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ABSTRACT  

The human gut microbiome data has been proven to be a powerful tool to understand the human 

body in both health and disease conditions. However, understanding their complex interactions and 

impact on the human body remains a challenging task. Unravelling the species-level interactions 

could allow us to study the causality of the microbiome. Moreover, it could lead us to better under-

stand the underlying mechanisms of complex diseases and, subsequently, the discovery of new 

therapeutic targets. Given these challenges and benefits, it has become evident that a freely 
accessible and centralized platform for presenting gut microbiome interaction is essential to untangle 

the complexity and open multiple new paths and opportunities in disease- and drug-related research. 

Here, we present GutMicroNet, an interactive visualization platform of human gut microbiome inter-

action networks. We generated 45 gut microbiome co-abundance networks from various geographical 

origins, gender, and diseases based on the data presented in the Human Gut Microbiome Atlas. This 

interactive platform includes more than 1900 gut microbiome species and allows users to query 

multiple species at the same time based on their interests and adjust it based on the statistical 

properties. Moreover, users can download publication-ready figures or network information for further 
analysis. The platform can be accessed freely on https://gutmicro.net without any login requirements 

or limitations, including access to the full networks data. 

INTRODUCTION 
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In recent years, the impact of the human gut microbial composition and their diversity on health and 

disease has become apparent. With the decreasing cost of metagenomic sequencing, availability and 

advances in high-performance computing, and the accessibility for researchers to collect sequencing 

data, analysis of metagenomic data has never been more achievable. Hence, gut microbial dysbiosis 
has been associated with the pathologies of a broad range of diseases, including obesity, 

inflammatory bowel disease and depression (1-3). Investigating the complex nature of the various 

interactions between bacterial communities in the gut and their impact on health and disease remains 

challenging. Unravelling the species-level interactions could allow us to study the causality of the 

microbiome and reveal the underlying molecular mechanisms involved in the progression of the 

disease. Previously, there have been different approaches in investigating the co-abundant species 

using different methods (4,5). However, none has focused on a systematic analysis of the species 

interactions across several cohorts and provided an interactive platform to explore the microbial 
networks. 

Here, we developed GutMicroNet (https://gutmicro.net), an interactive platform to present the 

interactions between human gut microbiomes in health and diseases. In this platform, we presented 

microbial networks as species co-abundance networks based on the recent studies, where extensive 

gut microbiome data were collected from various geographical origins, gender, and diseases. Users 

can visualize multiple species, adjust the statistical properties, and interact with the visualized 

networks to explore interactions with other species, modify the network, and download the network as 

a static image or text file that can be imported to other network analysis software or modules for more 
complex downstream analyses. We envisage that GutMicroNet is a unique and powerful platform that 

will open multiple new paths and opportunities in disease- and microbiome-related research. 

 

MATERIAL AND METHODS 

Data Sources 

The networks were constructed using the data presented in the Human Gut Microbiome Atlas 

(https://www.microbiomeatlas.org) (6). We retrieved the species abundance matrix and sample 
metadata tables from the atlas, and we further collected the metagenomic species pan-genomes 

(MSP) taxonomy(6) and KEGG Pathways (7) information from the atlas. The data contained 39 

datasets, including 10 healthy from 9 countries (US, UK, Sweden, India, Fiji, Madagascar, Mongolia, 

Peru, and Tanzania), 29 diseases cohorts from 12 countries (US, China, Japan, UK, Sweden, 

Germany, Italy, Spain, France, Denmark, Finland, and Luxembourg). The details for each cohort can 

be found in Supplementary Table 1. 

First, the data were split into each cohort and pre-processed independently. The species detected 

(abundance > 0) in less than 5 samples in a cohort were filtered. To generate the co-abundance 
network, the filtered data from the same geographical origin and/or disease (depending on the 

network type) were merged into a data-frame, analyzed using spearmanr function from SciPy 

package in a pairwise manner, and filtered to leave just the significant correlations (FDR < 0.05)(8). 

For the downstream analysis, we performed community detection using the Leiden algorithm(9), 
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centrality analysis, and cluster average local transitivity (clustering coefficient) from the iGraph Python 

(10) package and functional analysis with enrichr function in the GSEAPY package(11-14) using the 

MSP-to-KEGG mapping from the atlas. All analyses were performed in Python 3.7.4. 

