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Abstract: The C30 Endopeptidase (3C-like protease; 3CLpro) is essential for the life cycle of SARS-CoV-2 

(severe acute respiratory syndrome-coronavirus-2) since it plays a pivotal role in viral replication and 

transcription and is hence a promising drug target. Molecules isolated from animals, insects, plants or 

microorganisms can serve as a scaffold for the design of novel biopharmaceutical products. Crotamine, 

a small cationic peptide from the venom of the rattlesnake Crotalus durissus terrificus has been the focus 

of many studies since it exhibits activities such as analgesic, in vitro antibacterial and hemolytic 

activities. The crotamine derivative L-peptides (L-CDP) that inhibit the 3CL protease in the low µM 

range were examined since they are susceptible to proteolytic degradation; we explored the utility of 

their D-enantiomers form. Comparative uptake inhibition analysis showed D-CDP as a promising 

prototype for a D-peptide-based drug. We also found that the D-peptides can impair SARS-CoV-2 

replication in vivo, probably targeting the viral protease 3CLpro. 
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1. Introduction 

In Wuhan, Hubei Province, China, in December 2019, a rapid increase in the number of 

pneumonia suspect cases [1] quickly aroused interest, and it sounded the emergency call in the World 

Health Organization (WHO) in January 2020, as a "public health emergency of international concern". 

The resulting disease, Coronavirus Disease-2019 (COVID-19), exploded into a global pandemic within 

a few months, claiming lives in all continents. SARS-Coronavirus-2 (SARS-CoV-2) has resulted in over 

248 million confirmed cases and over 5 million deaths worldwide reported by the WHO on 5th of 

November 2021 [2]. The worldwide vaccination campaign using clinical safe and efficient vaccines 

against SARS-CoV-2 (e.g. BioNTech-Pfizer, Moderna, Johnson & Johnson, and AstraZeneca vaccines) 

[3-6], and so far, more than 7 billion vaccine doses have been administered [2].  

Several candidate drugs that may inhibit SARS-CoV-2 infection and replication have been 

approved for emergency use (e.g., Remdesivir, dexamethasone, Favipiravir, Lopinavir/ritonavir, and 

Darunavir) [7-11]. Given a considerable limitation of direct-acting antivirals for COVID-19 and an 

increasing presence of SARS-CoV-2 variants (B.1.617.2, B.1.1.7, B.1.351, A.23.1, B.1.525, B.1.526 and P.1) 

[12], it remains a strategic priority to develop new candidates with minimal side effects and which are 

also targeted against new variants. Upon entering and uncoating the viral particles, the positive-

stranded RNA genome is rapidly translated into two polyproteins processed (pp1a and pp1ab) by 3CL 

and papain-like proteases into 16 nonstructural proteins (NSPs) [13,14]. 3CLpro is a cysteine protease 

organised in three domains (domains I to III) with a chymotrypsin-like fold [15]. Its active form consists 

of two protomers (homodimer) containing a noncanonical Cys-His dyad located in the cleft between 

domains I and II [15-17]. The functional importance of 3CLpro in the viral life cycle combined with the 

absence of closely related homologues in humans indicates that this protease is an attractive target for 

developing antiviral drugs [18]. 

In recent years, antimicrobial peptides (AMPs) have been considered to hold the promise as a 

viable solution to form the basis for the design of novel peptides to combat hazardous microorganism 

infections. The use of AMPs can be promising as a therapeutic tool to address increasing viral infections, 

for which no current or authorised medication or treatment is available [19]. AMPs are frequently used 

to treat viral-related diseases such as Zika (ZIKV), Dengue (DENV) [20], and Influenza A virus infection 

(IAV) [21]. 

Crotamine (Cro), a small cationic polypeptide originally encountered in the venom of the South 

American rattlesnake Crotalus durissus terrificus [22, 23], possess cell wall penetrating properties [24,25], 

and several biological functions of this polypeptide were described, including antimicrobial, antifungal 

and antitumoral activities [24-27]. These properties were mainly considered to be determined by the 

overall positive net surface charge distribution of crotamine [24-27]. Characterised as a novel cell-

penetrating polypeptide (CPP) nanocarrier, Cro has biotechnological applications due to its peculiar 
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specificity for highly proliferating cells. [24,25,28]. Similar to other CPPs, Cro showed a rapid 

translocation efficiency (within 5 min) into all cell types investigated to date [29]. A small peptide 

composed by 42 amino acid residues 

(YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG) [22, 23] containing two putative 

nuclear localization sequence (NLS) motifs Cro_2-18 (KQCHKKGGHCFPKEKIC) and Cro_27-39 

(KMDCRWRWKCCKK) [29]. The sequence Crot_27-39 was selected and named L-CDP1 as the initial 

sequence for inhibition studies against SARS-CoV-2 3CLpro. Based on the first sequence, several 

Crotamine Derivative Peptides (CDPs) in L- form were specifically modified, and D-forms were 

designed. They were tested concerning their inhibitory potential against the virus' main protease.  

 

2. Results and Discussion 

2.1. Preparation of SARS-CoV-2 3CLpro 

SARS-CoV-2 3CLpro_GST fusion protein was expressed in E. coli Lemo21 (DE3) cells and purified 

using a GSH-Sepharose column (Supplementary Fig. S3A). The relevant protein fractions were 

concentrated and prepared for PreScission protease cleavage to remove the GST-tag. The SDS gel 

(Supplementary Fig. S1) indicates the cleavage efficiency and the purity of 3CLpro. 

 

2.2. Primary inhibition assay of Crotamine and L-CDPs against SARS-CoV-2 3CLpro 

The L-CDP1 (wild type sequence Cro_27-39) includes three cysteine residues. The L-CDP2-9 are 

modified peptides by substituting the cysteine to serine residues in a different position (Table 1 and 

Supplementary Fig. S2 and S3) to efficiently achieve an optimised sequence aiming to inhibit the 

3CLpro. In principle, the positively charged residues were maintained due to their membrane modify 

properties. 

