e.g., light, water, space, and nutrients) is next to im-20

possible. With this in mind, we introduce here an alternative perspective on this long-standing21

challenge. Rather than characterize and compare resource use explicitly or select proxies from22

species’ characteristics, we develop a mathematical and statistical approach that uses informa-23

tion of the strengths and signs of interactions between species to infer their implied niche basis24

(Methods). In particular, our method provides a means to quantify the “niche dimensionality”25
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of any interacting species assemblage, which is a proxy for the effective number of resources1

or limiting factors over which those species are competing. From this perspective, niche di-2

mensionality is also a well-defined mathematical property of the emergent interactions between3

species.4

In addition to estimating niche dimensionality, our approach decomposes pairwise interac-5

tions between species into (i) species’ response traits, (ii) species’ effect traits, and (iii) the6

relative strength of these responses and effects across the underlying niche dimensions (Fig. 1;7

Methods). This decomposition helps us identify species’ competitive strategies across shared8

niche dimensions. Specifically, effect traits modulate the impact of each species on all others9

while response traits modulate the impact of all other species on each species15,28. When com-10

bined, the effect traits of one species and the response traits of another determine whether their11

directed, pairwise interactions will be strong or weak, competitive or facilitative26,29. Given that12

the net strength of an interaction between two species should be proportional to their niche over-13

lap7,30, our framework quantifies species’ niche differences in terms of the extent to which they14

have an ability to withstand neighbor effects (their response) as well as an ability to generate15

neighbor effects (their effect). Each set of response and effect traits thus relates to a comparable16

set of “effective resources” such that a species with a large effect trait can be thought of as one17

that depletes the corresponding resource to the detriment of others, and a species with a large18

response trait can be thought of as one that is particularly sensitive to scarcity of that same19

resource. As such, response and effect traits allow us to capture the multi-dimensional “strate-20

gies” employed by species to outcompete each other or to avoid being outcompeted27,28 based21

directly on the observed outcomes of species-species interactions (as opposed to indirectly; e.g.,22

via their phenotypic traits31).23

To investigate whether there are common patterns of niche dimensionality across ecological24

communities, we applied our approach to 12 empirical assemblages drawn from plant commu-25
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nities across the globe (Methods). These assemblages cover a broad array of habitat types and1

plant life-history strategies, from deserts to forests and annual plants to trees (Supplementary2

Information). Each of these includes data regarding the strength and sign of species interactions3

between three to ten different plant species, and allows us to determine whether each species4

performs better or worse in the presence of all others. Moreover, the data come from field or5

common garden settings—in which we might expect extrinsic factors could give rise to greater6

realized variation—and greenhouses—in which we might expect variation to be driven almost7

entirely by intrinsic species properties.8

Results9

Given these 12 assemblages, we first determined their niche dimensionality d̂: the minimum10

number of niche dimensions required to explain the observed variation within the data (Meth-11

ods). As noted above, niche dimensionality d̂ gives an indication of the effective number of12

resources over which the species in these different plant assemblages are likely competing, and13

hence the number of species predicted to coexist in the absence of exogenous variation. For14

every dataset and regardless of the experimental context, we observed that three or fewer niche15

dimensions (d̂ ≤ 3) were sufficient to accurately capture the pairwise interactions between16

species (Fig. 2 & Figs. S1–S3). In fact, the first niche dimension alone explained on average17

86.7% of the variation in the plant–plant interactions, and this ranged from 59.6% to 99.3%18

across the 12 datasets. To verify that these small values of d̂ are an ecological feature of these19

species assemblages and not an artifact of our methodology, we also estimated the niche di-20

mensionality for simulated data with randomly-assigned interaction coefficients. As expected,21

randomization tends to create “unstructured” data with niche dimensionality closer to the num-22

ber of species and hence greater than observed in the natural and experimental assemblages23
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(Supplementary Information).1

After estimating niche dimensionality of each dataset, we next examined species’ inferred2

response and effect traits to get a clearer picture of the forces underpinning species interac-3

tions. As representative examples, the best-fit parameters for Dataset 1-Wet and Dataset 1-Dry4

indicate that the 10 constituent species play distinct ecological roles across their leading niche5

dimensions (Fig. 3). In both cases, species are sorted into “classic” competitive hierarchies6

within which most species with strong effects tended to have weak responses and those with7

weak effects tended to have strong responses. However, realized niche differentiation in Dataset8

