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Abstract 17 

Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes 18 

nearly five percent of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few 19 

mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same 20 

anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo 21 

pathway and activates the Hippo effector YAP1. The HPV E7 oncoprotein is required for HPV 22 

infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV 23 

oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in 24 

basal epithelial cells. YAP1 activation by HPV E7 required that E7 bind and degrade the tumor 25 

suppressor PTPN14. E7 required YAP1 transcriptional activity to extend the lifespan of primary 26 

keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining 27 

infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 28 

activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified 29 

epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, 30 

targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis.  31 
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Introduction 32 

Human papillomaviruses (HPV) are non-enveloped viruses with circular double-stranded DNA 33 

genomes that infect keratinocytes in stratified squamous epithelia (Doorbar et al., 2015; Graham, 34 

2017; McBride, 2017). Although most HPV infections are cleared by the immune system, some 35 

infections persist and form higher grade lesions that can lead to cancer (Koshiol et al., 2008; 36 

McBride, 2021; Radley et al., 2016; Rositch et al., 2013). HPV infection at mucosal epithelial sites 37 

causes cancers including oropharyngeal, cervical, vaginal, penile, and anal malignancies (de 38 

Martel et al., 2017; Gillison et al., 2015). Nearly 5% of human cancer cases are caused by 39 

persistent infection with one of the high-risk (oncogenic) human papillomavirus genotypes (de 40 

Martel et al., 2020). 41 

 Inactivation of host cell tumor suppressors by the high-risk HPV E6 and E7 oncoproteins 42 

modulates cellular processes that enable HPV persistence. Two well-characterized instances of 43 

tumor suppressor inactivation by HPV are high-risk HPV E6 proteins targeting p53 for 44 

proteasome-mediated degradation and high-risk HPV E7 proteins binding and degrading the 45 

retinoblastoma protein (RB1) (Heck et al., 1992; Münger et al., 1989; Scheffner et al., 1990; 46 

Seavey et al., 1999; Werness et al., 1990). Both p53 degradation and RB1 inactivation are 47 

required for productive HPV infection (Collins et al., 2005; Flores et al., 2000; Kho et al., 2013; 48 

McLaughlin-Drubin et al., 2005; Wang et al., 2009). In addition to supporting productive infection, 49 

E7 is essential for HPV-mediated carcinogenesis (Mirabello et al., 2017). The impact of the HPV 50 

oncoproteins on cell growth control pathways is reflected in human cancer genomic data: genes 51 

in the p53 pathway and in the RB1-related cell cycle pathway are frequently mutated in HPV-52 

negative head and neck squamous cell carcinoma (HNSCC) but infrequently mutated in HPV-53 

positive HNSCC (Sanchez-Vega et al., 2018).  54 

Although some of the growth-promoting activities of high-risk HPV E6 and E7 are well 55 

established, open questions remain. RB1 binding/degradation by high-risk HPV E7 is necessary 56 

but insufficient for E7 transforming activity (Balsitis et al., 2006, 2005; Banks et al., 1990; Ciccolini 57 
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et al., 1994; Helt and Galloway, 2002; Huh et al., 2005; Ibaraki et al., 1993; Jewers et al., 1992; 58 

Phelps et al., 1992; Strati and Lambert, 2007; White et al., 2015). Papillomavirus researchers 59 

have sought to identify one or more activities of HPV E7 that cooperate with RB1 inactivation to 60 

promote carcinogenesis and to identify the cellular pathway affected by such an activity. Human 61 

cancer genomic data indicates that like the p53 and cell cycle pathways, the Hippo signaling 62 

pathway is more frequently mutated in HPV-negative than in HPV-positive HNSCC. The core 63 

Hippo pathway consists of a kinase cascade upstream of the effector proteins Yes-Associated 64 

Protein (YAP1) and its paralogue TAZ. When the Hippo kinases are inactive, YAP1 and TAZ are 65 

activated and translocate to the nucleus. In stratified squamous epithelia YAP1 is primarily 66 

expressed in the basal layer, where YAP1 activation is regulated by contextual cues including cell 67 

density, tension in the extracellular matrix, and contact with the basement membrane (Elbediwy 68 

et al., 2016; Totaro et al., 2017; Zhang et al., 2011). In normal stratified squamous epithelia, 69 

activation of YAP1 and TAZ promotes expansion of the basal cell compartment, and inhibition of 70 