According to the procedure described earlier, the SARS-CoV-2 3CLpro activity assay was 

performed using DABCYL-KTSAVLQ/SGFRKME-EDANS (Bachem, Switzerland) as substrate [2-5]. A 

primary inhibition test with Cro and the L-CDPs (30 µM) was performed to screen the best inhibitor 

peptide against the virus protease (Fig. 1).  
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Figure 1. Primary inhibition tests of Crotamine and L-CDPs against SARS-CoV-2 3CLpro. Crotamine inhibits the 

virus protease activity by around 50%. L-CDP1, L-CDP2, L-CDP4, L-CDP7 and L-CDP8 inhibit the virus protease 

activity by more than 80%. Data shown are the mean ± SD from 3 independent measurements (n=3). Asterisks mean 

that the data differs from the control (0 µM inhibitor) significantly at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***), 

level according to ANOVA and Tukey’s test. The experimental model of Crotamine is shown in coulombic surfaces 

and cartoons, with the L-CDP1 sequence highlighted in blue (PDB entry: 4GV5).  

 

The primary inhibition tests revealed a strong effect of L-CDP1, L-CDP2, L-CDP7 and L-CDP8 

peptides against SARS-CoV-2 3CLpro activity assay, and those peptides inhibit the virus protease activity 

by more than 80%. All peptides were subject of the dose-dependent studies (Supplementary Fig. S4); 

however, the peptides that present more than 80% inhibition have been chosen for further studies. 

 

2.3. Characterisation of the 3CLpro inhibition by Crotamine and L-CDPs 

The selected peptides were further analysed with respect to their actual potential to inhibit the 

catalytic activity of the 3CLpro in a biochemical assay. To gain insight into functional implications caused 

by the selected peptide (L-CDP1), we checked the minimum concentration of Cro required to inhibit 

100% of the protease activity. The full-length polypeptide Cro was tested using a concentration range 

of 0-300 µM, and the polypeptide demonstrates 100% protease inhibition at a concentration of 300 µM 

(Supplementary Fig. S4A), presenting an IC50 value of 40 ± 3.1 µM (Table 1, Fig. 2A). In contrast, the 

selected wild type sequence Crot_27-39 (L-CDP1) inhibits 100% of the recombinant SARS-CoV-2 

protease activity at a concentration of 30 µM (Supplementary Fig. S4B) with IC50 value of 1.9 ± 0.3 µM 

(Table 1, Fig.2B). The replacement of all cysteine residues of L-CDP1 by serine residues, a peptide named 

L-CDP2 (Table 1), led to an increase in IC50 values (5.0 ± 0.8 µM), revealing that the cysteine residue can 

increase the inhibition rate of the protease (Fig. 2C and Supplementary Fig. S4C). The Crotamine 

derivative L-peptide-7, a peptide that presents an amino acid substitution, Cys36 (WT numbering) to 

Ser, and L-CDP8 (Cys37 to Ser) (see Table 1), inhibits the protease by 100% at 60 µM concentration 
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(Supplementary Fig. S4HI) with IC50 values of 1.5 ± 0.4 and 2.1 ± 0.4 µM (Table 1, Fig. 2DE), respectively. 

The Supplementary Fig. S4 shows the inhibition effect for all modified L-CDP against the 3CL protease 

and the Supplementary Fig. S5 the dose-response curves for IC50 determination for the remaining 

modified peptides (L-CDP3, 4, 5, 6 and 9). 

 

Figure 2. Crotamine, L-CDP1, L-CDP2, L-CDP7 and L-CDP8 inhibitory activity against SARS-CoV-2 3CLpro. 

Dose-response curves for IC50 determination. The normalised response [%] of SARS-CoV-2 3CLpro is plotted against 

the Log of the inhibitor concentration A: Dose-response curve of Crotamine and SARS-CoV-2 3CLpro. B: Dose-

response curve of L-CDP1 and SARS-CoV-2 3CLpro. C: Dose-response curve of L-CDP2 and SARS-CoV-2 3CLpro. 

CD Dose-response curve of L-CDP7 and SARS-CoV-2 3CLpro. E: Dose-response curve of L-CDP8 and SARS-CoV-2 

3CLpro.  Data shown are the mean ± SD from three independent measurements (n=3). 

 

Regarding residues substitution (Table 1), the secondary structure of L-CDP1, L-CDP2, L-CDP7 

and L-CDP8 was investigated by Circular dichroism (CD), demonstrating that the substitution of the 

cysteine residue will results in conformational changes (Supplementary Fig. S6). As expected, difference 

in uptake behavior was observed with the replacement of only one cysteine residue, as observed by 

IC50 values (Table 1 and Fig. 2C). However, the substitution at position 36 (WT numbering) increases 

the inhibitory efficiency of the peptide L-CDP7 (Table 1 and Fig. 2D). Table 1 summarises the 

experiments performed with the modified L-CDP peptides. 
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Table 1. Summary of the SARS-CoV-2 3CLpro inhibition experiments by Crotamine and CDPs. 

Molecule Sequence IC50 [µM] Inhibition type 

Crotamine  40 ± 3.1 - 

L-CDP1 KMDCRWRWKCCKK 1.9 ± 0.3 Competitive 

L-CDP2 KMDSRWRWKSSKK 5.0 ± 0.8 - 

L-CDP3 KMDCRWRWKSSKK 8.5 ± 1.0 - 

L-CDP4 KMDSRWRWKCCKK 5.1 ± 1.1 - 

L-CDP5 KMDSRWRWKSCKK 6.2 ± 0.5 - 

L-CDP6 KMDSRWRWKCSKK 7.5 ± 0.7 - 

L-CDP7 KMDCRWRWKSCKK 1.5 ± 0.4 Competitive 

L-CDP8 KMDCRWRWKCSKK 2.1 ± 0.4 Competitive 

L-CDP9 RWRWKCCKK 4.9 ± 0.6 - 

 

Detailed mechanistic studies using a fluorescence-based protease assay demonstrated that L-

CDP1, L-CDP7, and L-CDP8 peptides are competitive inhibitors (Fig. 3). The results indicate that these 

peptides interact directly with amino acid residues located in the active site or with amino acids located 

in the substrate-binding region of the protease, preventing substrate entry to the active site. Since L-

CDP1 and L-CDP7 present IC50 values < 2 µM, they were considered for profound evaluation. 

