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ABSTRACT: 

 

Over the last decades, analyses of the connectivity of large biological and artificial networks have 

identified a common scale-free topology, where few of the network elements, called hubs, control 

many other network elements. In monitoring the dynamics of networks’ hubs, recent experiments 

have revealed that they can show behaviors oscillating between ‘on’ and ‘off’ states of activation. 

Prompted by these observations, we ask whether the existence of oscillatory hubs states could 

contribute to the emergence of specific network dynamical behaviors. Here, we use Boolean 

threshold networks with scale-free architecture as representative models to demonstrate how 

periodic activation of the network hub can provide a network-level advantage in learning specific 

new dynamical behaviors. First, we find that hub oscillations with distinct periods can induce 

robust and distinct attractors whose lengths depend upon the hub oscillation period. Second, we 

determine that a given network can exhibit series of different attractors when we sequentially 

change the period of hub pulses. Using rounds of evolution and selection, these different attractors 

could independently learn distinct target functions. We term this network-based learning strategy 

resonant learning, as the emergence of new learned dynamical behaviors depends on the choice 

of the period of the hub oscillations. Finally, we find that resonant learning leads to convergence 

towards target behaviors over an order of magnitude faster than standard learning procedures. 

While it is already known that modular network architecture contributes to learning separate tasks, 

our results reveal an alternative design principle based on forced oscillations of the network hub.  

 

SIGNIFICANCE: 

 

Large networks of interconnected components such as genes or machines can coordinate complex 

behavioral dyamics. One outstanding question has been to identify the design principles that allow 

networks to learn new behaviors. Here, in simulating learning cycles, we randomly modify the 

interactions between components and select networks that exhibit a desired behavior. Surprisingly, 

we find that networks can learn new behaviors faster when the state of the most connected network 

component is forced to oscillate during learning. Remarkably, using distinct periods of oscillations 

allows a given network to learn distinct behaviors. While it is known that modular network 

architecture contributes to learning separate tasks, our results reveal an alternative design principle 

for which modules are not needed. 
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INTRODUCTION: 

Natural and engineered systems provide a myriad of examples in which large networks of 

interacting elements must perform well-specified dynamical behavior in a coordinated way (1). 

While it is often difficult to predict the behavior of such large intricate networks, it is standard 

practice to use Boolean neural networks to simulate complexity of interactions between network 

elements (2). However, despite this simplification, Boolean neural networks have emerged as 

powerful systems that can be trained to learn the dynamical behavior of many technological and 

biological systems (3). Recurrent connections between network elements, resemble the intricate 

connectivity with a combination of feedback and feedforward loops observed in biological 

networks, which can produce a rich array of non-trivial dynamics with fading memory. In contrast 

with layered, feedforward neural networks, Boolean neural networks with a recurrent topology are 

well-suited to handle time series data (4).  

It has now been well-established that such recurrent networks can be harnessed to mimic 

complex time-dependent behaviors as diverse as social interactions, gene regulations, electric grids 

and industrial processes (4, 5). However, despite recent progress, it is still not clear what are the 

underlying control parameters that govern the flexibility of such networks to learn various 

behaviors. Here, we aim to identify the conditions that permit a certain class of recurrent Boolean 

networks to learn multiple target time-series. While we have been initially inspired by recent 

observations made from experiments with real gene-regulation networks, we limit this work solely 

to identifying some general properties of idealized networks whose elements are Boolean.  