YAP1 and TAZ allows keratinocytes to differentiate (Beverdam et al., 2013; Elbediwy and 71 

Thompson, 2018; Schlegelmilch et al., 2011; Totaro et al., 2017; Yuan et al., 2020; Zhang et al., 72 

2011). Mutations in many of the tumor suppressors upstream of YAP1/TAZ are common in a 73 

variety of cancer types (Moroishi et al., 2015). 74 

 Non-receptor protein tyrosine phosphatase 14 (PTPN14) has been implicated as a tumor 75 

suppressor and negative regulator of YAP1 (Knight et al., 2018; Mello et al., 2017; Poernbacher 76 

et al., 2012; Wang et al., 2012). Diverse HPV E7 bind directly to PTPN14 and recruit the E3 ligase 77 

UBR4 to direct PTPN14 for proteasome-mediated degradation (Szalmás et al., 2017; White et al., 78 

2016, 2012b; Yun et al., 2019). We have shown that PTPN14 degradation and RB1 79 

binding/degradation are separable activities of HPV E7 that each contribute to E7 carcinogenic 80 

activity (Hatterschide et al., 2020, 2019; White et al., 2016). However, the downstream 81 

consequences of PTPN14 degradation are poorly understood, and so far we have not observed 82 
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that PTPN14 inactivation in human keratinocytes causes an increase in canonical YAP1 target 83 

genes CTGF and CYR61. 84 

These observations regarding an additional transforming activity of HPV E7, the ability of 85 

E7 to inactivate PTPN14, and the relative paucity of mutations in the Hippo pathway in HPV-86 

positive HNSCC led us to hypothesize that HPV E7-mediated activation of YAP1 is required for 87 

the transforming activity of high-risk HPV E7. Here we show that expression of high-risk HPV E7 88 

is sufficient to activate YAP1 and that HPV E7 requires YAP1/TAZ-TEAD transcriptional activity 89 

to promote cell growth. We demonstrate that HPV E7 must bind PTPN14 to activate YAP1 and 90 

that PTPN14 inactivation alone is sufficient to activate YAP1. YAP1 activation by HPV E7 is 91 

restricted to the basal layer of the epithelium where we found PTPN14 expression to be enriched. 92 

Our finding that either HPV E7 or PTPN14 loss activate YAP1 specifically in basal 93 

epithelial cells led us to investigate the role of YAP1 activation during normal HPV infection. HPV 94 

infection begins in basal epithelial keratinocytes (Day and Schelhaas, 2014; Pyeon et al., 2009; 95 

Roberts et al., 2007) and infected basal cells are the site of persistent HPV infection. The basal 96 

cell compartment contains the only long-lived cells in the epithelium and the HPV genome can be 97 

maintained in dividing basal cells without productive replication (Egawa et al., 2012; Parish et al., 98 

2006; You et al., 2004). Activation of YAP1 and TAZ has been proposed to maintain the progenitor 99 

cell state in several different epithelia (Beverdam et al., 2013; Heng et al., 2020; Hicks-Berthet et 100 

al., 2021; Szymaniak et al., 2015; Yimlamai et al., 2014; Zhao et al., 2014). If YAP1 activation by 101 

E7 promotes the maintenance of a basal cell state in stratified squamous epithelia, YAP1 102 

activation could facilitate the persistence of HPV-positive cells. Testing this hypothesis, we found 103 

that YAP1 activation and PTPN14 degradation by E7 both promote the maintenance of cells in 104 

the basal compartment of stratified epithelia. We propose that YAP1 activation facilitates HPV 105 

persistence and contributes to the carcinogenic activity of high-risk HPV E7. 106 

107 

Results 108 
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HPV E7 activates YAP1 in basal keratinocytes 109 

A comprehensive analysis of somatic mutations and copy number variations in human tumor 110 

samples revealed that the cell cycle, p53, and Hippo pathways are the three pathways that exhibit 111 

the greatest difference in alteration frequency in HPV-negative vs HPV-positive HNSCC 112 

