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Abstract
The stabilisation of native states of proteins is a powerful drug dis-
covery strategy. It is still unclear, however, whether this approach
can be applied to intrinsically disordered proteins. Here we report a
small molecule that stabilises the native state of the Aβ42 peptide, an
intrinsically disordered protein fragment associated with Alzheimer’s dis-
ease. We show that this stabilisation takes place by a dynamic binding
mechanism, in which both the small molecule and the Aβ42 peptide
remain disordered. This disordered binding mechanism involves enthalpi-
cally favourable local π-stacking interactions coupled with entropi-
cally advantageous global effects. These results indicate that small
molecules can stabilise disordered proteins in their native states through
transient non-specific interactions that provide enthalpic gain while
simultaneously increasing the conformational entropy of the proteins.
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1 Introduction
Drug development for Alzheimer’s disease has been a tremendous challenge in
the past decades[1]. This condition is characterised by the formation of protein
aggregates, such as fibrillar forms of the amyloid-β 42 peptide (Aβ42)[2, 3].
This protein fragment is intrinsically disordered, i.e. it does not form a single
stable folded structure as a monomer, but instead exists in a dynamic equilib-
rium of states with transient local structure and fast transitions[4–12]. Many
drug development efforts focused on aggregation-prone proteins such as Aβ42
attempt to target the already-formed fibril and/or the structurally elusive
oligomeric species[13–15]. Other attempts aimed to identify small molecules
capable of stabilising monomeric Aβ42 into a well-structured conformation[16–
18] or generally interfering with the interaction of disordered proteins to
structured partners by binding to their interfacing regions[19]. Since the most
populated state of disordered proteins is conformationally highly heteroge-
neous, it has also been suggested that it may be more convenient to identify
small molecules capable of stabilising this disordered state[20, 21]. The idea is
that since the free energy landscape of disordered proteins is ‘inverted’ when
compared with the funnel concept of folded proteins, with the disordered state
as the free energy minimum and the ordered states exhibiting relatively high
free energies [22], small molecules stabilising this minimum would be easier to
develop, as they would not have to restructure the topology of the free energy
landscape itself.

Independently from the strategy pursued, however, it is extremely challeng-
ing to characterize the binding mode of small molecules to disordered protein
on an atomistic level. While some experimental methods such as nuclear mag-
netic resonance spectroscopy can provide quantitative information, it is often
not sufficient to clearly understand the interactions and kinetics underlying
the binding[20].

Molecular dynamics is one of the tools that can provide the necessary
spatial and temporal resolution to study the interaction between disordered
proteins and small molecules[20]. Together with Bayesian restraints from
experimental data, molecular dynamics simulations have been used to char-
acterize the thermodynamics of these binding modes in the case of the
oncoprotein c-Myc[23] and Aβ42[5]. In the former study, urea was used as a
control molecule to assess the sequence-specificity of the drug. In the latter
case of Aβ42, we studied the interaction with the small molecule 10074-G5,
and showed it was able to inhibit Aβ42 aggregation by binding the disordered
monomeric form of the peptide. The interaction was characterized both exper-
imentally, using various biophysical techniques, and computationally, using
restrained molecular dynamics simulations with enhanced sampling. While in
both systems the binding mode was found to be highly dynamic, a quantita-
tive study of the kinetics was not possible due to the use of time-dependent
restraints and biases during the simulation. The microscopic kinetics in form
of contact lifetimes and autocorrelations could be especially instructive to fully
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understand the origin of entropic and enthalpic stabilisation in these extremely
dynamic binding events (Fig. 1)[21].

A quantitative study of the kinetics of these interactions may allow a more
targeted approach to the design of both drugs and better experiments to
probe their binding modalities. However, even with atomistic computational
approaches, gaining insight into the kinetics, i.e. transition rates, relaxation
constants, autocorrelations, and state lifetimes can be challenging. This is
because in contrast to folded systems, the definition of states for disordered
proteins is not always clear: due to the generally shallow free energy landscape
state transitions may be fast, but not always distinct[6]. New developments
in the theory of dynamical systems now allow an optimal state decomposition
and transition operator to be learned using deep neural networks, for exam-
ple using the VAMPNet framework[24, 25]. To acquire kinetic information for
a system one would traditionally use a Markov state model[26, 27]: One first
finds a suitable low-dimensional embedding of the system coordinates, followed
by using a clustering algorithm to define microstates. Transitions between
these can then be counted to build up statistics and thus construct a tran-
sition matrix. This matrix can then be coarse-grained to obtain macroscopic
kinetics[28, 29].