Over the last two decades, a range of experiments have revealed that many large biological 

networks exhibit a scale-free topology where one network node acts as a hub that governs most of 

the network activity (6, 7). For example, cellular transcriptional networks have evolved such that 

a small number of “master regulator” genes can control a large number of downstream genes (8, 

9). Recent experimental technologies have enabled several groups to monitor long time series of 

expression (activation) of these master regulators (10) and to report the existence of pulsatile 

behavior (11, 12) (Fig. S1 and S2). Overall, these studies suggest that specific timescales of pulses 

are associated with specific dynamical behaviors of the cell (12-17). Inspired by these 

experimental observations, we ask how the oscillatory behavior of highly connected nodes 

(hereafter called hubs) such as master regulators, can shape the behavior of large non-linear 

dynamical systems. Additionally, because it is established that random Boolean threshold 

networks (RBTN) with scale-free network topologies are able to learn target behaviors more 

quickly than  homogeneous, well-distributed architectures, we focus the rest of this study on 

recurrent networks with scale-free topologies (18, 19). We demonstrate that distinct dynamical 

behaviors of RBTN can be pre-selected by adjusting the oscillatory period of the hub node. 

Furthermore, using an evolutionary algorithm we find that these networks can learn specified 

target behaviors more efficiently in the presence of an oscillating hub. We term this new property 

of network-based learning in the presence of input oscillations, resonant learning.  

Previous work has shown that noise and small perturbations can drastically change the 

outcome of networks. Stern used Kauffman networks to do demonstrate that “noisy inputs” 
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repeated over several generations of learning rounds could be incorporated by the network to 

imprint the system a desired behavior (20). From a control perspective, Cornelius et al. 

demonstrate a strategy to use perturbations to  guide a network toward a desired state when only a 

small set of accessible nodes in the network can be modified, parallel to real world settings such 

as therapeutic design, when only a subset of genes or gene products can be drugged effectively to 

“save” the network (21). A separate line of investigations has revealed how oscillatory inputs, 

often referred to as “frequency-modulated” signals, can be interpreted in small circuit settings.  

Gao et al. consider how small subnetwork motifs could decode complex temporal signals, and Rue 

et al. observe how individual nodes in Boolean networks are capable of relaying the frequency of 

an incoming temporal signal (22, 23). However, to our knowledge, the effect of oscillatory input 

signals on network learning has not yet been explored. It is not clear either how sustained 

oscillatory input signals on hub nodes as observed in experiments can shape the dynamics of large 

dynamical systems such as RBTNs. 

 

Network Model 

We use random Boolean threshold networks (RBTN) as prototypes for the study of large 

recurrent dynamical systems (4, 24). RBTN’s have been used to mimick gene expression patterns 

in some organisms (25, 26).  We define networks with N nodes, {𝜎1, 𝜎2, … , 𝜎𝑁} and a set of directed 

edges, E, {(𝜎𝑖1 , 𝜎𝑗1), (𝜎𝑖2 , 𝜎𝑗2  ),… (𝜎𝑖|𝐸|, 𝜎𝑗|𝐸|)} ∈ 𝐸. We choose scale-free network topologies with 

out-degree connectivity distributed according to the power-law distribution, 𝑝(𝑘) ∝ 𝑘−𝛾, which 

confers the desirable property of “hubs” shared by a large number of biological networks (27-29) 

(Fig. 1A). For example, in regulatory transcriptional networks, these hubs could represent central 

endogenous regulators such as sigma factors. Moreover, we showed that scale-free networks 

evolve more efficiently toward a target function than homogeneous networks (Erdös-Renyi), 

which makes scale-free networks potentially good candidates to identify learning properties of 

large dynamical systems (18, 19).  

Next, the network dynamics is defined such that the state {0,1} of any node at a given time 

step correspond to OFF and ON states of the node respectively. The state of the network at time 𝑡, 

which we refer to as 𝝈(𝒕), is the state at time 𝑡 of all the genes: 𝝈(𝒕) =  {𝜎1(𝑡), 𝜎2(𝑡),⋯ , 𝜎𝑁(𝑡)}. 