(Sanchez-Vega et al., 2018). We used data made available by The Cancer Genome Atlas (TCGA) 113 

through cBioPortal (Lawrence et al., 2015) to recapitulate the finding that genes in these pathways 114 

are altered at a lower frequency in HPV-positive than in HPV-negative HNSCC (Figure 1A and 115 

Figure 1—figure supplement 1). However, most HPV-positive HNSCC arise in the oropharynx. 116 

We repeated the analysis of pathway alteration rates using data only from HPV-positive and HPV-117 

negative oropharyngeal squamous cell carcinomas (OPSCC) (Figure 1A and Figure 1—figure 118 

supplement 1). Consistent with previous findings, HPV-negative OPSCC were more frequently 119 

altered in the p53, cell cycle, and Hippo pathways than HPV-positive OPSCC. Many of the Hippo 120 

pathway alterations in HPV-negative HNSCC or OPSCC are amplification of the YAP1/TAZ 121 

oncogenes or inactivating mutation in an upstream inhibitor of YAP1/TAZ. Either alteration type 122 

is consistent with a carcinogenic role for YAP1 activation in HNSCC. 123 

To test whether an HPV-encoded protein activates YAP1, we grew three dimensional (3D) 124 

organotypic epithelial cultures to model the differentiation of keratinocytes into basal and 125 

suprabasal compartments. Organotypic cultures of primary human foreskin keratinocytes (HFK) 126 

harboring an HPV18 genome exhibited increased YAP1 staining and increased YAP1 nuclear 127 

localization, indicative of YAP1 activation, particularly in the basal layer of the epithelium, 128 

compared to HFK cultures (Figure 1B and Figure 1—figure supplement 2A,B). Proliferating cell 129 

nuclear antigen (PCNA) transcription increases upon RB1 inactivation and is a marker of HPV E7 130 

expression. In contrast to the basal layer-specific compartmentalization of YAP1 activation in the 131 

HPV18 genome containing cells, PCNA levels were increased in these cultures in both the basal 132 

and suprabasal layers of the epithelium. 133 
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 We next tested whether high-risk HPV E6 or E7 alone was sufficient to activate YAP1. 134 

HFK transduced with retroviral expression vectors encoding HPV16 E6, HPV16 E7, or HPV18 E7 135 

were used to grow organotypic cultures. YAP1 expression and nuclear localization were 136 

increased in the HPV16 E7 and HPV18 E7 expressing cells relative to parental HFK cells (Figure 137 

1C and Figure 1—figure supplement 3A-C). As in the HPV18 genome-containing cells, YAP1 138 

activation was restricted to the basal epithelial layer. YAP1 expression or nuclear localization did 139 

not increase in organotypic cultures of HPV16 E6 expressing cells (Figure 1D and Figure 1—140 

figure supplement 4). Constitutive expression of either HPV16 E7 or HPV18 E7 induced PCNA 141 

expression in basal and suprabasal cells. We conclude that HPV promotes increased YAP1 142 

expression and nuclear localization in basal keratinocytes and that E7 is sufficient for YAP1 143 

activation.  144 

 145 

HPV E7 activates YAP1 in keratinocytes through PTPN14 degradation 146 

We previously discovered that HPV E7 targets the YAP1 inhibitor PTPN14 for proteasome-147 

mediated degradation (White et al., 2016, 2012b). We tested whether loss of PTPN14 expression 148 

in keratinocytes was sufficient to activate YAP1 in stratified epithelia by growing 3D organotypic 149 

cultures from previously described control and PTPN14 knockout (KO) N/Tert-Cas9 keratinocytes 150 

(Hatterschide et al., 2019). We found that YAP1 levels and YAP1 nuclear localization were 151 

increased in PTPN14 KO cultures compared to controls (Figure 2A and Figure 2—figure 152 

supplement 1A-C). YAP1 activation in basal epithelial cells lacking PTPN14 was comparable to 153 

YAP1 activation in HPV E7 cells. We conclude that loss of PTPN14 expression activates YAP1 154 

in basal keratinocytes. 155 

 A highly conserved C-terminal arginine in E7 makes a direct interaction with the C-156 

terminus of PTPN14, and the HPV18 E7 R84S variant is unable to bind or degrade PTPN14 157 