1-Wet was driven by greater variation in species’ effects than their responses whereas species9

had heterogeneous responses and heterogeneous effects in Dataset 1-Dry. We observed similar10

patterns across each of the empirical datasets (Fig. S4), indicating that the leading dimensions11

of niche differentiation are those that create variation in species’ responses to and effects on12

other species in their community.13

We consistently found that estimates of niche dimensionality d̂ were lower than the total14

number of species S in each empirical assemblage (Fig. 2), and this did not depend on whether15

or not data came from experiments in the field, garden, or greenhouse (Table S1). Though niche16

dimensionality increased with increasing species richness (Fig. 2), the rate of increase was much17

lower than one dimension per species as expected from theory7–11. When niche dimensional-18

ity is less than the number of species, the interactions of two or more species directly mirror19

each other; should any of these functionally-similar species have even the slightest competi-20

tive advantage, it will tend to dominate in the long run1,7. Our results therefore are indicative21

of communities that can sustain limited diversity, despite bountiful evidence to the contrary in22

nature. Since some other mechanism must therefore be at play, we next determined whether23

changing environmental conditions increases niche dimensionality and hence the prospect of24

coexistence. To do so, we explored two of our datasets in greater detail as they each comprise25
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the same underlying assemblages interacting in two distinct environments. One pair of datasets1

(Dataset 1, Wet & Dry) consists of ten species in control and simulated-drought conditions32,2

designed to mimic the impact of extreme climatic events of the sort expected with ongoing3

global change33; the other pair of datasets (Dataset 2, Sun & Shade) consists of eight species4

in control and artificially-shaded conditions, since light availability is known to structure local5

diversity in that system34.6

Viewed independently, Dataset 1 was captured by two and three niche dimensions in the Wet7

and Dry environments while Dataset 2 was captured by one and two niche dimensions in the Sun8

and Shade environments (Table S1). Nevertheless, the question remains whether the species in9

each Dataset sorted themselves along the same leading axes of niche variation in the contrasting10

environments. To check this, we measured the correlation between species’ response and effect11

traits inferred under the two environmental conditions. These correlations were weak and non-12

significant (Procrustes ρ = 0.52, p = 0.37 for Dataset 1; Procrustes ρ = 0.40, p = 0.0613

for Dataset 2), indicating that niche dimensions differ depending on environmental conditions.14

Environmental variation therefore leads to significant shifts in species’ absolute and relative15

niches (Fig. 3), in contrast to niche theories based on environmental tolerance35 or functional16

traits36 which generally assume that niches are immutable species’ attributes.17

Discussion18

Much research is dedicated to exploring how the abiotic environment impacts species’ perfor-19

mance in an interaction-free context37,38. Indeed, most predictions about how communities20

will change in the face of external disturbance, such as climate variability, depend on this re-21

lationship33,35. Comparatively less is known about how environmental conditions impact the22

pairwise interactions in multi-species assemblages and therefore about species’ ability to per-23
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sist under changing environmental conditions32,39,40. One possible reason is that it is difficult to1

relate changes across multivariate interactions between species to changes in univariate single-2

species outcomes21,41. Here, we show how to decompose pairwise interactions into species-3

specific response and effect traits, thereby simplifying such inquiries. Moreover, the effect of4

the environment on species’ response and effect traits generates multiple ecologically-relevant5

ways for pairwise interactions to vary from one environment to another: all else being equal,6

any species whose response traits increase in value from one environment to another will face7

harsher competition; in contrast, any species whose effect traits increase in value from one en-8

vironment to another should become increasingly dominant. In addition to demonstrating that9

low-dimensional competition is pervasive in plant assemblages, our approach provides a new10

lens through which to interrogate coexistence in varying environments.11

Despite the differences between the datasets we have studied—such as their biogeograph-12

ical provenance, evolutionary histories, or growth form—we provide unambiguous evidence13

that plant–plant interactions are organized over a small number of effective niche dimensions,14

contrary to common theoretical expectations. While this fact would also appear to imply limited15

prospects for coexistence, low niche dimensionality in terms of species’ interactive responses16

and effects is in strong agreement with other assessments of global plant diversity being cap-17

tured by a small number of life histories27 and limited phenotypic trait combinations36,42. It18

also agrees with numerous studies that found that models parameterized with empirical data19

rarely predict coexistence13,41,43. And yet the environment leaves such a strong imprint on in-20

teractions that its variability generates one to many additional niche dimensions and serves as a21

de facto “landscape” across which species can evolve novel strategies to avoid being outcom-22

peted23,27,44. While this can make it harder to identify consistent structure in empirical interac-23

tion matrices45,46, it also highlights a critical link between changing environmental conditions24

and species’ realized niches44,47.25
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Methods1

Empirical data2

We analyze 12 empirical assemblages to test our core hypothesis regarding variation in the3

structure of pairwise interactions between co-occurring plants (Table S1). For Datasets 1-Wet,4

1-Dry, 2-Sun, and 2-Shade, we directly analyzed raw empirical data from experimental studies5

of competition between annual plants in order to estimate interaction strengths. For Datasets6