The Boolean threshold networks updating rule is based on a simple threshold activation function 

(Fig. S3). We define the updating rule such that the state of any node at the next time step is 

determined by the product between the weights of incoming connections and the state of the nodes 

from which they come: 

 

𝜎𝑖(𝑡 + 1) =   

{
  
 

  
 0, 𝑖𝑓 ∑ 𝑤𝑖𝑗𝜎𝑗(𝑡)

𝑁

𝑗=1
 < 0

1, 𝑖𝑓 ∑ 𝑤𝑖𝑗𝜎𝑗(𝑡)
𝑁

𝑗=1
> 0 

𝜎𝑖(𝑡), 𝑖𝑓 ∑ 𝑤𝑖𝑗𝜎𝑗(𝑡)
𝑁

𝑗=1
= 0

                                                      (1) 
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We set the weight 𝑤𝑖𝑗   for each directed edge in the network from node 𝜎𝑖  to node 𝜎𝑗 drawn from 

a uniform distribution on the interval [−1,1], whereas 𝑤𝑖𝑗 = 0 if there is no connection between 

𝜎𝑖 and 𝜎𝑗. Because the signal that each 𝜎𝑖  receives from its regulators is additive, each weight 𝑤𝑖𝑗  

exerts either an inhibitory or activating effect on its target node with varying strength. The weights 

contribute to  the updating rule only if the controlling nodes are in the ON state. Given the 

discontinuity apparent in Eq. (1), the dynamical behavior of the network is highly nonlinear. 

Altogether, this simple non-linear rule is capable of generating a rich variety of dynamical 

behaviors (25, 26, 30).  

 

 

RESULTS: 

 

Hub oscillations propagates in downstream nodes 

To probe the effects of hub oscillations on the network nodes and attractor dynamics, we 

simulate large scale-free networks (𝛾 = 1.9) in which the hub node 𝜎ℎ𝑢𝑏, the node with highest 

outgoing connectivity, is forced to oscillate periodically at a pre-set switching rate. we choose  𝛾 ≈

1.9 because it corresponds to the critical-like regime of a second order phase transition as shown 

in Fig. S4, where learning algorithms are the most impactful ((19), fig.S10).  Fig. 1A shows the 

hub 𝜎ℎ𝑢𝑏 in blue, and an arbitrarily node (in red) chosen as the “reporter” or output node. We use 

periodic and symmetric square waves with period T as the driving input signal of the hub (see SI 

Square Waves and Fig. 1A, blue). Surprisingly, we find that distinct time series outputs (attractor 

cycles) associated with the reporter node (Fig. 1A, red) in forced networks can be induced by 

distinct input periods of oscillation applied to 𝜎ℎ𝑢𝑏. Given that 𝑇 only defines the rate at which  

𝜎ℎ𝑢𝑏 switches between 0 and 1 states, it is surprising that it can induce drastically different network 

cycles.  

To visualize this effect, once the networks has reached an attractor cycle, we monitor the 

response of single nodes of the network to various input periods 𝑇. That is, we allow a network to 

update over many time steps, under the restriction that 𝜎ℎ𝑢𝑏 oscillates at a specific period T. 

Exciting  𝜎ℎ𝑢𝑏 at a certain T would yield specific time series for each node 𝜎𝑖 in the network. To 

evaluate to what degree downstream nodes either transmit the same or different frequencies as 

those driving the oscillatory hub, we compute the power spectral density (Fig. S6) of the time 

series associated with each node  𝜎𝑖. We can see (Fig. 1B) that with an input period 𝑇 = 10, the 

output node's time series exhibits the same frequencies as the input node and some other different 

frequencies.a However, for another input period 𝑇 = 8, the output node responds even with lower 

frequencies (longer periods) of oscillations than the input node. In general, we find that the period 

 
a For clarity, we define resonant frequencies in the network as multiples of the input oscillation frequency, 𝑁0  =

 𝑓𝑖𝑛𝑝𝑢𝑡  =
1

𝑇
.  We can convert any resonant frequency back to the time domain by inverting it, giving resonant 

periods For period T = 10, the input frequency is 𝑁0  =  0.1, and a resonant frequency is 5𝑁0 = 0.5, which 
corresponds to a resonant period 𝑇𝑟𝑒𝑠  =  2. 
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of input oscillations on the hub node can induce a range of downstream behaviors of the output 

nodes. We summarize this observation using a heatmap that depicts the power spectra for all non-

frozen nodes, i.e. those that are switching back and forth between ‘on’ and ‘off’ states) (Fig. 1C). 