(Hatterschide et al., 2020; Yun et al., 2019). To test whether PTPN14 degradation by HPV E7 is 158 

required for activation of YAP1, we grew 3D organotypic cultures using primary HFK transduced 159 
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with retroviral expression vectors encoding HPV18 E7 wild type (WT) or HPV18 E7 R84S. Indeed, 160 

YAP1 expression and nuclear localization in the basal layer of HPV18 E7 R84S cultures were 161 

reduced compared to HPV18 E7 WT controls (Figure 2B and Figure 2—figure supplement 2).  162 

 In addition to activating YAP1, PTPN14 loss increased basal cell density from an average 163 

of 5.5 cells per 100 μm in control cultures to 9.0 cells per 100 μm in PTPN14 KO cultures (Figure 164 

2C). Basal cell density was higher in HPV18 E7 WT cultures (9.4 cells per 100 μm) than in HPV18 165 

E7 R84S cultures (to 7.1 cells per 100 μm) (Figure 2E). No statistically significant difference in 166 

suprabasal cell density was observed in either comparison (Figure 2D,F). We conclude that E7 167 

expression or PTPN14 loss in stratified squamous epithelia is sufficient to activate YAP1 in the 168 

basal layer of the epithelium and increase basal cell density.  169 

 170 

PTPN14 expression is enriched in basal keratinocytes 171 

YAP1 activation was restricted to basal epithelial cells in our organotypic cultures leading us to 172 

hypothesize that PTPN14 may act as a basal layer specific inhibitor of YAP1. We therefore sought 173 

to determine whether PTPN14 expression is restricted to a specific subset of cells in the stratified 174 

epithelium. In a recent single cell-RNA seq analysis of human neonatal foreskin epidermis, 175 

PTPN14 mRNA expression was enriched in the basal-III cluster, a subset of basal cells predicted 176 

to differentiate directly into spinous cells (Figure 3A,B) (S. Wang et al., 2020). PTPN14 expression 177 

was higher in basal-III cells than in the spinous or granular cell clusters. To test whether PTPN14 178 

expression is higher in basal or suprabasal cells in our cultures, we used laser capture 179 

microdissection to isolate basal and suprabasal layers from 3D organotypic cultures grown from 180 

unmodified primary HFK (Figure 3C). We found that there was a ~5-fold enrichment of PTPN14 181 

mRNA in the basal epithelial layer compared to the suprabasal layers (Figure 3D). As expected, 182 

the basal integrins ITGA6 and ITGB4 were expressed in the basal layer (Figure 3E) and the 183 

differentiation markers KRT1 and IVL were expressed in the suprabasal layers (Figure 3F). The 184 

same pattern of PTPN14 mRNA expression was observed in an organotypic culture grown from 185 
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primary HFK expressing HPV18 E7 WT (Figure 3—figure supplement 1A-C). We conclude that 186 

PTPN14 mRNA is enriched in basal keratinocytes in the presence or absence of HPV E7. Our 187 

data support that PTPN14 acts as a YAP1 inhibitor specifically in the basal compartment of 188 

stratified epithelia.  189 

 190 

YAP1/TAZ regulate differentiation downstream of PTPN14 191 

In previous unbiased experiments we found that the primary effect of PTPN14 inactivation on 192 

transcription is to repress epithelial differentiation gene expression (Hatterschide et al., 2020, 193 

2019). However, we also observed that PTPN14 inactivation did not increase expression of the 194 

canonical YAP1/TAZ targets CTGF and CYR61. Consistent with this difference there was minimal 195 

overlap between PTPN14-dependent differentially expressed genes and the genes listed in the 196 

MSigDB conserved YAP1 signature (Figure 4A). We therefore asked whether the ability of 197 

PTPN14 to regulate differentiation gene expression requires YAP1/TAZ as intermediates. 198 

Transduction of keratinocytes with a PTPN14 lentivirus induced the expression of the 199 

differentiation markers KRT10 and IVL in a dose-dependent manner (Figure 4—figure supplement 200 

1A-C). To test whether PTPN14 required YAP1/TAZ to increase KRT1 and IVL, we transfected 201 

HFK with siRNAs targeting YAP1 and WWTR1 then transduced the cells with PTPN14 lentivirus 202 

(Figure 4B). HFK transfected with control siRNA exhibited the expected increase in KRT1 and 203 