 

 

Figure 3. Inhibition mode of L-CDP1, L-CDP7 and L-CDP8 over SARS-CoV-2 3CLpro. Lineweaver-Burk plots to 

determine the inhibition mode are presented. [S] is the substrate concentration; v is the initial reaction rate. A: 

Lineweaver-Burk plot for L-CDP1 inhibition of SARS-CoV-2 3CLpro. B: Lineweaver-Burk plot for L-CDP7 inhibition 

of SARS-CoV-2 3CLpro. C: Lineweaver-Burk plot for L-CDP8 inhibition of SARS-CoV-2 3CLpro. Data shown are the 

mean ± SD from 3 independent measurements (n=3). 

 

2.4. The binding affinity of the L-CDP1 and L-CDP7 using surface plasmon resonance 

We further investigated the binding affinity of L-CDP1 and L-CDP7 molecules using Surface 

Plasmon Resonance (SPR) (Table 2, Supplementary Fig. S7). The protease was passed over a CM-5 

sensor chip pre-immobilised with the individual L-peptides (L-CDP1 and L-CDP7). L-CDP1 had an 

equilibrium rate constant (KD) of 65 ± 20.1 nM, whereas L-CDP7 shows 304 ± 70.3 nM, also illustrated in 
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Table 2. From the KD value obtained from SPR, it was clearly observed that 3CLpro had a higher binding 

efficacy for the L-CDP1 receptor. 

 

Table 2. SARS-CoV-2 3CLpro SPR Experiments by L-CDP1 and L-CDP7. 

Molecule Sequence KD [nM] ± STD 

L-CDP1 KMDCRWRWKCCKK 65 ± 20.1 

L-CDP7 KMDCRWRWKSCKK 304 ± 70.3 

The experiments were performed in duplicate, and the results are shown as the mean ± STD. The KD values of the 

single experiments are shown in supplementary table S2.  

 

The observed changes in the dissociation process can be attributed to a distinct aspect that the 

substitution of a sulfur-containing amino acid (Cysteine) by a hydroxyl group (Serine) change the 

secondary structure (as described before), as well as the mode of interaction of the peptide with the 

target protease. Jha et al. described in an internalisation study using a Cro derivative peptide (CyLoP-

1) that the substitution or deletion of the cysteine residue reduces cellular uptake and cytosolic 

distribution [30]. Both studies show the importance of the cysteine residue, not only for internalisation 

but also for inhibiting the SARS-CoV-2 protease. 

 

2.5 Inhibition assay of the CDP1 and CDP7 D-peptide enantiomers 

In order to conserve all the essential biological properties of the L-enantiomers peptides against 

human protease degradations, CDP1 and CDP7 were synthesised in D-enantiomers form. D-peptides, 

when compared to their L-enantiomeric equivalents, possess several therapeutic advantages. As shown 

previously, the proteolytic stability of D-peptides is superior to L-peptides, which can dramatically 

increase serum half-life. [42,43], resulting also in reduced immunogenicity and increased bioavailability 

of D-peptides [44]. Welch et al. 2007 described promising D-peptide inhibitors that effectively inhibit 

human immunodeficiency virus 1 (HIV-1) entry [45].  

L-CDP peptides are susceptible to hydrolysis by proteases, which restrict their therapeutic 

utility. Based on the mirror symmetry, CDP1 and CDP7 were synthesised (Genscript) in D-enantiomeric 

form seeking stability. To confirm that the D-peptide were in the correct enantiomeric form, we 

performed circular dichroism (CD) measurements of both D-CDP1 and D-CDP7 in solution. As 

expected, the CD spectra of the D-peptides is the mirror image of that of L-peptides (Fig. 4)  
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Figure 4. Circular dichroism (CD) spectroscopy of D-CDP peptides. The CD spectrum of D-peptide in solution is 

presented as molar ellipticity [θ].  

The corresponding D-CDP1 and D-CDP7 should specifically bind to the natural L-target with 

similar affinity. The inhibitory effect, IC50, inhibition mode, and KD were determined (Fig. 5 and 

Supplementary Fig. S8). 

 

Figure 5. Inhibition effect, dose response curve and inhibition mode of D-CDP1 and D-CDP7 over SARS-CoV-

2 3CLpro. A: Normalised activity and inhibition of SARS-CoV-2 3CLpro under D-CDP1 influence. B: Normalised 

activity and inhibition of SARS-CoV-2 3CLpro under D-CDP7 influence. C: Dose response curve of D-CDP1 and 

SARS-CoV-2 3CLpro. The normalised response [%] of SARS-CoV-2 3CLpro is plotted against the Log of the D-CDP1 

concentration. D: Dose response curve of D-CDP7 and SARS-CoV-2 3CLpro. E: Lineweaver-Burk plot for D-CDP1 

inhibition of SARS-CoV-2 3CLpro. [S] is the substrate concentration; v is the initial reaction rate. F: Lineweaver-Burk 
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plot for D-CDP7 inhibition of SARS-CoV-2 3CLpro. Data shown are the mean ± SD from three independent 

measurements (n=3). 

The determined IC50 values for D-CDP1 (4.9 ± 1.7 µM) and D-CDP7 (1.9 ± 0.3 µM) are slightly 

higher than that in L-peptides with an increase of two-fold for D-CDP1 (Table 3). Like the L-peptides, 

D-CDP1 and D-CDP7 reveal the same as before, a competitive inhibition mode (Fig. 5 E and F). 

SPR experiments of the D-enantiomers with 3CLpro showed no evaluable results. Therefore, the 

KD values for the D-CDP1 and -D-CDP7 interaction with the 3CLpro was determined using microscale 

thermophoresis (MST) (Supplementary Fig. S8), which we did not compare with the results for L-CDPs 

(SPR) as we modified the method to determine the KD. 

It is well described that a structural conversion or steric incompatibility in D-enantiomers can 

negatively influence the inhibition and binding behaviour of the D-peptides with the target proteins 

[46, 47] or the method of choice to determine the KD, which was also observed for D-CDP1 and D-CDP7. 

However, we have shown that both L-enantiomers (CDP1, CDP7) could be significantly modified 

without altering their function. The D-CDP1 interaction with 3CLpro is around ten times stronger than 

D-CDP7; this tendency was also observed for the L-enantiomers (Table 3 and Supplementary Table S1). 

 

Table 3. Affinity and Inhibitory Activity of the D-CDP1 and D-CDP-7 Peptides. 