We observe that while the oscillations of the controlling hub have a fixed single timescale, they 

do not make the downstream nodes of the network oscillate uniformly. 

 

Hub oscillations induce resonance attractor cycles 

 

After observing that individual nodes respond distinctly to a given input period, we ask whether 

we can observe more general behaviors when we consider the state of the system at the level of 

the whole network 𝝈(𝒕). Because the updating rule for our networks is deterministic and has finite 

number of states, the network will eventually enter a fixed cycle of states, which we define as an 

attractor cycle. We define the start and end of the attractor cycle to be the first two time points at 

which states, 𝝈(𝒕𝟏) =  𝝈(𝒕𝟐), and all network states prior to time 𝑡1belong to the transient states 

of the network (see SI Defining an Attractor for further specification). We use attractor cycles as 

means to characterize the overall behavior of the network. We then ask how attractors associated 

with a given network – the attractor landscape – is perturbed in response to oscillating inputs. 

 

We first specify a null experiment for comparison. Namely, because the oscillating inputs involve 

switching between the 0 and 1 state of the hub node, we define ground-state attractors as the set of 

all attractor cycles when the hub node of the network is blocked, made to stay constant, either in 

the 0 or 1 state. That is, we can sample many different initial conditions for a given network and 

force 𝜎ℎ𝑢𝑏(𝑡) = 𝑐𝑜𝑛𝑠𝑡. The network states and the progression they follow over time define the 

ground-state basins of attraction for a given network. Each network state will eventually converge 

upon an attractor cycle according to this null reference scheme, and we can quantify how far away 

each network state is from its corresponding attractor as the number of time steps it takes to 

converge to an attractor cycle (Fig. 2A). We call this distance the “height” of any given network 

state.  In this scheme, the network states that are part of attractor cycles are considered to have a 

height of 0 when the hub is blocked to a fixed value. The effect of oscillating the controlling hub 

becomes analogous to excite the network that bounces back and forth between these ground-state 

landscapes defined when the network has a hub with a fixed state. Interestingly, we find that this 

procedure yields new attractor cycles that share some states with the reference basins of attraction 

but also that have new ones (Fig. 2A). As a result, when the hub node is forced to oscillate, the 

network converges upon new attractor cycles that have non-zero average “height,” as defined 

above.  

Next, we characterize the longest oscillation period that can yield new attractor cycles. We 

reasoned that if the period of switching 𝜎ℎ𝑢𝑏between the 0 and 1 states is too long, the network 

will exhibit the limit behavior with same attractors as if 𝜎ℎ𝑢𝑏were either blocked at 0 or 1; under 

this condition no new attractor cycle behavior will be reached. To identify the longest possible 

oscillation period that can yield new attractors, we simulate a random initial condition, block the 
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hub in the 0 (or 1) states, and allow the network to fall onto an attractor cycle. Then, we switch the 

input hub node to the 1 (or 0) state and measure the relaxation time for the network to reach a new 

attractor cycle with the new hub state.  We repeat this procedure over 1,000 different networks and 

initial conditions to obtain the average relaxation time for various 𝛾 exponents. We consider this 

relaxation time to be an estimate for evaluating the longest period duration beyond which the 

network will be insensitive to the oscillations of the hub (Fig. 2B). Networks with 𝛾 = 3.0 have 

relaxation time, trelax=4, therefore the longest period for the hub oscillations capable of inducing 

new behavior is T=2trelax=8. Addionnally, we find that the longest relaxation time for networks 

that have a regime close to critical-like behavior (𝛾 = 1.9) to be trelax=20. Therefore any periods 

greater than T=2trelax=40 will yield no new attractor cycles and will be associated with a 0 height 

regardless of how much longer the period is.   