IVL after transduction with PTPN14 lentivirus (Figure 4C,D and Figure 4—figure supplement 204 

2A,B). However, keratinocytes depleted of YAP1/TAZ did not express relatively more KRT1 or 205 

IVL when PTPN14 was overexpressed than when it was not. We conclude that PTPN14 requires 206 

YAP1 and/or TAZ to regulate differentiation gene expression in keratinocytes. Both pairs of 207 

YAP1/TAZ siRNA had the same effect on differentiation in response to PTPN14 overexpression 208 

yet only one pair efficiently depleted TAZ protein levels (Figure 4B), leading us to speculate that 209 

YAP1 is the key intermediate connecting PTPN14 levels to differentiation gene expression. 210 
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 Next, we tested whether repression of keratinocyte differentiation occurs upon loss of 211 

LATS1 and LATS2, the core Hippo pathway kinases that phosphorylate and inhibit YAP1 and 212 

TAZ. We used siRNAs to deplete PTPN14, LATS1, or LATS2 and measured the expression of 213 

the differentiation markers KRT1 and IVL (Figure 4E,F). Depletion of PTPN14, LATS1, or LATS2 214 

all decreased differentiation gene expression to a similar degree. Consistent with our previous 215 

experiments, none of the three knockdowns significantly affected the levels of CTGF or CYR61 216 

(Figure 4G-H). Direct depletion of YAP1 or WWTR1 affected both differentiation gene expression 217 

and CTGF/CYR61 levels. YAP1 knockdown always had a stronger effect than did WWTR1 218 

knockdown and our qRT-PCR analyses supported that WWTR1 transcript levels were low in HFK. 219 

This result shows that inactivation of three different YAP1 inhibitors dampens differentiation gene 220 

expression and does not increase canonical YAP1 target gene expression in keratinocytes. Taken 221 

together, these data support that PTPN14 promotes differentiation through inhibition of YAP1/TAZ 222 

despite not affecting canonical YAP1/TAZ target genes. 223 

 224 

HPV-positive HNSCC are less differentiated than HPV-negative HNSCC 225 

We next asked whether the gene expression pattern observed downstream of PTPN14 loss is 226 

reflected in HPV-positive cancers. HPV-positive HNSCC have a strong propensity toward poorly 227 

differentiated, basaloid histology (Mendelsohn et al., 2010; Pai and Westra, 2009), which is 228 

reflected in their transcriptional profile (Hatterschide et al., 2019). We confirmed the relationship 229 

between HPV positivity and greater impairment of differentiation by immunohistochemical 230 

analysis of the differentiation marker KRT1 in sections of 14 HPV-negative tumors and 48 HPV-231 

positive tumors (Figure 5A). 43% of HPV-negative tumors and 12.5% of HPV-positive tumors 232 

stained positive for KRT1. We additionally measured gene expression in patient-derived xenograft 233 

(PDX) models generated from human HNSCC. We measured KRT1, KRT10, and IVL levels using 234 

RNA extracted from 11 HPV-negative and 8 HPV-positive HNSCC PDX. Each differentiation 235 

marker was expressed at a markedly lower level in HPV-positive PDX than in HPV-negative PDX 236 
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(Figure 5B). We observed the same pattern of differentiation marker gene expression in an 237 

analysis of transcriptomic data from other cohorts (Figure 5—figure supplement 1A-C) (Lawrence 238 

et al., 2015). Having confirmed that HPV-positive HNSCC exhibit reduced expression of 239 

differentiation markers than do HPV-negative HNSCC, we measured CTGF and CYR61 levels. 240 

We found no significant difference in expression of these canonical YAP1/TAZ target genes in 241 

HPV-positive vs HPV-negative PDX, although there was a trend towards higher CTGF in the HPV-242 

positive PDX (Figure 5C and Figure 5—figure supplement 1D,E). The pattern of low expression 243 

of differentiation markers and unchanged canonical YAP1/TAZ target gene expression in HPV-244 

positive versus HPV-negative patient samples is consistent with the effects of PTPN14 245 

inactivation in cultured cells. 246 

 247 

High-risk HPV E7 require YAP1/TAZ-TEAD transcriptional activity to extend the lifespan of 248 

primary keratinocytes. 249 

High-risk but not low-risk HPV E7 proteins can extend the lifespan of primary keratinocytes 250 