 
Platform Description and Features 

The GutMicroNet (https://gutmicro.net) contains the interactions of 1976 gut microbiome species from 

various geographical origins and health conditions stored in the Neo4j graph database. There are two 

ways of accessing the platform: (1) a web-based platform for all users, including scientists with no 

bioinformatics background, and (2) programmatic access for more advanced users. Moreover, the 
selected networks can also be downloaded as publication-ready figures (only via web) or as network 

tables (both web and programmatic access) that can be integrated directly with other network-specific 

software, e.g. Cytoscape(15).  

 

Web Platform Interactive Access 

The primary way to access the platform is via an interactive, intuitive, and user-friendly web interface 

on https://gutmicro.net (Figure 1A-B). On this website, users can visualize their network of interest 

with 2 simple steps: (1) choosing the specific network category and network type (based on 

geography or diseases) and then, (2) query for up to 5 species. The web platform provides the 

possibility to flexibly move the nodes and trim or expand their network, after the initial visualization, by 

(1) adding more species in the query, (2) clicking on the “ADD” or “REMOVE” button on the node 

information panel and (3) adjusting the statistical variables, i.e. FDR and co-abundance rank (based 

on absolute correlation score). The users can also choose the taxonomic level to group the nodes by, 
represented by nodes colours. The node colour codes will be updated dynamically and included in the 

network legends based on users’ choices. Once the users are satisfied with their networks, they can 

be exported as ready-to-use figures or tables (including the node colour codes) to be analysed further 

with other network analysis software. 

 

Programmatic Access 

GutMicroNet can also be accessed programmatically using in-house Python code. Under the “API” 

section on the website, we have provided the Jupyter Notebook with an example of accessing 

GutMicroNet programmatically and how to integrate it with the iGraph network tool. With 

programmatic access, more advanced users can automatize the query, incorporate the networks into 

their data/analyses, retrieve more complex networks, and perform more comprehensive downstream 

analysis based on their needs. 

 
RESULTS 

Based on the Human Gut Microbiome Atlas (6) data (Figure 1A), we generated and included 45 MSP 

co-abundance networks, including overall, geography-, gender-, and disease-specific networks, to 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.10.468051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468051
http://creativecommons.org/licenses/by-nc-nd/4.0/


GutMicroNet with various network sizes. We observed high variance in the network size, which could 

be due to the nature of microbial abundance data and the sparsity and high variation, together with 

the cohort size (Supplementary Table 2). The number of edges and nodes varied from 1101 to 

568.008 edges and 355 to 1.929 nodes, with colorectal cancer from Italy and the overall network 
showing the lowest and highest density, respectively. Several networks were discarded due to the low 

number of samples and interactions. 

In GutMicroNet, users can choose the networks that fit their studies, from global networks to 

gender-, geography-, and disease-specific networks (Figure 1B). Moreover, GutMicroNet has this 

unique capability to generate co-abundance networks at a personalized level, which means that 

individual variations and biases were eliminated. In this section, we presented two case studies to 

elucidate the strength of GutMicroNet in microbiome-related research. In the first case, we used the 

centrality and community detection of the downstream network analyses to identify the changes in co-
abundance network structure in cohorts of type-2 diabetes. In the second case study, we showed how 

GutMicroNet could be used to validate and discover new insights based on the preliminary findings in 

our previous NAFLD-related research. 

 

Case Study 1: Comparing Healthy and Disease Microbiome-Interaction Networks 

GutMicroNet provides a vast number of microbiome interaction networks, including healthy and 

disease networks from different populations. This feature makes it possible for us to analyze the 

changes in biological network structure that have been known to be associated with the changes in 

pathological conditions (16). In this case study, we compared the core network structure of healthy 

and disease networks from the same geographical origin (Sweden), represented by “Wellness 

Cohort” (17) (subsequently referred to as Healthy network) and “Type-2 Diabetes (Sweden)” (T2D 

network), to identify the changes in the top connected nodes in each network. Moreover, we 

attempted to identify the most critical network community in both conditions and their functional 
property. 

 

Key Bacterial Family Differs between Healthy and T2D Networks. There are many approaches to 

define the most or critical nodes in a network, usually referred to as centrality analysis, such as 

betweenness and closeness centrality. In this case study, we used the most common centrality 

measure: degree centrality. Degree centrality represents the number of directly connected neighbours 

to a node. Centrality analysis, specifically with degree centrality, has been proven to help scientists in 
disease-related research, such as drug repositioning(18). 