Koopman-operator[30, 31] based models such as VAMPNet combine these
two steps into a single function that can be approximated by a neural network
and also yield a probabilistic state assignment in lieu of a discrete one[24, 25].
The former feature has the advantage of both simplifying the model con-
struction process, as the hyperparameter search over various dimensionality
reduction and clustering techniques is replaced by a simplified search over
neural network parameters, and allowing a more accurate model due to the
use of a single arbitrarily non-linear function compared to two steps that are
heavily restricted in terms of search space. Probabilistic state assignments
are inherently well suited to disordered proteins, as the typically shallow free
energy basins and low barriers can be encoded with some ambiguity. This
constrained VAMPNet approach was recently utilized by us to determine the
kinetic ensemble of the disordered Aβ42 monomer[6].

Here, we use this technique to build kinetic ensembles of Aβ42 with 10074-
G5 and urea as a control molecule to expand on our previous thermodynamic
ensembles[5]. We compare the transition rates, lifetimes, and state popula-
tions with the previous kinetic ensemble of the Aβ42 monomer[6], and further
characterize the atomic-level protein-drug interactions.

2 Results
2.1 Molecular dynamics simulations and soft Markov

state models
We performed two explicit-solvent molecular dynamics simulations of Aβ42
with one molecule of urea and one molecule of 10074-G5, respectively. Both
simulations were performed in multiple rounds of 1,024 trajectories on the
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Google Compute Engine as described previously[6]. As before, we used a soft
Markov state model approach using the constrained VAMPNet framework[24]
to construct kinetic ensembles. The major advantages of this method, com-
pared to regular discrete Markov state models, are the soft state definitions
and the use of a single function mapping directly from arbitrary system coor-
dinates to a state assignment probability, allowing for more optimal models.
To aid our analysis, we added our previous simulation of Aβ42 with no addi-
tional molecules to our dataset. We refer to it as the apo ensemble[6]. We
compared all ensembles using a decomposition into two states. In addition to
being easier to interpret, this approach allows for a direct comparison of the
slowest timescales in contrast to higher state-count models.

2.2 Computational and experimental validation
Constructing a kinetic ensemble using the constrained VAMPNet approach
requires choosing the number of states and the model lag time. The latter is a
critical parameter that needs to be chosen such that the model can accurately
resolve both long and short timescales. This can be done by plotting the
dependence of the slowest relaxation timescales on the lag time (Extended
Fig. A1). A stricter measure is the Chapman-Kolmogorov test, comparing
multiple applications of the Koopman operator estimated at a certain lag
time τ with a Koopman operator estimated at a multiple of this lag time
nτ (Extended Fig. A2, Methods)[32]. To evaluate sampling convergence, we
visualized the dependence of the mean relaxation timescales on the number
of trajectories used to evaluate these timescales (Extended Fig. A5). With
sufficient sampling of kinetics, we would expect the global timescales to be
unchanged within error. Experimental validation was performed by comparing
back-calculated chemical shifts to ones from experiment[33]. Because the small
molecule 10074-G5 only has minor effects on the chemical shifts of Aβ42[23],
well below the error of the forward model, we used the chemical shift dataset
from the apo ensemble as a point of comparison (Extended Fig. A3).

2.3 10074-G5 has minor impact on ensemble-averaged
structural properties of Aβ42

To evaluate the influence of 10074-G5 and urea on the structural conformations
of Aβ42, we calculated state-averaged contact maps and secondary structure
content for each state of all ensembles (Extended Fig. A4a-c). In all cases we
find a state decomposition into a more extended state with few inter-residue
contacts, and a slightly more compact form with a higher number of local
backbone interactions. We will refer to these as the compact and extended
states, respectively. The addition of a small molecule has little effect on the
formation of contacts and other structural motifs. This finding is consistent
with our recent experimental thermodynamic and kinetic characterization of
this interaction, and the absence of strong chemical shift perturbations in the
holo ensemble[5].
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2.4 10074-G5 and urea decelerate the formation of more
compact states

Compared to the previously published kinetic ensemble of the apo form of
Aβ42, the kinetic ensembles in the presence of both urea and 10074-G5 show
a deceleration of more compact state formation (Fig. 2). Notably, the transi-
tion from the more compact form to the more extended state is unaffected.
This change is also mirrored in the state populations, which exhibit a strong
shift towards the extended state. We note that even though there are strong
changes in the state populations, the ensemble-averaged contact maps are very
similar (Extended Fig. A4a-c). This is likely due to the high sensitivity of the
VAMPNet method to minor changes in free energy barrier regions. These will
have a significant effect on the kinetics and thus state populations, but not
on the ensemble averaged structure due to the relatively low thermodynamic
weight[34]. While the lifetimes of the extended states increase, the ones for the
more compact form are unchanged within model error. We can thus conclude
that within our model, the small molecule has a strong effect on the contact
formation rates, but no influence on the contact dissociation rates.