(Halbert et al., 1991). The TEADi protein is a genetically encoded competitive inhibitor that 251 

prevents binding between YAP1/TAZ and TEAD transcription factors (Yuan et al., 2020). We used 252 

TEADi to test whether YAP1/TAZ-TEAD transcriptional activity was required for high-risk HPV E7 253 

to extend the lifespan of primary HFK. We transduced HFK with retroviral vectors encoding GFP, 254 

HPV16 E7, or HPV18 E7 plus a lentiviral vector encoding doxycycline-inducible GFP-TEADi. As 255 

anticipated, HPV16 E7 or HPV18 E7 extended the lifespan of primary HFK based on cumulative 256 

population doublings (Figures 6A,B). TEADi induction upon doxycycline treatment decreased the 257 

lifespan of primary HFK in the presence or absence of E7, but the effect of YAP1/TAZ-TEAD 258 

inhibition was greater in the HPV16 E7 and HPV18 E7 cells, where E7 had minimal ability to 259 

promote growth in the presence of TEADi. We conclude that high-risk HPV E7 proteins require 260 

YAP1/TAZ-TEAD transcriptional activity for their lifespan extending capacity in primary 261 

keratinocytes.  262 
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 263 

PTPN14 loss and YAP1 activation promote basal cell retention in organotypic cultures 264 

YAP1 overexpression impairs differentiation and promotes progenitor cell identity in squamous 265 

and non-squamous epithelia. HPV infection is maintained in a reservoir of infected basal cells and 266 

productive virus replication begins upon commitment to differentiation. To better understand how 267 

repression of differentiation downstream of YAP1 activation affects HPV viral biology, we 268 

developed an assay to measure cell retention in the basal epithelial layer. We hypothesized that 269 

YAP1 activation by HPV E7 might promote the adoption of a basal cell identity in stratified 270 

squamous epithelia. In our cell fate monitoring assay, a small proportion of GFP-labeled cells 271 

were mixed with unmodified, parental HFK, and the pool was used to generate organotypic 272 

cultures in which normal labeled cells are randomly distributed throughout the epithelium.  273 

Our initial experiment tested whether YAP1 activation altered cell fate in stratified 274 

squamous epithelia. We used GFP-labeled tracing cells that expressed doxycycline-inducible 275 

YAP1 WT, YAP1 S127A (hyperactive), or YAP1 S94A (cannot bind TEAD transcription factors) 276 

(Figure 7—figure supplement 1A,B). In organotypic cultures grown from a 1:25 mixture of GFP-277 

labeled cells and unmodified HFK, about 20% of uninduced GFP+ cells were found in the basal 278 

layer. Induction of YAP1 WT or YAP1 S127A expression was sufficient to promote the retention 279 

of nearly 60% of labeled cells in the basal layer of the epithelium (Figure 7A,B). Only around 40% 280 

of GFP+ cells were found in the basal layer when YAP1 S94A was induced. These data indicate 281 

that YAP1 activation causes cells to be retained in the basal layer of a stratified squamous 282 

epithelium. The ability of YAP1 to bind TEAD transcription factors contributed to its activity in the 283 

cell fate assay. 284 

 We next tested whether loss of PTPN14 expression was sufficient to promote basal cell 285 

identity. We grew organotypic cultures from mixtures of unmodified primary HFK and GFP-labeled 286 

control or PTPN14 KO HFK (Figure 7—figure supplement 1C,D). 60-70% of PTPN14 KO tracer 287 

cells were found in the basal layer when either of two PTPN14 guide RNAs were used whereas 288 
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about 20% of control tracer cells were retained in the basal layer (Figure 7C,D). Thus, PTPN14 289 

knockout is sufficient to promote basal cell fate determination in keratinocytes. 290 

 Next, we tested whether HPV E7 promoted basal cell retention and if so, whether its cell 291 

retention activity required PTPN14 degradation. We grew organotypic cultures from mixtures of 292 

GFP-labeled HFK expressing HPV18 E7 WT, HPV18 E7 R84S, or the empty vector control diluted 293 

1:50 into unmodified primary HFK (Figure 7—figure supplement 1E,F). We found that nearly 80% 294 

of GFP-labeled HPV18 E7 WT tracer cells were retained in the basal layer compared to about 295 