Molecule IC50 [µM] Inhibition type KD [nM] ± STD 

D-CDP1 4.9 ± 1.7 Competitive 185.7 ± 17.8 

D-CDP7 1.9 ± 0.3 Competitive 1951.3 ± 87.5 

The MST experiments were performed in triplicates, and the results are shown as the mean ± STD. The KD values 

of the single experiments are shown in supplementary table S3. 

 

2.6 24 h Stability and promiscuous assays of L/D-CDP1 and L/D-CDP7. 

The term "promiscuous" inhibitors describe compounds whose inhibition mechanism involves 

interacting aggregates of many molecules with the target protein. Classified also as "promiscuous" are 

redox cycling compounds (RCCs) that generate µM concentrations of hydrogen peroxide (H2O2) in the 

presence of strong reducing agents, which is presented in the assay buffer in order to maintain the 

catalytic activity of cysteine proteases, like 3CL [12]. H2O2 generated by RCCs can indirectly inhibit the 

catalytic activity of proteins by oxidising accessible cysteine and or tryptophan that are present in CDP1 

and CDP7 in L- and D-enantiomers. 

To exclude the capacity of both D-peptides to behave as a RCC, we performed a hydrogen 

peroxide (H2O2) assay under the influence of TCEP. Our results demonstrated that L/D-CDP1 and L/D-

CDP7 do not produce H2O2 under the influence of 1 mM TCEP and can be excluded as RCCs 

(Supplementary Fig. S9). Furthermore, a detergent-based control was performed to exclude peptide 

inhibitors that possibly act as an aggregator of 3CLpro, and the experiment was performed by adding 

0.001%, 0.01% and 0.1% Triton X-100 to the reaction. Supposed that a molecule would exhibit significant 
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inhibition of 3CLpro, which is diminished by detergent, it is almost certainly acting as an aggregation-

based inhibitor, as described before [11], which was not observed for L/D-CDP1 and L/D-CDP7 

(Supplementary Fig. S10), discarding the possible aggregation properties of the peptides.  

Many peptide-based inhibitors lose the inhibitory effect over the time. The stability of the L- 

and D-peptides (CDP1 and CDP7) selected in this survey was tested over 24 h. The results demonstrated 

a constant inhibition of SARS-CoV-2 3CLpro over 24 h by both peptides, demonstrating their stability 

over time and is not prone to digestion by the protease. (Supplementary Fig. S11). 

 

2.7 Cytotoxicity assay of D-CDP1 and D-CDP7. 

A critical factor in evaluating the eligibility of potential lead peptides is cytotoxicity. 

Cytotoxicity of D-CDP1 and D-CDP7 conducted on the Vero cell line showed > 80% viability at the 

Minimum Inhibitory Concentration (MIC) concerning the untreated cells (Supplementary Fig. 12). The 

cells were treated with D-CDP1 and D-CDP7 at concentrations ranging from 0.2 to 98 µM. The results 

showed that both molecules have no cytotoxic effect at the calculated IC50 concentrations described 

above (Supplementary Fig. S12). The low cytotoxicity of both D-peptides agrees with the results 

described before for the L-peptides [30]. 

 

2.8 Antiviral activity of D-CDP1 and D-CDP7. 

To further substantiate the enzyme inhibition results, we evaluated the ability of these peptides 

to inhibit SARS-CoV-2. To test whether the two SARS-CoV-2 3CLpro inhibitors, D-CDP1 and D-CDP7, 

were able to inhibit SARS-CoV-2 replication in cell culture, an African green monkey cell line that 

supports productive SARS-CoV-2 replication was used. These Vero cells were pre-treated with the two 

inhibitors for 1 h; subsequently, the cells were infected at an MOI of 0.05. Viral replication was analysed 

by determining the SARS-CoV-2 RNA within the cell culture supernatant 2 dpi (days post-infection). 

Pre-treatment at a non-toxic concentration (50 µM) resulted in a significant decrease in viral RNA after 

2 dpi (Fig. 6), suggesting that both SARS-CoV-2 3CLpro inhibitors, D-CDP1 and D-CDP7, contribute to 

impaired SARS-CoV-2 replication through their anti-3CLpro activity. 

This experiment demonstrates that both D-peptides can impair SARS-CoV-2 replication, most 

likely by explicitly targeting the viral protease 3CLpro. While a twofold reduction in viral RNA, as seen 

after treatment with D-CDP1, may not seem much regarding the high replication rate, it clearly shows 

that our compounds exert antiviral activity within SARS-CoV-2-infected cells.  These results provide 

the first proof that the peptides target the inhibition of the SARS-CoV-2 replication. Whether this effect 

is due to the anti-3CLpro activity and whether the inhibitory effect observed can be optimised by 

additional modifications is subject to further investigation.  
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Future work should aim to reveal the mechanism behind the action of both D-peptides and the 

optimisation of the amino acid composition. 

 

Figure 6. Inhibition of SARS-CoV-2 by D-CDP1 and D-CDP7. Vero cells were treated with 50 µM of either D-

CDP1 or D-CDP7, and after an hour of incubation, the cells were infected with SARS-CoV-2 using a multiplicity of 

infection (MOI) of 0.05. Untreated cells were used as control. Viral RNA in the supernatant was analysed in-house. 

The graph shows individual data points with mean ± SD (n = 6). 

 

2.9 Docking and Molecular Dynamics Simulation 

Based on the mode of inhibition studies, protein-peptide (L-, D-CDP1) docking was performed 

applying the HADDOCK web server program. The atomic coordinates of SARS-CoV-2 3CLpro (PDB 

entry: 6M2Q) and the atomic coordinates of the peptides were submitted to the platform. The selected 

clusters were subject to 50 ns of molecular dynamics simulation (MD) in an octahedral TIP3P water box. 