Using the average “height” as a metric, we construct a phase-diagram to illustrate how 

statistically different the new attractor cycles are from the ground-state cycles by generating 

networks for different values of 𝛾 in the interval [1.7,3], in the presence of an oscillating 𝜎ℎ𝑢𝑏 with 

different input periods. As expected, the larger the value of 𝛾 the networks are more ordered and 

fall on ground-state attractor cycles with height 0, whereas more chaotic networks with 𝛾~1.9 

exhibit more novel attractor cycles composed of network states with greater heights (Fig. 2C). 

Overall, newly generated attractors are in fact novel with respect to each other and with respect to 

the ground-state attractors as long as the network is sufficiently chaotic with 𝛾 < 1.9 (Fig. S7-S8), 

which also ensures that different input hub periods can induce different attractor cycles (Fig. S9). 

 

Not only these attractors are selectable by specifying a certain input period, but we find that these 

newly selected attractors are robust to variations in initial conditions. Specifically, we can estimate 

this robustness as the number of new attractor cycles identified by sampling a large number of 

initial conditions. We draw random initial conditions for each network and input period, and we 

determine the fraction of unique attractors. With 𝛾 = 1.9 in the chaotic regime, we find that on 

average very few (fewer than 2%) of the sampled initial conditions give unique attractors (Fig. 

S10). In Boolean scale-free networks, new attractor cycles can be induced by simply changing the 

duration of square wave periods for a single input hub node. These new attractor cycles are robust 

to different initial conditions and are  mainly governed by the duration of the period of hub 

oscillations. We call resonant attractor cycles, these new network behaviors induced by forcing 

periodic inputs on the hub.  

 

Resonant attractor cycles exhibit fast learning dynamics 

 

It has already been well-established that scale-free networks can learn faster than homogeneous 

networks (19) . However, we now ask whether new resonant attractor cycles can also learn target 

functions. We thereafter a learning scheme similar as (19). We first initialize a population of 

𝑁𝑝𝑜𝑝 = 50  scale-free networks with 𝛾 = 1.9 (𝐅𝐢𝐠. 𝐒𝟏𝟏). While Oikonomou and Cluzel 

demonstrated that learning in scale-free networks is not strongly dependent on 𝛾 (Fig. S12) but 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.10.468065doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468065
http://creativecommons.org/licenses/by-nc/4.0/


 7 

rather on the general scale-free topology itself, we choose the scale-free parameter 𝛾 = 1.9 so that 

networks are near the critical regime (Fig. S13) with sufficiently large basins of attraction while 

maintaining attractor cycles of relatively few states. 

 

The goal of this learning algorithm is to train the network in such a way that a single output node 

of the network exhibits the same time series of “on” and “off” states as that of the target function, 

which is a predefined random sequence of 0’s and 1’s of length 𝐿𝑐 (Fig. S14). Both the output 

node, which is selected randomly, and the target function remain the same throughout the learning 

cycles. We perform each simulation for 𝐺 = 105 generations. In each learning generation, we 

generate 𝑀 = 3 mutated networks from each of the 𝑁𝑝𝑜𝑝 networks. We score how well all 

networks, including the unmutated networks, have learned all the target functions. We select the 

top scoring 𝑁𝑝𝑜𝑝 networks from the temporary population of size 4𝑁𝑝𝑜𝑝 (parent and mutant 

networks, Fig. S15), and repeat this process for all the 𝐺 = 105 generations.  

 

To mutate each network, we use a fixed mutation rate of  𝜇 = 0.02, such that with probability 𝜇 

we mutate each node in the network, using the same optimized conditions as in (19) with equal 

probability, a mutation for some node involves changing the weight or target node of an outgoing 

edge. By only modifying the target node or weight, we guarantee that we maintain the power-law 

out-degree distribution of the network. 