2.5 Small molecules shift the system to more entropically
stable states by short-lived local interactions

To evaluate the impact of 10074-G5 on the conformational space of Aβ42, we
calculated the Ramachandran and state entropy for all ensembles, as well as
the autocorrelation of sidechain χ1 dihedral angles (Fig. 3). The Ramachan-
dran entropy can indicate relative flexibility of the backbone, thus revealing
potential regions of dynamic changes as a result of interactions between the
peptide and small molecule[5]. Resolving this change in the entropy over
residues (Fig. 3a) indicates strong increases in the relatively hydrophobic C-
terminal region of Aβ42. This entropy increase is confirmed globally by the
sum of the entropies over all residues (Fig. 3b). As an alternative metric, we
also calculated the entropy in the state assignments (Fig. 3c), this can be
thought of as indicating the overall ambiguity in the state definition. Again, we
find a relatively strong increase in the conformational entropy of Aβ42 for the
ensemble with 10074-G5, and only minor increases for urea. These results are
in agreement with our previous observations from simulations of the equilib-
rium ensembles in that the presence of 10074-G5 increases the conformations
available to Aβ42, via the entropic expansion mechanism[5, 21].

To better understand the impact of the small molecule on local kinetics we
calculated the autocorrelation of the sidechain χ1 dihedral angles (Fig. 3). We
see an increase in the autocorrelation, specifically for aromatic residues and
M35, indicating a slowing of side chain rotations. This suggests that despite
an increase in the backbone entropy, the peptide is able to visit many locally
stable states, resulting in local enthalpic stabilisation.
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2.6 Interactions of 10074-G5 with Aβ42 are dominated
by π-stacking and other electrostatic effects

To better understand the origin of the global and local effects of 10074-G5
on the ensemble we analysed the interactions on a residue and atomistic level
(Fig. 4). While the probability of forming a contact between the small molecule
and a residue shows certain mild preferences (Fig. 4a), these become more evi-
dent when looking at the lifetimes of these contacts (Fig. 4b). Here, the longest
contacts are formed by π-stacking with certain aromatic residues (F4, Y10,
F19, F20) and by interactions with M35. This result also explains the reduc-
tion in side-chain rotations for these residues (Fig. 3d). On an atomistic level
the π-π interactions exhibit some anisotropy (Extended Fig. A6). The impor-
tance of the nitro- and benzofurazan fragments is also highlighted. Finally,
we also investigated the conditionality of π-π interactions, i.e., if we see an
interaction between the molecule and residue i, what is the probability of also
observing an interaction with residue j (Fig. 4e-g)? The probabilities here are
uniformly low but indicate a slight preference (13 %) for a triple π-stack involv-
ing the terminal aromatic ring of 10074-G5 and residues F19 and F20 of Aβ42.
The importance of π-π stacking interactions was also noted in a computational
study on the interactions of small molecules with α-synuclein[35].

These results indicate that this disordered binding mechanism operates
on two levels whereby local enthalpically favourable interactions coupled with
global entropically advantageous effects. The local interactions are predomi-
nantly of electrostatic nature and result in a reduction of sidechain rotations
on specific residues. At the same time, these interactions also allow the explo-
ration of more backbone conformations, thus resulting in a net entropy increase
for Aβ42. This influence expands into the global kinetics of the system,
significantly slowing the formation of local structure.