We calculated the degree from both networks and filtered for the top 5% of most connected nodes 

(66 and 44 nodes in the healthy and T2D network). From those nodes, we found that 27 nodes were 

shared in both networks (Figure 1C). This shows that similarities still could be detected in the 

samples from the same geographical origin regardless of the health conditions. One of the standouts 

shared central nodes is Blautia wexlerae, as they were found to be enriched in the Swedish 

population and both healthy and T2D samples, based on the Human Gut Microbiome Atlas 

(https://www.microbiomeatlas.org/species.php?species_msp=msp_0076).  
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We also found several differences in the central nodes. Noticeably, four bacteria families were 

eliminated as central nodes in the T2D: Bacteroidaceae (Bacteroides vulgatus) (19), 

Methanobacteriaceae (Methanobrevibacter smithii 1) (20), Atopobiaceae (Olsenella sp. GAM18) and 

unclassified RF39 Mollicutes. Interestingly, based on the literature, the alteration of Bacteroides 

vulgatus and Methanobrevibacter smithii 1 have also been associated with the pathology of T2D (21). 

Moreover, 2 bacterial families were introduced as the key nodes in T2D: Odoribacteraceae 

(Odoribacter splanchnicus) and unclassified Clostridiales 1. Odoribacter splanchnicus was shown as 

a depleted species in Type 2 diabetes 

(https://www.microbiomeatlas.org/species.php?species_msp=msp_0062) and were previously 

associated with lipid profile in obesity (22). 

 

Community Detections. Biological networks, including co-abundance gut microbiome networks in 
our platform, are generally complex and large. To understand a network properly, we need to 

disentangle its complexity. One way to do that is by performing community detections to split a large 

network into several smaller subnetworks with high connectivity within them. These subnetworks are 

usually referred to as communities or clusters. Community detections assisted researchers in getting 

hidden insights into biological networks, such as in the multi-tissue gene co-expression networks of 

heart disease (23) or integrated networks in NAFLD (24). 

We performed the Leiden community detection algorithm in both the healthy and T2D networks. 

We found 5 clusters with > 30 nodes in both networks (Figure 1D). Subsequently, we identified the 
most driver community in both networks by selecting the communities with the highest average 

clustering coefficient (24):  Healthy-4 (80 nodes) and T2D-3 (149 nodes). On the functional level, we 

found that the members of the central clusters were associated with several important functions as 

glycolysis, lipoic acid metabolism, and amino acid metabolism (histidine; cysteine and methionine; 

phenylalanine, tyrosine, and tryptophan biosynthesis). Specifically, the species in Healthy-4 were also 

associated with vitamin B6 metabolism, TCA cycle, and lipopolysaccharide biosynthesis. On the other 

hand, the species in T2D-3 were related to known T2D related pathways, such as pyruvate 
metabolism (25), galactose metabolism (26), and glycine, serine, and threonine metabolism (27). 

Furthermore, we observed that Healthy-4 (80 nodes) was composed of species from 

Lachnospiraceae (8 species) and Ersipelotrichaceae (7) families; meanwhile, T2D-3 (149) was 

dominated by Lachnospiraceae (25) and Ruminococcaceae (21) families. Interestingly, even though 

Lachnospiraceae was abundant in both central clusters, the genus (and species) were totally different 

in Healthy-4 (Blautia, Eisenbergiella, and Roseburia) and T2D-3 (Dorea, Faecalicatena, 

Lachnoclostridium, Marvinbryantia, Merdimonas, Mordavella, and Tyzzerella), except the 

Lachnoclostridium and unclassified Lachnospiraceae genus. Moreover, we found several other 
families that were previously associated with T2D in the T2D-3 cluster, e.g. Akkermansiaceae 

(Akkermansia muciniphila 2) (19,28,29) and Clostridiaceae (Clostridium disporicum) (30). 

The first use case showed the strengths of this platform to explore the dysbiosis of the gut 

microbiome in metabolic-related complex diseases by comparing the network structures between 

healthy and disease-specific networks. These approaches can be placed as pre-study exploratory 
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analysis or to complement the biological experiment results. Even though we focused on the known 

and validated species interactions and functions in this use case, we also found many new unknown 

interactions that can open new avenues in understanding the disease and, possibly, new therapeutic 

targets. 
Case Study 2: Validating the gut microbiome dysbiosis in NAFLD 

Not only that GutMicroNet includes a large number of networks, but the networks in the platform were 

also generated from personalized microbiome data. This resulted in the minimization, if not 

elimination, of bias caused by individual variations, a known problem in microbiome data analysis. In 

this case study, we attempted to use GutMicroNet to validate our findings in our recent research on 
the association of microbiota and non-alcoholic fatty liver disease (NAFLD) (31). 