 

To score the performance of a given network in a generation, we randomly choose an initial 

condition for the network. Then, oscillating the input node with input period 𝑇𝑐 , we allow the 

network to update through time until it falls onto an attractor of length 𝐿. We take the time series 

of the output node in this attractor cycle and estimate the distance between this time series versus 

the target time series of length 𝐿𝑐  (Fig. 3A). Because we want this scoring function to be invariant 

to the offset of the attractor cycle time series, we consider all circular permutations over the target 

function. Additionally, it is often the case that 𝐿 ≠ 𝐿𝑐, so we repeat both time series to a length 

𝐿′ =  𝑚𝑖𝑛(𝐿, 𝐿𝑐). By doing this, we avoid penalizing the attractor cycle for a length mismatch 

with the target function.  Thus, we define our score for a single target function of length 𝐿𝑐,  

Fitness, as an averaged hamming distance between the target function and the output node's time 

series (Fig. S14). At each generation, only the 𝑁𝑝𝑜𝑝 networks (out of 4𝑁𝑝𝑜𝑝) with the lowest values 

of 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 will pass to the next generation (Fig. S15).  Furthermore, target functions that are too 

long are also difficult to learn, especially when their lengths exceed that of the relaxation time of 

the network. Therefore, we restrict our learning algorithms to input periods, T < 20 (Figs. 2B and 

S16).  Moreover, we find that the hub oscilation period determines the length of the attractor cycle 

and that networks learn a target function best when the input period is equal to the length of the 

target function (Fig. S17). 

Since networks can exhibit different attractor cycles in response to different input hub 

frequencies, we ask whether these networks are also capable of time-division multiplexing, i.e. 

learning several target functions corresponding to different input periods. Here, we restrict 
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ourselves to setting the length of the target cycle to be the same as the hub oscillation period when 

trying to force networks to learn multiple behavior patterns at once. We generate a set of m target 

functions of length 𝐿1, 𝐿2, … 𝐿𝑚. In addition, we chose a set of oscillatory input functions with pre-

defined periods that will correspond to the length of each target function: 𝑇1, 𝑇2, … 𝑇𝑚. Each 

oscillatory function is applied to the hub node of each network (i.e. the node with highest 

connectivity) . Additionally, to enforce learning multiple functions simultaneously, we take the 

mean squared error across the different input periods-target functions pairings (Fig. 3B). 

We find that these networks can learn as many as seven distinct target functions by simply 

varying the period of the oscillating hub (Figs. 3C and S18). We find that this limit of 7 different 

target functions is caused by the difficulty for the network to learn both long and short timescale 

functions simultaneously (Fig. S16, S18). The network learns the shorter target lengths faster than 

the longer ones, but due to the mean squared error scoring mechanism, the network does not 

unlearn any of its shorter targets to learn the longer targets. We called hereafter this learning 

procedure resonant learning. 

We now compare learning efficacy under alternative evolutionary schemes: First, we force 

the hub node to stay constant, (or to follow the rule in Eq.(1)) but allow the hub node's outgoing 

weights to be mutated during learning. Again, we set the simulation to learn up to seven different 

input initial conditions to match different target lengths (Fig. 3D). Surprisingly, we find that with 

this procedure, networks were unable to learn any of the target functions with the same efficiency 

as with resonant learning (Fig. 3E, S19). Even for the most straightforward task of the three-input 

learning case, the resonant learning scheme converges at least one order of magnitude faster than 

learning with a non-oscillating hub. We attribute poor learning with a fixed hub state (or followin 

the dynamic rule in Eq.(1)) to the network's inability to learn longer target cycles without an 

oscillating, periodic input that primes the network with a timescale that matches the length of the 

target time series. 

Next, instead of using square wave function we ask whether other oscillatory patterns could 

give an advantage in learning. First, we test a simple learning case in which the networks must 

learn three different target functions of lengths {𝐿1, 𝐿2, 𝐿3}  =  {8,10,12}. As shown above, 

networks can easily learn these different target functions when we use matching square wave input 

periods {𝑇1, 𝑇2, 𝑇3}  =  {8,10,12}.  By contrast, we show that when we use periodic random 

patterns of 0 and 1s of length {𝑇1, 𝑇2, 𝑇3}  =  {8,10,12}, instead of square waves, the network can 

still learn efficiently, indicating that the timescale, not the specific repeated pattern, associated 

with the oscillations of the input may be the key feature for resonant learning (Fig. 4A, B). 