3–12, we analyzed previously-estimated pairwise interaction matrices that were available in the7

literature.8

Estimating interaction strengths with fixed niche dimensionality9

When constrained to a fixed dimensionality d, our mathematical approach separates every pair-10

wise interaction αij into d separate components which we refer to as “niche dimensions”. For11

the simplest case of d = 1, the per capita strength of the effect of species j on species i is given12

by αij|d=1 = σ1 × ri,1 × ej,1; that is, by the product of the average strength of interactions in13

the first dimension (σ1), the “response trait” of species i in the first dimension (ri,1), and the14

“effect trait” of species j in the first dimension (ej,1). As described in the main text, we refer15

to the ri,k parameters as responses because they influence how the performance of the same16

focal species i “responds” to the presence of different neighbor plants; similarly, we refer to17

the ej,k parameters as effects because they influence how the same neighbor plant “effects” the18

performances of different focal plants. The separation of responses from effects allows us to19

generate asymmetric interaction matrices—where the effect of species i on j differs from the20

effect of species j on i—which is more empirically realistic45 than the symmetric counterpart21

commonly studied in theoretical contexts48,49. For any value of d > 1, the net strength of a pair-22

wise interaction between i and j is given by αij|d =
∑d

k=1 σd ri,k ej,k, where the sum is across23

9
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the different niche dimensions and the average strength of these dimensions is ordered such that1

σ1 > σ2 > . . . > σd . In this way, the net strength of each interaction is additively partitioned2

across niche dimensions.3

Density-dependent plant performance4

Each of Datasets 1-Wet, 1-Dry, 2-Sun, and 2-Shade consists of estimates of individual plant5

performance and the abundance or density of co-occurring plants within interaction neighbor-6

hoods. To infer interaction strengths, we therefore first had to define a mathematical model for7

how performance varies as a function of neighbor composition and abundance. In line with8

current best practice50, we estimated the per capita effects of neighboring species on the perfor-9

mance of focal individuals of each of the datasets using a model of the form10

Fi =
λi

1 +
∑S

j=1 αijNj

, (1)

where Fi is the observed estimate of the performance of a focal individual from species i, λi11

captures intrinsic performance of these individuals in the absence of competition, αij is the per12

capita impact of species j on species i, Nj is the abundance of species j in the focal individ-13

ual’s interaction neighborhood, and the sum is across all species in that neighborhood (which14

could potentially include conspecifics of species i). For an assemblage of S species, our goal15

then was to estimate the S × S pairwise interaction matrix A. Given data of focal-plant per-16

formance and those plants’ interaction neighborhoods, inference of both intrinsic performance17

and the strength of pairwise interactions can usually be achieved with standard regression ap-18

proaches51. However, these are no longer feasible when constraining interactions to occur at19

a fixed niche dimensionality. We therefore inferred the parameters of our model by exploit-20

ing the similarity of this mathematical model of competition26 to singular value decomposition21
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(SVD)52. To further facilitate parameter estimation, we constrained the inferred response and1

effect traits so that they always create orthogonal matrices. As a result, we inferred d×(2S − d)2

total parameters for the interactions at any given niche dimensionality d.3

Inferring best-fit reduced-dimensionality model parameters4

When we only had an empirical interaction matrix A for a given assemblage, we found the5

maximum-likelihood reduced-dimensionality representation directly using singular value de-6

composition (SVD)52. Specifically, one can factorize A into three separate matrices such that7

A = RΣEt. Here, R and E are S × S orthogonal matrices (i.e., matrices whose columns and8

rows are all orthogonal unit vectors), and Σ is a matrix with the singular values of A along9

the diagonal and zeroes elsewhere. We can equivalently factorize the matrix as A = R̃ẼT by10

defining R̃ = RΣ1/2 and Ẽ = EΣ1/2 and where Σ1/2 is the Cholesky decomposition of Σ. SVD11

works in such a way that Âd = R̂dÊ
T
d is the best least-squares approximation of A at any re-12

source dimensionality d ≤ S as long as R̂d is the S × d sub-matrix given by the first d columns13

of R̃ and Êd is the S × d sub-matrix given by the first d columns of Ẽ. As a consequence,14

the maximum likelihood values of the response and effect parameters in the first d resource15

dimensions correspond to the first d columns of R and E, respectively.16

When we had raw empirical data and hence the values composing the interaction A were un-17

known, we inferred them from the raw empirical data. For any fixed resource dimensionality d,18

this required estimating the d values along the diagonal of Σd and the two S × d matrices Rd19

and Ed. To maintain coherence with SVD, the columns of Rd were maintained to be orthogonal20

unit vectors. This implies that the first column has S − 1 free parameters, the second column21

has S − 2 free parameters, and so on, up to a maximum of S (S − 1) /2 free parameters if22

d = S. The same is true for the columns of Ed. In total, we must therefore perform inference23

on d × (2S − d) parameters. In order to ensure that the parameters of Rd and Ed maintain the24
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orthogonality constraint and uniqueness during optimization, we followed the Cayley transfor-1

mation method of Shepard et al.53 and Jauch et al.54.2

We used the mle2 function from the bbmle package55 in the statistical programming language3