3 Discussion
The results outlined above present a possible example of the previously pro-
posed entropic expansion mechanism for the binding of small molecules to
disordered proteins[21, 36]. This mechanism is distinct from the entropic
collapse and folding-on-binding mechanisms[37, 38]. The concept of disor-
dered binding is difficult to probe, as the tools suitable to detecting small
changes in the conformational ensemble of disordered proteins are still in their
infancy[20]. Nuclear magnetic resonance experiments can provide information,
but it should usually be interpreted in a structural framework, necessitating
molecular simulations with ensemble-averaged restraints[39], or re-weighting
approaches[40]. This constraint causes issues whenever we are also interested in
kinetics, as by enhancing the sampling we modify the natural dynamics of the
system. Nevertheless, an approach to incorporate ensemble-averaged experi-
mental measurements into Koopman models has recently been proposed[41].
Neither is it generally possible to use enhanced sampling methods to study
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kinetics without having some a priori knowledge of the system states. A frame-
work allowing the incorporation of experimental data into a kinetic model and
also allowing the use of enhanced sampling methods such as metadynamics[42],
without prior knowledge of states, would make the study of these systems
easier and more accurate.

As we have shown, a kinetic model is crucial to fully explain the nature of
these binding interactions. This is in part due to the ability to use the slowest
timescales of the system to reliably define metastable states, something that is
notoriously difficult for disordered proteins without access to the time dimen-
sion. This clustering alone is already sensitive enough to reveal differences
between systems that are nearly invisible when comparing ensemble-averaged
results and more conventional clustering methods[5]. Increases in local auto-
correlation and global state transitions might be seen as indicators of both
local enthalpic stabilisation and global entropic expansion. The former result
hints at the possibility of designing small molecules that exhibit high speci-
ficity, as the global entropic stabilisation effect may be due to transient, local,
enthalpically-favourable interactions[21]. The two level global entropy – local
enthalpy effect becomes especially visible when looking at the timescales: The
slowest state transitions of the protein are on the order of microseconds, while
the local, enthalpically-favourable π-π interaction lifetimes are no longer than
tens of nanoseconds.

The observed binding mechanism also identify π-π stacking interactions
as a major driving force. Similar effects have been observed for the binding
of another small molecule, fasudil, and α-synuclein, which is also intrinsically
disordered[35]. We note that while that study proposed a ‘shuttling model’
mechanism to explain the diffusion of the small molecule on the α-synuclein
surface, here we demonstrate the stabilisation of a native state of a disordered
protein by a disordered binding mechanism. The π-π stacking phenomenon also
plays a major role in liquid-liquid phase separation[43], suggesting a possible
link between the effect of these small molecules and the hypothesized state of
some proteins in a crowded environment. For molecular simulations, the force
field may present a barrier in studying π-π interactions in more detail. This
is because these interactions are not explicitly part of the potential, but only
approximated with a combination of electrostatic and hydrophobic terms[44].
Polarizable force fields may offer a computationally affordable alternative that
could more accurately model this type of binding[45].

Looking forward, it may become possible to pursue a drug discovery strat-
egy for disordered proteins based on the stabilisation of their native states
through the disordered binding mechanism that we have described here. This
strategy would extend an approach to disordered proteins that has already
proven successful for folded proteins[46], and would have the advantage of
maintaining the proteins in their native functional states.
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4 Methods
4.1 Details of the simulations
All simulations were performed on the Google Compute Engine with
n1-highcpu-8 preemptible virtual machine instances, equipped with eight
Intel Haswell CPU cores and 7.2 GB of RAM. Molecular dynamics simulations
were performed with GROMACS 2018.1[47], with 1,024 starting structures
sampled from the previously performed apo simulation[6] using the Koopman
model weights. Each conformation was placed in the center of a rhombic dodec-
ahedron box with a volume of 358 nm3, and the corresponding small molecule
was placed in the corner of the box. The force field parameters for urea were
taken from the CHARMM22* force field[48] and the ones for 10074-G5 were
computed using the Force Field Toolkit (FFTK)[49] and Gaussian 09[50], as
described previously[5]. The systems were then solvated using between 11,698
(11,707) and 11,740 (11,749) water molecules. Both systems were minimized
using the steepest descent method to a maximum target force of 1,000 kJ/-
mol/nm. Both systems were subsequently equilibrated, first over a time range
of 500 ps in the NVT ensemble using the Bussi thermostat[51] and then over
another 500 ps in the NPT ensemble using Berendsen pressure coupling[52]. In
both equilibrations position restraints were placed on all heavy atoms. All pro-
duction simulations were performed using 2 fs time steps in the NVT ensemble
using the CHARMM22*[48] force field and TIP3P water model[53] at 278 K
and LINCS constraints[54] on all bonds. Electrostatic interactions were mod-
elled using the Particle-Mesh-Ewald approach[55] with a short-range cutoff of
1.2 nm. All simulations used periodic boundary conditions. We again used the
fluctuation-amplification of specific traits (FAST) approach[56] to adaptive
sampling, with clustering performed through time-lagged independent compo-
nent analysis (TICA)[57, 58] using a lag time of 5 ns and Cα distances fed to
the k-means clustering algorithm[59] to yield 128 clusters. 1,024 new structures
were then sampled from these clusters based on maximizing the deviation to
the mean Cα distance matrix for each cluster and maximizing the sampling
of the existing clusters, using a balance parameter of α = 1.0, with all amino
acids weighted equally. This approach was performed once for each ensemble,
however we also chose to perform 32 additional long-trajectory simulations for
the 10074-G5 ensemble, yielding a total of 2,079 trajectories for the latter, and
2,048 trajectories for the urea ensemble. The total simulated times were 306
µs and 279 µs for the 10074-G5 and urea ensembles, respectively. The shortest
and longest trajectories for 10074-G5 (urea) were 21 (24) ns and 1,134 (196)
ns. All trajectories were subsampled to 250 ps timesteps for further analysis.