In that study, we collected multi-omics data, including gut metagenomics data, from 56 individuals 

with NAFLD and varying levels of hepatosteatosis (HS). The samples were stratified based on their 

proton density fat fraction measured by magnetic resonance imaging (MRI-PDFF) results. 

Subsequently, we performed differential expression, correlation network, and random forest analysis 

to determine omics signatures of each HS group. Among those critical signatures, we found two gut 

microbiota species to be negatively associated with liver fat and enzymes, and good predictors of HS: 

Dorea longicatena and Ruminococcus bromii. Using GutMicroNet, we were able to validate the 
association of those species with NAFLD. We retrieved the neighbour of Dorea longicatena and 

Ruminococcus bromii in the “NAFLD Non-Diabetic” network (Figure 2). Interestingly, we found 5 

neighbouring species that were found to be associated with NAFLD by the Human Gut Microbiome 

Atlas: Blautia obeum, Blautia obeum 2, Blautia sp. 2789STDY5834862, Collinsella aerofaciens, and 

Faecalibacterium prausnitzii 2. Moreover, both species shared a neighbour, Fusicatenibacter 

saccharivorans, that has been shown to be negatively associated with liver fat (32). Furthermore, we 

checked the functional association of the network nodes and found that they were related to several 

NAFLD-related KEGG pathways, including fatty acid biosynthesis, serine, cysteine, glycine, and 
tryptophan metabolism. 

In this case study, we showed how GutMicroNet could be employed as an in-silico validation tool 

in biomarker-discovery research. Not only that it strengthens the findings, but also shortens the 

analysis cycle since it is freely and easily accessible. 

 

DISCUSSION 

In this study, we introduce GutMicroNet (https://gutmicro.net), an interactive web-based platform to 

explore the interactions of gut microbiota species. The interactions are presented in 45 co-abundance 

networks, including overall and gender-, geography-, and disease-specific networks, based on data 

from Human Gut Microbiome Atlas (https://www.microbiomeatlas.org/). As shown in both case studies, 
this platform provides multiple features that may assist scientists in performing pre-study exploratory 

analysis, identifying features and functions associated with the microbes, and validating their 

experiment results. Moreover, this platform offers the possibility of discovering new and hidden 

insights that may lead to novel biomarkers and therapeutic targets. On top of the features, we built 
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this platform with user experience in mind, which resulted in an intuitive and user-friendly design for 

users regardless of their bioinformatics or systems biology background. 

We foresee that GutMicroNet will be an essential tool for researchers and scientists, especially 

those working with the gut microbiome. We also aim to improve this platform and make it the standard 
and go-to resource for microbiome research.  In the next version of GutMicroNet, we plan to expand 

the platform by adding more studies to improve the quality and variation of the networks. Furthermore, 

we plan to add a feature to personalize the pre-generated networks by integrating users’ experimental 

data into our platform. 

 

DATA AVAILABILITY 

All network data can be found on https://gutmicro.net. MSP tables and metadata can be found on the 

Human Gut Microbiome Atlas download section (https://www.microbiomeatlas.org/downloads.php)  
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Supplementary Data are available at NAR online. 
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TABLE AND FIGURES LEGENDS 

Figure 1: (A) The primary data source of GutMicroNet was data from various geographical origins, 
gender, and diseases originated from the Human Gut Microbiome Atlas (B) Interactive web access 

interface of GutMicroNet (C) Venn Diagram showing the similarities and differences of the central 

nodes of Healthy and T2D network (D) Communities detected on the T2D network (including only 

edges with FDR < 0.001 and nodes with degree centrality > 50) 

Figure 2: Validation of an independent novel non-invasive NAFLD biomarkers, Dorea longicatena 
and Ruminococcus bromii, using the NAFLD Non-Diabetic network from GutMicroNet. 

Supplementary Table 1: Detailed cohort information from the Human Gut Microbiome Atlas 

Supplementary Table 2: Complete network information 
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