10% of labeled control cells (Figure 7E,F). HPV18 E7 WT labeled cells were numerous and 296 

grouped in clusters in the basal layer, suggesting that E7 promoted the clonal expansion of 297 

labeled basal cells. Both effects were dampened in experiments using HPV18 E7 R84S tracer 298 

cells (cannot degrade PTPN14). Labeled HPV18 E7 R84S cells exhibited varying degrees of 299 

basal cell expansion and basal cell retention and approximately 60% of labeled cells were in the 300 

basal layer. HPV18 E7 R84S retains the ability to inactivate RB1 and we interpret these data to 301 

mean that the proliferation of labeled basal cells resulted from RB1 inactivation. Finally, HPV18 302 

E7 ∆DLLC cannot bind RB1 but can bind and degrade PTPN14. In a cell fate experiment using 303 

GFP-labeled HPV18 E7 ∆DLLC tracer cells, the labeled cells were present mainly as single cells 304 

in the basal layer (Figure 7—figure supplement 2A-B). The behavior of the two mutant HPV E7 305 

proteins supports that PTPN14 degradation is required for basal cell retention and RB1 306 

inactivation is required for basal cell expansion. We conclude that PTPN14 degradation and YAP1 307 

activation by HPV18 E7 promote basal cell retention. 308 

 309 

Discussion 310 

YAP1 and TAZ are oncogenes that promote growth and inhibit differentiation in stratified 311 

squamous epithelia (Elbediwy et al., 2016; Schlegelmilch et al., 2011; Totaro et al., 2017; Yuan 312 

et al., 2020; Zhang et al., 2011). Here we report that HPV E7 activates YAP1 (Figure 1). 313 

YAP1/TAZ-TEAD transcriptional activity is required for the carcinogenic activity of HPV E7 (Figure 314 
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6) and YAP1 activation by E7 biases HPV E7-expressing cells to be retained in the basal epithelial 315 

layer (Figure 7). Based on these findings we propose that YAP1 activation by HPV E7 enables 316 

HPV-infected cells to persist in stratified epithelia. There is substantial evidence that RB1 317 

inactivation is necessary but insufficient for the transforming activity of high-risk HPV E7 (Balsitis 318 

et al., 2006, 2005; Banks et al., 1990; Ciccolini et al., 1994; Helt and Galloway, 2002; Huh et al., 319 

2005; Ibaraki et al., 1993; Jewers et al., 1992; Phelps et al., 1992; Strati and Lambert, 2007; White 320 

et al., 2015). We propose that YAP1 activation cooperates with RB1 inactivation to enable the 321 

transforming activity of HPV E7.  322 

 PTPN14 binding by HPV18 E7 was required for activation of YAP1 in the basal layer and 323 

PTPN14 KO was sufficient for the same effect (Figure 2). Highly conserved amino acids in E7 324 

participate in binding to PTPN14 (Hatterschide et al., 2020; Yun et al., 2019), indicating that YAP1 325 

activation and maintenance of basal cell state is likely shared among diverse papillomavirus E7 326 

proteins. Some minor genotype-specific differences were apparent. HPV18 E7 depletes PTPN14 327 

protein levels more efficiently than HPV16 E7 (Hatterschide et al., 2020; White et al., 2016), which 328 

is consistent with the observed stronger effect of HPV18 E7 on YAP1 nuclear localization in basal 329 

cells (Figure 1). Genotype-specific differences could also explain the stronger effect of TEADi on 330 

HPV18 E7 in lifespan extension assays (Figure 6). Although other reports have suggested that 331 

HPV might activate YAP1 (He et al., 2015; Morgan et al., 2020; Olmedo-Nieva et al., 2020; Webb 332 

Strickland et al., 2018), no specific activity of an HPV protein has previously been shown to enable 333 

YAP1 activation. Other groups have proposed that HPV E6 activates YAP1 (He et al., 2015; Webb 334 

Strickland et al., 2018), but we did not observe YAP1 activation by HPV E6. We conclude that 335 

activation of YAP1 by HPV E7 is contingent upon its ability to bind and degrade PTPN14. 336 