The flexibility of the protease/peptides structure of the MD simulation system was monitored by 

calculating the RMSD,RMSF, RoG, and the surface area (Supplementary Fig. S13). The complex analyses 

of the L-,D-CDP1–3CL complex—through MD simulation—showed constant fluctuation over the 50 ns 

mostly related to D-CDP1, which is most likely regarding the C-terminus fluctuation (Supplementary 

Fig. S13B). Based on energy interactions, further analysis of the MD simulations identified the amino 

acid residues of the protease (below -1 kcal/mol) involved in the binding with the ligand (Fig. 7A).   
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Figure 7. Amino acid residues contributing in the SARS-CoV-2 3CLpro with L-, D-CDP1 peptide interaction. A) The 

energy decomposition of the amino acids from the 3CLpro involved in the interaction with the peptides (upper: L-

CDP1, lower: D-CDP1). The results were calculated from MD simulation and was selected with the parameter value 

below -1 kcal/mol. B) Left side, surface representation of the 3CLpro in complex with the L-CDP1 peptide (sticks), 

the substrate binding sites are colored according: S1 cyan; S1´orange; S2 magenta; S3 red. Right side, cartoon 

representation of the protease in complex with the peptide (sticks), the amino acids of the catalytic site are shown 

in sticks (orange). C) Left side, surface representation of the 3CLpro in complex with the D-CDP1 peptide (sticks), 

the substrate binding sites are colored according: S1 cyan; S1´orange; S2 magenta; S3 red. Right side, cartoon 

representation of the protease in complex with the peptide (sticks), the amino acids of the catalytic site are shown 

in sticks (orange). 
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MD simulation revealed a possible mode of interaction of the CDP1 peptides with SARS-CoV-

2 3CLpro. Therefore, His41, the amino acid residue of the active site interacts through hydrogen bond 

with one of the residues (Lys31) of the L-CDP1, and the other residues are accommodated in the 

substrate binding regions (Figure 7B), confirming the competitively mode of interaction, as already 

described by experimental results (Fig. 3A, 5E and Table 3). However, D-CDP1 does not interact with 

the amino acids residues of the catalytic dyad; nevertheless, the peptide is seated in the substrate 

binding region blocking the interaction of the substrate with the active site of the protease (Fig. 7B). 

Using PDBsum platform the interaction type and amino acid residues involved in the interaction 

between 3CLpro with the L- or D-CDP1 was identified (Table 4 and Supplementary Fig. S14).  

 

Table 4. Hydrogen bonds and salt bridges contacts between 3CLpro with L-, D-CDP1 peptides 

Residue 

3CL 

AtomA AtomB Residue  

L-CDP1 

Distance 

Hydrogen bonds     

HIS41 O NH2 ARG31 2.72 

HIS41 ND1 NH2 ARG31 2.89 

CYS44 O NH1 ARG31 3.16 

CYS44 O NH2 ARG31 2.71 

THR45 O NH1 ARG31 3.24 

SER46 O SG CYS30 3.07 

SER46 OG O MET28 2.90 

GLU47 OE1 NZ LYS27 2.75 

GLU47 OE2 N MET28 2.72 

ASN142 OD1 N LYS35 2.94 

ASN142 ND2 O LYS35 2.99 

Salt bridges     

GLU47 OE1 NZ LYS27 2.75 

Residue 

3CL 

AtomA AtomB Residue  

D-CDP1 

Distance 

Hydrogen bonds     

THR26 OG1 N LYS27 2.88 

SER46 N OD2 ASP29 3.14 

SER46 OG OD2 ASP29 2.49 

GLU47 OE1 NH1 ARG31 3.24 

LEU50 O NZ LYS38 2.94 

ASN51 OD1 NZ LYS38 3.26 

GLU166 O NH2 ARG33 2.82 

GLU166 OE1 NH2 ARG33 2.77 

GLN189 OE1 NE ARG33 2.84 

Salt bridges     

GLU47 OE1 NH1 ARG31 3.24 

GLU166 OE2 NH2 ARG33 2.77 
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3. Conclusions 

Snake venom components have shown great potential for developing lead compounds for new 

drugs and can be considered mini-drug libraries. For instance, Captopril (Enalapril), Integrilin 

(Eptifibatide) and Aggrastat (Tirofiban) are FDA approved drugs based on snake venoms. 

Defibrase/Reptilase (Batroxobin) Hemocoagulase and Exanta (Ximelagatran) are not clinically 

approved in the US but have been approved for use in other countries. Several venom-derived-drugs 

are involved in preclinical or clinical trials for a variety of therapeutic applications. In summary, our 

results demonstrated the promising uses of peptide inhibitors (D-CDP1 and D-CDP7) designed from a 

polypeptide of snake venom. The advantage of the selected wild type was because of their cell 

penetration properties, even in D-enantiomer form, high stability and specificity, as well as selectivity 

against the target 3CL protease was observed. However, in particular, more investigation into the 

unquestionable untapped therapeutic potential of the selected D-peptide is still required, as well, future 

optimization. 

 

4. Materials and Methods 

4.1 Crotamine purification. 

The purification of Crotamine has been described previously [31]. Briefly, Crotamine from 

crude Crotalus durissus terrificus venom obtained from CEVAP (Center for the Study of Venoms and 

Venomous Animals), Botucatu, Brazil, was isolated by a single cation-exchange chromatography step 

by utilising a MonoS HR 10/10 column (Amersham Biosciences). 

 

4.2 Crotamine derivative peptides (CDP) synthesis. 

Synthetic Crotamine derivative peptides (CDP) in the L- and D-enantiomeric conformations 

were synthesised by Genscript (Leiden, NL), with a purity of > 95% (Supplementary Fig. S15). The 

peptides were acetylated at the N-terminus and methylated at the C-terminus. Essential information 

about the CDPs used in this study is summarised in Supplementary Fig. S2, S3 and Table S2. 

 

4.3 Cloning, expression and purification of SARS-CoV-2 3CLpro. 

SARS-CoV-2 3CLpro (Uniprot entry: P0DTD1, virus strain: hCoV-19/Wuhan/WIV04/2019) was 

cloned, expressed and purified as described previously [32]. 

 

4.4 Activity assay of SARS-CoV-2 3CLpro. 

SARS-CoV-2 3CLpro activity assay was performed using a fluorogenic substrate DABCYL-

KTSAVLQ↓SGFRKME-EDANS (Bachem, Switzerland) in a buffer containing 20 mM Tris pH 7.2, 200 
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mM NaCl, 1 mM EDTA, and 1 mM TCEP [32-35]. The reaction mixture was pipetted in a Corning 96-

Well plate (Sigma Aldrich) consisting of 0.5 µM protein. The assay was initiated with the addition of 

the substrate at a final concentration of 50 µM. The fluorescence intensities were measured at 60 s 

intervals over 30 minutes using an Infinite 200 PRO plate reader (Tecan, Männedorf, Switzerland), the 

temperature was set to 37 °C. The excitation and emission wavelengths were 360 and 460 nm, 

respectively.  