4.2 Details of the neural networks
State decomposition and kinetic model construction was performed using the
constrained VAMPNet approach[24, 25], using the same method described
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previously[6]. We again chose flattened inter-residue nearest-neighbour heavy-
atom distance matrices as inputs, resulting in 780 input dimensions. We used
the self-normalizing neural network architecture[60] with scaled-exponential
linear units, normal LeCun weight initialization[61] and alpha dropout. We
chose an output dimension of 2, thus yielding a soft two-state assignment. The
datasets were prepared by first creating a test dataset by randomly sampling
10 % of the frames. In the case of 10074-G5 we excluded all frames in which
the closest distance between the small molecule and peptide was higher than
0.5 nm. We then created 20 randomized 9:1 train-validation splits to allow a
model error estimate. Training was performed by using three trials for each
train-validation split and picking the best performing model based on the
VAMP2 score[31] of the test set. We implemented the model using Keras
2.2.4[62] with the Tensorflow 2.1.0[63] backend. We chose the following model
hyperparameters based on two successive coarser and finer grid searches: A
network lag time of 5 ns, a layer width of 512 nodes, a depth of 2 layers,
an L2 regularization strength of 10−7 and a dropout of 0.05. Training was
performed in 10,000 frame pairs using the Adam minimizer[64] with a learning
rate of 0.05, β2 = 0.99 and epsilon of 10−4, and an early stopping criterion of a
minimum validation score improvement of 10−3 over the last five epochs. For
the constrained part of the model, we reduced the learning rate by a factor of
0.02. We used a single Google Compute Engine instance with 12 Intel Haswell
cores, 78 GB of RAM, and an NVidia Tesla V100 GPU.

4.3 Details of the kinetic analysis
After training, VAMPNet yields a state assignment vector χ(xt) for each frame
xt of the ensemble. Based on this vector, we can calculate state averages ⟨Ai⟩
for any observable A(xt):

⟨Ai⟩ =

(
T∑

t=1

χi(xt)

)−1 T∑
t=1

χi(xt)A(xt) (1)

Here, i is the corresponding state and the sum runs over all time steps. To
calculate an ensemble average ⟨A⟩, one first calculates a weight wt for each
frame using the model equilibrium distribution π:

wt =
⟨χ(xt) | π⟩∑T
t=1⟨χ(xt) | π⟩

, (2)

which leads to the ensemble average

⟨A⟩ =
T∑

t=1

wtA(xt). (3)

Because each trained model will classify the states in an arbitrary order,
we need to sort the state assignment vectors based on state similarity. We did
this by comparing the state-averaged contact maps using root-mean-square
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deviation as a metric, and grouping states based on the lowest value. Any
deviations are thus accounted for in the overall model error.

4.4 Model validation
The Koopman matrix K(τ) is given directly by the neural network model,
along with the equilibrium distribution π. We validated our models using the
Chapman-Kolmogorov test:

K(nτ) ≈ Kn(τ) (4)
where τ is the model lag time, and nτ is a low integer-multiple of the lag

time. The model should therefore behave the same way whether we estimate
it at a longer lag time or repeatedly apply the transfer operator. We first
estimate a suitable lag time τ by plotting the relaxation timescales over the
chosen lag time. The lag time τ should be chosen to be as small as possible,
but large enough to not have any impact on the longer relaxation timescales,
which represent the slowest motions of the system. The temporal resolution
of the model is thus given by this lag time. The relaxation timescales ti are
calculated from the eigenvalues λi of the Koopman matrix K(τ) as follows:

ti =
−τ

log | λi |
(5)

We can similarly compute the state lifetimes ti from the diagonal elements
of the Koopman matrix K(τ)ii using:

ti =
−τ

logK(τ)ii
(6)

4.5 Experimental validation
We backcalculated the nuclear magnetic resonance chemical shifts using the
CamShift algorithm[33] as implemented in PLUMED 2.4.1[65, 66]. We again
used the same ensemble averaging procedure described above.