R 56 to identify the optimal values of Σd, Rd, and Ed. Conveniently, Eq. (1) can be fit as a4

Poisson regression with inverse link function57. To facilitate comparison to the approach with5

which the matrix A is not factorized into its response–effect equivalent, we therefore used mle26

to minimize the exact same deviance function as used for Poisson regression rather than to7

maximize the data’s log-likelihood.8

Statistical analysis9

For Datasets 1-Wet, 1-Dry, 2-Sun, and 2-Shade, we inferred the best-fit parameters for inter-10

actions constrained to occur when dimensionality d = S. We then used the inferred values of11

{σ̂1, σ̂2, . . . , σ̂S} and identified the niche dimensionality d̂ that was sufficient to capture 95%12

of the variation in the inferred interaction matrix. For Datasets 3–12—for which we only had13

an estimated interaction matrix A—we determined the niche dimensionality d̂ based directly14

on the singular values of A52. For all dataset types, values d < d̂ fail to capture biologically15

meaningful variation in the observed plant–plant interactions; values of d > d̂ require the use of16

an overly complex statistical model with an excess of resource dimensions. Though we expect17

that values d > d̂ will give a more refined description of species’ fundamental niches, d̂ is a18

better reflection of the niche differences that are actually realized as a result of species–species19

interactions.20

We then studied the properties of the d̂-dimensional estimates of species’ response and ef-21

fect traits within each dataset. For the paired Datasets 1 & 2, we tested whether the positions22

of species in each of these d̂-dimensional spaces were correlated using a Procrustes analysis.23

A significant Procrustes statistic indicates that the effective response and effect “hierarchies”24

12
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between species in both environments are positively related (e.g., species always tend to be1

the strongest or weakest effectors or responders) whereas a non-significant result implies that2

species likely play different roles when the environmental conditions change.3

Code availability4

The code used for analyses in this study can be found at https://github.com/stoufferlab/5

dimensionality-of-competition.6

Data availability7

All data used in this study can be obtained from https://doi.org/10.5061/dryad.8

8v13t2q, https://doi.org/10.5061/dryad.5d1s9, https://doi.org/10.9

5061/dryad.1sm06sp, or the original references as listed in Table S1.10
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Figure 1: Response-effect decomposition of a pairwise interaction matrix. A, The inferred
10 × 10 interaction matrix for Dataset 1-Wet, where rows indicate the species “responding” to
the interaction and the columns represent the species “effecting” the interaction. Interactions
are colored based on the strength and sign of the net pairwise impact: net competitive values are
indicated from white to red while net facilitative values are indicated from white to blue. B, C,
D, and E, The full pairwise interaction matrix can be parsimoniously decomposed into matrices
that capture implicit niche differentiation underpinning interactions across the assemblage. For
this dataset, the first, second, third, and fourth niche dimensions explain 91.2%, 6.0%, 1.0%,
and 0.7% of the variation observed in the data, respectively. Note that interactions in the first
niche dimension are overwhelmingly competitive whereas species-specific variation within the
second through fourth dimensions both strengthen and weaken the net strength of pairwise
interactions.
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Figure 2: Inferred niche dimensionality (d̂) relative to the actual species richness of each em-
pirical assemblage (S). The dotted line represents the upper bound of niche dimensionality
equal to the number of species whereas the solid line represents the predicted increase of niche
dimensions (± standard error) based on the trend observed across the empirical datasets. Note
that datasets with identical values of d̂ and S have been jittered slightly to make them visible.
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Figure 3: Species’ response and effect traits in the first niche dimension for both Dataset 1-Wet
and Dataset 1-Dry. A, In Dataset 1-Wet, species are organized along a competitive hierar-
chy driven largely by variation in their effects as neighbors: dominant competitors have large
positive effect traits and small positive response traits whereas weaker competitors have small
positive effect traits and large positive response traits. One notable species clusters outside
this hierarchy by exhibiting a moderate effect trait and large positive response trait, indicating
that it is particularly susceptible to competitive effects. B, In Dataset 2-Dry, species are again
organized in a competitive hierarchy but exhibiting clearer variation in both response and ef-
fect traits. The dotted lines connect species’ response and effect traits in Wet environmental
conditions to those same species’ response and effect traits in Dry environmental conditions.
Variation between where species fall in the two panels is thus indicative of reorganization of the
underlying competitive hierarchy. In both panels, the error bars at each point indicate the 25th
to 75th percentile confidence interval about their inferred values and have been plotted on top
of points to facilitative visibility when they are small.

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.467010doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.467010
http://creativecommons.org/licenses/by-nc/4.0/