 

4.5 Inhibition assay of SARS-CoV-2 3CLpro. 

Inhibition of SARS-CoV-2 3CLpro activity by Cro, L- and D-CDPs was investigated using the 

activity assay described above. 30 µM of the peptides was used for a preliminary screening test. 

For the final inhibition assays, 0.5 µM of the protein was incubated with 0-300 µM Cro, 0-150 

µM L-CDPs and 0-125 µM D-CDPs, and the mixtures were incubated for 30 minutes at RT. When the 

substrate with a final concentration of 50 µM was added to the mixture, the fluorescence intensities 

were measured at 60 s intervals over 30 minutes using an Infinite 200 PRO plate reader (Tecan, 

Männedorf, Switzerland). The temperature was set to 37 °C, and the excitation and emission 

wavelengths were 360 and 460 nm, respectively. Inhibition assays were performed in triplicate.  

The IC50 value was calculated by plotting the initial velocity against various concentrations of 

the combined molecules using a dose-response curve in GraphPad Prism5 software (Tecan, Männedorf, 

Switzerland), and data are presented as mean ± SD. 

 

4.6 Determination of inhibition mode. 

The inhibition mode was determined using different final concentrations of the inhibitors and 

substrate. Briefly, 0.5 µM SARS-CoV-2 3CLpro was incubated with the inhibitor in various concentrations 

for 30 minutes at RT. Subsequently, the reaction was initiated by the addition of the corresponding 

concentration series of the substrate. The data were analysed using a Lineweaver-Burk plot; therefore, 

the reciprocal of velocity (1/V) vs the reciprocal of the substrate concentration (1/[S]) was compared 

[36,37]. All measurements were performed in triplicate, and data are presented as mean ± SD. 

 

4.7 Inhibitor stability over 24 h. 

Stable inhibition of SARS-CoV-2 3CLpro by L-/D-CDP1 and L-/D-CDP7 was monitored via a 24h 

inhibition experiment. Briefly, 0.5 µM SARS-CoV-2 3CLpro was incubated with 5 µM of the peptide and 

incubated for 1/2h, 1h, 2h, 3h, 4h, 5h and 24h at RT. The control was performed with the 3CLpro in the 

absence of the peptide and measured together after each time point. Subsequently, the reaction was 

initiated by the addition of the substrate. All measurements were performed in triplicate, and data are 

presented as mean ± SD. 
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4.8 Assays to exclude L-CDPs and D-CDPs as promiscuous inhibitors. 

A detergent-based control assay was performed to exclude inhibitors that possibly act as 

aggregators of the 3CLpro by adding 0.001%, 0.01%, and 0.1% of Triton X-100 to the reaction [38]. Four 

concentrations of L-CDP1 and D-CDP1 (0.5 µM, 1 µM, 5 µM and 10 µM) and L-CDP7 and D-CDP7 (0.25 

µM, 0.5 µM, 1 µM and 5 µM), were tested. All measurements were performed in triplicate, and data are 

presented as mean ± SD.  

Redox cycling compounds (RCCs) generate H2O2 in the presence of potent reducing agents (e.g. 

DTT or TCEP). We performed a colourimetric assay to exclude L-CDP1, D-CDP1 and L-CDP7, D-CDP7 

as a compound that induces redox cycling in reducing environments.  

 The assay was performed in Nunc 96-Well plates with a flat bottom (Thermofisher Scientific, 

USA), and the final volume was 60 µL. 0-60 µM L-CDP1, D-CDP1 and L-CDP7, D-CDP7 were tested in 

the same activity assay buffer (as described above), 1 mM TCEP was added separately. HRP-PR and 

100 µM H2O2 was used as control. The HRP-PR detection reagent (100 µg/mL phenol red and 60 µg/ml 

HRP, final) was prepared in Hank's balanced salt solution (HBSS). HPR-PR and PR without the addition 

of H2O2 were used as negative controls. The reducing agents could mediate the oxidation of phenol red 

(PR) (Sigma Aldrich, USA) based on the H2O2-dependent horseradish peroxidase (HRP (Sigma Aldrich, 

USA)) mediated oxidation), which produces a change in its absorbance at 610 nm in alkaline pH [39]. 

L-CDP1, D-CDP1 and L-CDP7, D-CDP7 were incubated with TCEP at RT for 30 min before adding the 

HRP-PR detection reagent. After an additional incubation period at RT (10 min), the assay was 

terminated by adding 10 µL of 1N NaOH to all wells. The absorbance of the phenol red was measured 

at 610 nm using an Infinite 200 PRO plate reader (Tecan, Männedorf, Switzerland). All measurements 

were performed in triplicate, and data are presented as mean ± SD. 

 

4.9 Determination of dissociation constant using surface plasmon resonance. 

The dissociation constant (KD) of L-enantiomeric peptides CDP1 and CDP7 binding to SARS-

CoV-2 3CLpro was determined by Surface Plasmon Resonance Spectroscopy (SPR) using a Biacore 8K 

instrument (GE Healthcare, Uppsala, Sweden). The peptides were immobilised on two separate 

channels on a series S CM-5 sensor chip (Cytiva, Uppsala, Sweden) by amine coupling. Both flow cells 

on each channel were activated by a mixture of 50 mM N-Hydroxysuccinimide (NHS) and 16.1 mM N-

ethyl-N'-(dimethylaminopropyl) carbodiimide (EDC) (XanTec, Düsseldorf, Germany) for 7 min. The 

peptides were diluted to 50 µg/mL in 10 mM sodium acetate pH 5 (Merck, Darmstadt, Germany) and 

injected overflow cell two of each channel to a final signal of 3400 RU for L-CDP1 and 1300 RU for L-

CDP7. After the peptides were immobilised, each channel's ligand and reference flow cells were 

quenched by a 7-minute injection of 1 M ethanolamine pH 8.5 (XanTec, Düsseldorf, Germany).  
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The KD multicycle experiments were determined with PBS containing 0.05 % Tween 20 

(AppliChem, Darmstadt, Germany) pH 7.4 as the running buffer. The temperature was set at 25 °C with 

a flow rate of 30 µL/min. Diluted 3CLpro in the running buffer to the desired concentrations range 

between 2000 nM - 0.9 nM using 1:2 dilution steps. All samples were injected over the flow cells for 180 

s, followed by a dissociation phase of 900 s with a running buffer. A regeneration step was performed 

to ensure complete dissociation of the protease from the peptides, with 45 s injection of a mixture 

containing 50 mM oxalic acid, 50 mM phosphoric acid, 50 mM formic acid, and 50 mM malonic acid at 

pH 5. The reference flow cell and buffer injections (c = 0 nM) were used for double referencing of the 

sensorgrams. The sensorgrams were fitted by the Steady-State Affinity model implemented in the 

Biacore Insight Evaluation Software for data evaluation. The experiments were performed in duplicate, 

and the results are shown as the mean ± STD. 