4.6 Errors
Errors are calculated over all trained neural network models. To obtain a more
meaningful estimate, we only consider frames that were part of the bootstrap
training sample of the corresponding model, i.e., one of the 20 models described
above. The reported averages are the mean, and the errors the 95th percentiles
over all 20 models, unless reported otherwise.
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Fig. 1 Illustration of two different native state stabilisation mechanisms of disordered
proteins. The interaction with a small molecule can result in a reduction or increase of
conformational space of the protein, thus resulting in a positive or negative entropic contri-
bution to the binding free energy. A loss of entropic native state stabilisation will often be
compensated with a stronger enthalpic binding affinity, while an increase in entropy often
requires more dynamic and thus weaker binding.
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ulations. Errors are the standard deviations of the bootstrap sample of the mean over all 20
models.
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Fig. 3 Effect of small molecules on conformational and state entropy of Aβ42, showing that
10074-G5 increases the conformational entropy of the peptide. a Ramachandran entropy, i.e.
information entropy over the distribution of ϕ and ψ backbone dihedral angle conformations,
using 100 bins. b Sum of the Ramachandran entropies over all residues for all ensembles.
c State entropy, i.e., the population-weighted mean of the information entropy of each set
of state assignments. More ambiguity in the state assignments leads to a correspondingly
higher state entropy. d Autocorrelation of all sidechain χ1 dihedral angles with a lag time
of τ = 5 ns. Shaded areas in a and d indicate the 95th percentiles of the bootstrap sample
of the mean over all 20 models. Whiskers and boxes in b and c indicate the 95th percentiles
and quartiles of the bootstrap sample of the mean over all 20 models, respectively.
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Fig. 4 Residue- and atomic level interactions of 10074-G5 with Aβ42 showing regions on
the small molecule responsible for binding. a Contact probabilities of 10074-G5 and Aβ42
with a cut-off of 0.45 nm. b Lifetimes of these contacts, estimated using a Markov state
model for each contact formation with a lag time of τ = 5 ns, indicated with grey shading.
Coloured shaded areas in a and b indicate the 95th percentiles of the bootstrap sample of the
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indicate the 95th percentiles of the bootstrap sample of the mean over all 20 models.
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Fig. A1 Relaxation timescale as a function of model lag time for a control (urea) and b
holo (10074-G5) ensembles. Gray shaded areas indicate timescales the Koopman model can
no longer resolve. Coloured shaded areas indicate 95th percentiles of the sample mean over
all 20 models.
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Fig. A2 Chapman-Kolmogorov test for a control (urea) and b holo (10074-G5) ensembles.
Each panel indicates the transition probability for one matrix entry for successive applica-
tions (predicted, red) and estimations (estimated, orange) of the Koopman matrix. Shaded
areas and error bars indicate 95th percentiles of the mean over all 20 models.
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Fig. A3 Root-mean-square deviations between experimentally determined NMR chemical
shifts[5] and those back-calculated using CamShift[33] for a control (urea) and b holo (10074-
G5) ensembles. Light shaded areas indicate the intrinsic error of the CamShift predictor.
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Fig. A4 Structural properties of the a control (urea) and b holo (10074-G5) ensembles. Top
panels indicate α-helical and β-sheet contents over all residues as calculated using DSSP[67].
Bottom panels show heavy-atom contact probability maps with a cut-off of 0.8 nm. Error
bars indicate 95th percentiles of the bootstrap sample of the mean over all 20 models.
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Fig. A6 Anisotropy of π-πmolecule — aromatic side chain stacking interactions for the holo
(10074-G5) ensemble. α is the stacking angle between the inter-aromatic distance vector and
the aromatic side chain normal vector, while β is the angle inter-aromatic distance vector
and the normal vector of the small molecule aromatic system[35]. Distributions show the
density under the condition that the distance between both groups is below 0.6 nm.
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