However, an alternative explanation may be that the distinct input functions throughout each 

evolutionary run, unique to each target function could govern learning. To rule out this hypothesis, 

we then generate three distinct white-noise signals with no specific timescale used as input 

functions of the hub to learn three different target functions of lengths {𝐿1, 𝐿2, 𝐿3}  =  {8,10,12}. 

We find that learning performance is degraded when we use white noise input functions in the 

absence of typical timescale (Fig. 4A, B). Altogether, these results led us to propose that the well-

defined timescale associated with the input period is the key feature that governs resonant learning.  
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Because the specific pattern of the oscillatory input signal at the hub is not central for the network 

to learn the target function efficiently, we ask if the network is capable of learning multiple target 

functions of the same length as a function of different patterned inputs in one evolutionary run. 

Indeed, we find that the networks can learn multiple target functions to match inputs all of length 

10 (Fig. S18). By contrast, when the targets vary in length, the network fully learns the shorter 

length targets before learning the longer period target functions (Fig. 3B-D).  

 

DISCUSSION 

 

In this work, we demonstrate that by forcing the network hub to oscillate we can induce a 

wide variety of novel attractor cycles. This finding opens the door to new strategies about how to 

control complex network behaviors with access to only few nodes such as hubs. Furthermore, we 

show that this property can be used in a network-based learning procedure for which a single 

Boolean network can be trained to learn multiple targets. Surprisingly, resonant learning 

outperforms similar learning procedures in the absence of oscillating inputs for comparable tasks 

by orders of magnitude. Resonant learning, however, is not the only way for networks to learn 

multiple targets. Previous studies demonstrated that topological separation into distinct domains 

of the network architecture was necessary for learning multiple tasks (31, 32). It is therefore 

interesting to note that learning multiple task is facilitated by either behavior. 

While resonant learning is a potentially useful property, in this work we have not directly 

applied it to known machine learning frameworks such as reservoir computing. However, it has 

already been shown that Boolean networks whose dynamics are tuned at the vicinity of the critical 

regime can produce more flexible reservoirs (4, 5), consequently, it would also be interesting to 

assess in the future how using oscillating hubs from reservoirs with a scale-free topology could 

affect the learning efficiency in such frameworks. 

 Finally, given the ability of oscillating hubs to govern network-level behavior through a 

frequency domain, we posit that frequency-based coordination might also be a mechanism in real 

biological systems as suggested by recent experiments (11) (12) . More generally, our study sheds 

light on a novel property of large dynamical systems and how we may exploit it to improve 

learning of dynamical behaviors. 
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CAPTIONS 

 

Figure 1 Effect of hub oscillations on downstream nodes (A) Illustrative example of network topology 

from which we analyze how certain downstream node (red) respond to a given oscillatory behavior of the 

hub (blue). (B) Single Node Frequency Response. Power spectrum (bottom) calculated from a randomly 

selected downstream node's time series when hub node oscillates at specific frequencies (top). We note that 

the plotted frequency here is directly related to the period, (𝑇 =
1

𝑓
). The power spectra of output nodes 

exhibit both higher and lower frequencies than the input signal. When the input signal has a period of T = 

8 (Blue), the network produces harmonics and subharmonics. On the other hand, when the input period is 

T=10 (red), the downstream node only exhibits harmonics. We show the corresponding time domain 

sequences in the SI (Fig. S5).  (C) Input-output relationship network response. We take this same 

network and observe the frequency response of all non-frozen nodes (rows) in the network when the input 

hub oscillates with a frequency of f = 0.1, equivalent to T = 10. We show the input square wave time series 

and its associated power spectrum above the output power spectrum for clarity. We normalized the 

frequency axis with the the input frequency of the hub, 𝑁0 = 𝑓 = 0.1, showing that harmonics dominate 

the behavior of downstream nodes. We repeat this procedure for input period T = 8 in the SI (Fig. S6). 