 

4.10 Determination of dissociation constant using microscale thermophoresis (MST). 

The binding affinity of the D-enantiomeric peptides CDP1 and CDP7 towards SARS-CoV-2 

3CLpro was determined using Microscale thermophoresis (MST). Following the manufacturers' 

instructions, peptides were first fluorescently labelled with CF633-NHS (Sigma, Darmstadt, Germany). 

In short, a 100 µmol/L peptide solution was incubated with 500 µmol/L CF633-NHS solutions in 100 

mmol/L NaHCO3 pH 8.3 at 25 °C for 1 h with slight agitation. After the reaction was completed, the 

samples were purified using reversed-phase liquid chromatography on an Agilent 1200 system (Agilent 

Technologies, Santa Clara, California, USA). The samples were loaded onto a Zorbax SB-300 C-18 

column (4.6 * 250 mm, 5 µm) (Agilent Technologies, Santa Clara, California, USA). Mobile phases 

consisted of A: H2O + 0.1% Trifluoroacetic Acid (TFA) (Sigma, Darmstadt, Germany) and B: Acetonitrile 

(Roth, Karlsruhe, Germany) + 0.1 % TFA. A gradient from 15% B to 45% B in 20 min was applied at a 

flow rate of 1 mL/min, and CF-633 labelled peptides were eluted after 9.2 min, collected and lyophilised 

(Christ, Alpha 2-4 LSCbasic, Christ, Osterode am Harz, Germany).  

Lyophilized CF-633 labelled peptides were dissolved in 100 µL H2O. The absorbance of the 

sample was measured at 280 and 633 nm using a Shimadzu UV 1800 instrument (Shimadzu, Duisburg, 

Germany) to calculate the concentration of the peptide. 

The MST measurement was performed using a serial dilution of the protease (3CL) (10 µmol/L 

to 19.53 nmol/L) with a 1:1 dilution step in PBS + 0.05% Tween 20. To each sample, CF633-peptide was 

added to a final concentration of 100 nmol/L. The measurements were performed on a Nanotemper 

Monolith NT.115 instrument (NanoTemper Technologies, Munich, Germany). For CF-633 as the 

fluorescent dye, the red LED was used at 20% power. The MST power was set to 40%, and the 

temperature was kept constant at 25 °C. Data were evaluated with the Thermophoresis with T-Jump 

evaluation, with the cold region from -1 s to 0 s and the hot region from 20.67 s to 21.67 s. Data were 
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fitted to the KD Model integrated into the analysis software. The experiments were performed in 

triplicate, and the results are shown as the mean ± STD. 

 

4.11 Circular dichroism (CD) spectroscopy. 

CD measurements were carried out with a Jasco J-1100 Spectropolarimeter (Jasco, Germany). 

Far-UV spectra were measured in 190 to 260 nm using a peptide concentration of 30 µM in H2O. The 

secondary structure of L-CDP1, L-CDP2, L-CDP7 and L-CDP8 and D-CDP1 and D-CDP7 was checked. 

A 1 mm path length cell was used for the measurements; 15 repeat scans were obtained for each sample, 

and five scans were conducted to establish the respective baselines. The averaged baseline spectrum 

was subtracted from the averaged sample spectrum. The results are presented as molar ellipticity [θ], 

according to the equation (1): 

[θ]λ = θ/(c*0.001*l*n) (1) 

where θ is the ellipticity measured at the wavelength λ (deg), c is the peptide concentration 

(mol/L), 0.001 is the cell path length (cm), and n is the number of amino acids. Secondary structure 

prediction based on the CD data was performed with the BeStSeL online tool [40]. 

 

4.12 Cell viability assay. 

Cell viability assay was performed using the reduction of [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide - MTT] to investigate the cytotoxicity of D-CDP1 and D-CDP7. Therefore, 

Vero cells were cultivated in DMEM medium supplemented with 2% fetal calf serum (FCS) and 1% 

penicillin/streptomycin. A total of 2000 cells per well in a volume of 100 µl were seeded on flat-bottomed 

96-well plates (VWR, Radnor, USA) and incubated in a 95% humidified atmosphere with 5% CO2 at 37 

°C for 24 h. Subsequently, the cells were treated with 0.2, 1, 5, 10, 25, 50 and 98 µM of each molecule at 

37 °C with 5 % CO2 for a period of 24 h.  

According to the manufacturer's instructions, cell viability was measured using the Cell 

Proliferation Kit I (Roche, Basel, Switzerland) in a 3-fold determination. The absorbance of the formazan 

product was determined by measuring the absorption at 570 nm subtracted by the absorbance at 690 

nm in a microplate reader (BMG Labtech, Ortenberg, Germany). The results were normalised to the 

mean value of cells treated with medium only. As a negative control for cytotoxicity, 0.1 % Triton X-100 

diluted in the medium was used. Cell viability was calculated according to equation (2): 

(T/C) × 100 % (2) 

in which T and C represented the optical density of the treated well and control groups, 

respectively. The MTT assays for D-CDP1 and D-CDP-7 were performed as triplicates, and the results 

are shown as mean ± SD. 
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4.13 SARS-CoV-2 infection assay. 

Experiments with SARS-CoV-2 were performed under biosafety level 3 (BSL-3) conditions at 

the University Hospital Düsseldorf. Vero cells (ATCC-CCL-81, obtained from LGC Standards) were 

seeded into the wells of a 96-well plate in Dulbecco's Modified Eagle Medium - DMEM (Gibco, Carlsbad, 

California) with 2% fetal calf serum (PAN Biotech, Germany) and 1% penicillin/streptomycin (Gibco, 

Carlsbad, California) at a density of 5x103 cells well-1. Following overnight incubation, the medium (100 

µl) was replaced with 100 µl new medium containing the respective compounds D-CDP1 or D-CDP7 at 

a final concentration of 50 µM and the cells were incubated for one hour at 37 °C in a humidified cell 

culture incubator. Cells were infected with a SARS-CoV-2 B1.1 isolate (SARS-CoV-2 NRW-42 isolate; 

GISAID accession number: EPI_ISL_425126) (PMID: 32876341 [41]) at a multiplicity of infection (MOI) 

of 0.05. At two days post-infection (dpi), quantitative RT-PCR was performed. Therefore, 50 µl cell 

culture supernatant was mixed with 200 µl AVL buffer (Qiagen, Germany) and, following 10 min of 

incubation at RT. Subsequently, 200 µl of 100% ethanol was added to the mixture. Following the 

manufacturer's instructions, RNA was extracted from 200 µl of the inactivated supernatant using the 

EZ1 Virus Mini Kit (Qiagen, Germany). As described previously, the 60 µl eluate was analysed via in-

house qRT-PCR (PMID: 32876341 [41]). In short, a 113 bp sequence of the SARS-CoV-2 Envelope open 

reading frame was amplified using the real-time TaqMan technique.  

 

4.14 Statistical analysis. 

All data are expressed as the mean ± the standard deviations (SDs). The statistical significance 

of the mean values' differences was assessed with one-way analyses of variance (ANOVA), followed by 

Tukeys' multiple comparison test. Significant differences were considered at p < 0.05 (*), p < 0.01 (**) 

and p < 0.001 (***). A standard two-tailed unpaired t-test was used to analyse the inhibitory effect of the 

D-CDP1 and D-CDP7 on SARS-CoV-2 replication. All statistical analyses were performed with 

GraphPad Prism software version 8 (San Diego, CA, USA).  

 

4.15 System preparation 

The main protease (mpro) was retrieved from pdb databank (PDB code: 6M2Q), and the L-

CDP1 was created using the crystal structure of the white type crotamie (PDB ID. 4GV5), the D-CDP1 

was generated using the tleap in Amber. Docking was performed using HADDOCK webserver [48]. 

The top four structures were downloaded and viewed by PyMOL. The H++ web server [49] was used 

to assign the correct lateral chain protonation of the amino acids to pH 7.0 for the simulated systems. 

After that, the complex (mpro + L or D-peptide) was placed in an octahedral TIP3P water box with water 

extended 10 Å away from any solute atom and Cl- ions were added to neutralize the systems. 
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4.16 Simulation setup 

All the MD simulations were carried out by Amber18 [50]. Atomic interactions were 

represented by the FF19SB [51] force field. Starting structures were submitted in a two-step 

minimization process to remove bad contacts. In the first stage, the complex was restricted and 

minimized during 5000 steepest descending steps, followed by 5000 conjugated gradient steps, with a 

force constant of 10.0 kcal/mol-Å². A second round of unconstrained energy minimization was 

performed during 10,000 steps. The system was slowly heated from 0 to 298 K for 0.5 ns under constant 

atom number, volume, and temperature (NVT) ensemble, with the complex constrained with a constant 

force of 10  kcal/mol-Å².  

 Equilibration was divided into six steps of decreasing constant force for the complex atoms 

from 10 to 0 kcal/mol-Å², and performed under constant atom number, pressure, and temperature 

(NPT) ensemble. Lastly, the production run was performed for 50 ns in the NVT ensemble without any 

restriction. In order to allow a 2 fs dynamic time interval the SHAKE restrictions were applied to all 

bonds with hydrogen atoms. The Particle mesh Ewald (PME) [52] method, with a 8 Å cutoff, was used 

to calculate the long-range electrostatics interactions. Temperature (298 K) was controlled by Langevin 

coupling and pressure (1 atm) was controlled by Berendsen barostat. 

 

4.17 Molecular Dynamics Analysis and Interaction Energy Calculation 

MD results were analyzed using CPPTRAJ [53] tools for the AmberTools19 package [54]. The 

Root-Mean-Square Deviation (RMSD) was used to investigate the equilibration and convergence of the 

simulations. Protein and peptide flexibility was accessed by the Root-Mean-Square Fluctuation (RMSF) 

of the Cα atoms. Structural changes in the protein were evaluated by the radius of gyration (RoG) and 

solvent accessible surface area.  

 The molecular mechanics/generalized Born surface area (MM/GBSA) was calculated between 

protein–peptide complexes using the generalized Born (GB)-Neck2 [55] implicit solvent model (igb = 8), 

in the steady-state regime of the entire simulation time, stripping the solvent and ions. 
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MST. 
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Abbreviation used: 3CLpro, C30 Endopeptidase/3C-like protease; SARS-CoV-2, severe acute respiratory 

syndrome-coronavirus-2; COVID-19, Coronavirus Disease-2019; Cro, Crotamine; L-CDP, crotamine 

derivative L-enantiomeric peptide; D-CDP, crotamine derivative D-enantiomeric peptide; WHO, 

World Health Organization; NSP, Nonstructural proteins; AMP, Antimicrobial peptides; ZIKV, Zika 

virus; DENV, Dengue virus; IAV, Influenza A virus; CPP, Cell-penetrating polypeptide; SPR, Surface 

plasmon resonance; KD, Dissociation constant; HIV-1, Human immunodeficiency virus 1; RCC, Redox 

cycling compound; TCEP, Tris(2-carboxyethyl)phosphine hydrochloride; MIC, Minimum Inhibitory 

Concentration; dpi, Days post-infection; RMSD, Root-mean-square deviation; RMSF, Root-mean-

square flutuation; RoG, Radius of gyration; MD, Molecular dynamics; CEVAP, Center for the Study of 

Venoms and Venomous Animals; HRP-PR, Horseradish peroxidase-phenol red; RT, Room 

temperature; MST, Microscale thermophoresis; PBS, Phosphate buffered saline; MTT, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; FCS, Fetal calf serum; DMEM, Dulbecco′s 

Modified Eagle′s Medium; MOI, Multiplicity of infection; NVT, Number, volume, and temperature; 

NPT, Number, pressure, and temperature. 
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