 

Figure 2. Creating new attractor landscapes.  (A) Oscillating hub creates new attractor cycles. In a 

non-oscillating setting, network states (blue) will converge on deterministic attractor cycles (bottom of 

funnel).  However, by oscillating 𝜎ℎ𝑢𝑏we create new attractor cycles (red). New cycles are separated from 

the ground state cycle by a non-zero height that represents the number of states for the new attractor to relax 

to the ground state when the hub stops oscillating. (B) Relaxation time of the network. We show the 

average relaxation time, t, vs. scale-free parameter 𝛾 for networks of 1000 nodes.  The relaxation time 

defines the time it takes for the network to settle onto a new ground state cycle when the hub is switched 

from 𝜎ℎ𝑢𝑏  =  1 to 0 (and vice versa). (C) Heights of new attractors as a function of the scale-free 

parameter and the period of hub oscillations.  For each T=4, T=8, T=20, and T=40, we average the 

height of the new attractors from 10 distinct networks, where we probe the landscape with 1,000 random 

starts. New attractor cycles for more chaotic networks (𝛾 = 1.9) yields larger heights i.e. new cycle states 

are further out in the reference basins. 

 

Figure 3. Training networks in the presence of oscillating hub.  (A) Fitness function for learning 

multiple targets.  We arbitrarily select an output node downstream in the network. For a given initial 

condition, we score how close the state of this node in the attractor cycle is to a randomly generated target 

function (see SI for more details). (B) Learning multiple functions. We learn multiple random target 

functions to match various input frequencies.  Separately, we run simulations from random initial conditions 

during which the hub node oscillates successively at all pre-selected input periods, 𝑇1, 𝑇2, . . , 𝑇𝑛. In each 

learning cycle, we score how close the attractor cycle at the output node matches the corresponding target 

function 𝑓1(𝑡), 𝑓2(𝑡), . . , 𝑓𝑛(𝑡). We take the mean squared fitness function across these trials to summarize 

of how well a network learned multiple behaviors at the output node. (C) Scale-free networks with 

oscillating hub can learn multiple target functions.  We run 10 different simulations with 𝑁 = 500, 𝛾 =

1.9, to show that the network can learn a maximum of 7 different target functions associated with 7 input 
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frequencies before a loss in performance. To decrease variance emerging from trial-to-trial variability, we 

average over 30 trials for 1-3 targets, 20 trials for 4-5 targets, and 10 trials for 6-7 targets. (D) Networks 

with a hub that has a fixed state learn much slower. Rather than allowing the network to learn in the 

presence of an oscillating hub with pre-selected period, we provide one fixed state for the hub and one 

target cycle, similar to the previous learning procedure (forcing the hub node to stay constant).  

Interestingly, while we might expect the network to learn faster when it must only be concerned with as 

few as 3 of the 2500 total input states, the network learns far slower under this alternative scheme, than in 

the presence of an oscillatory hub. (E) Summary plots of results from (C) and (D) for the learning cycle 

103 and 105. We can see that networks with resonant learning scheme are more fit than networks that must 

learn with a non-oscillating hub, regardless of whether or not the hub node is fixed or allowed to update 

freely. Bars are plotted with standard error.  

 

Figure 4. Learning is solely dependent on the timescale of oscillations.  (A) Different periodic hub 

input time series. We define three different input types: Square wave inputs which we have used 

previously, a white noise pattern with a set sequence and no characteristic timescale, and a repeated pattern 

input with a fixed period. (B) Period matters, not patterns. We compare multiplexed learning of three 

different target functions of length 8, 10, 12 for networks 𝑁 =  500, 𝛾 =  1.9 on the three types of input 

sequences.  Repeated pattern inputs and square wave inputs yield faster learning than white noise inputs, 

showing that the timescale associated hub oscillations matter more than the specific repeated pattern. In 

these simulations.  
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