 Even when HPV E7 was expressed in all layers of a stratified epithelium, YAP1 levels and 337 

nuclear localization increased only in basal epithelial cells. We found that E7 required PTPN14 338 

degradation to activate YAP1 and that PTPN14 was expressed predominantly in basal 339 

keratinocytes (Figure 3). Basal cell-specific expression of PTPN14 is consistent with the 340 
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observation that it is regulated by p63, the master regulator of basal cell identity in stratified 341 

epithelia (Perez et al., 2007). We propose that PTPN14 inhibits YAP1 primarily in basal cells and 342 

that unlike the effects of E7 on RB1 in both differentiated and undifferentiated cells, E7 activates 343 

YAP1 primarily in basal cells.  344 

 Degradation of PTPN14 by HPV E7 represses keratinocyte differentiation but does not 345 

induce canonical Hippo pathway target genes (Hatterschide et al., 2020, 2019). Nonetheless, we 346 

found that PTPN14 overexpression promoted differentiation only in the presence of YAP1/TAZ 347 

(Figure 4C,D). Few studies have tested how YAP1 inhibitor inactivation alters gene expression 348 

downstream of YAP1. Here we demonstrate that inactivation of LATS1 or LATS2, two well-349 

characterized inhibitors of YAP1/TAZ, also repressed differentiation genes but did not induce 350 

canonical YAP1/TAZ targets (Figure 4E-I). Taken together, these experiments indicate that 351 

PTPN14 acts through YAP1/TAZ to regulate differentiation in keratinocytes. It is so far unclear 352 

why CTGF and CYR61 expression is sensitive to large changes in total levels of YAP1 or TAZ 353 

yet is unaffected by alterations in regulators upstream of YAP1/TAZ. Nonetheless, the pattern of 354 

low differentiation gene expression and unchanged expression of canonical YAP1/TAZ target 355 

genes caused by PTPN14 loss is consistent with gene expression differences between HPV-356 

positive and HPV-negative HNSCC. 357 

 PTPN14 knockout and knockdown reduced differentiation gene expression in monolayer 358 

culture. Even so, we did not observe reduced differentiation in suprabasal layers of organotypic 359 

cultures grown from PTPN14 knockout cells (Figure 2A and Figure 2—figure supplement 1A-C). 360 

Using our cell fate monitoring assay, we determined that instead, HPV18 E7 promotes basal cell 361 

retention and that either YAP1 overexpression or PTPN14 KO are sufficient for this activity (Figure 362 

7). The effect of YAP1 activation on cell fate in our assay resembles several experiments in which 363 

YAP1 promotes progenitor cell identity in airway and liver epithelia (Yimlamai et al., 2014; Zhao 364 

et al., 2014). Our findings demonstrate that YAP1 activation enables basal cell fate determination 365 

in stratified squamous epithelia and show that loss of an inhibitor of YAP1 has the same effect. 366 
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We conclude that one consequence of YAP1 activation by HPV E7 is that E7-expressing cells are 367 

retained in the basal layer of stratified squamous epithelia. 368 

 Although persistent infection is a prerequisite for HPV-mediated carcinogenesis, the 369 

mechanisms used by papillomaviruses to establish persistent infections remain incompletely 370 

understood. Maintaining infection in the basal cell compartment is critical for papillomavirus 371 

persistence. Substantial effort has been devoted to the mechanistic understanding of how the 372 

papillomavirus genome is stably maintained in the basal layer upon cell division. However, much 373 

less is known about how papillomaviruses manipulate epithelial cell fate to establish and expand 374 

the pool of infected basal cells. Previously, HPV E7 was believed to be primarily required to 375 

establish a cellular environment conducive to HPV DNA replication in suprabasal cells. We 376 

propose that a so far unappreciated role of E7 is that it activates YAP1 to facilitate HPV 377 

persistence by biasing infected cells to remain in the basal layer of the epithelium. Not every HPV 378 

E7-expressing cell was retained in the basal layer, so we do not anticipate that YAP1 activation 379 

would block differentiation-dependent HPV replication. HPV E6 also represses differentiation 380 

gene expression in keratinocytes and has been proposed to promote basal cell retention (Kranjec 381 

et al., 2017). Further research is needed to determine the extent to which different HPV genotypes 382 

depend on the activities of E6 or E7 for basal cell retention activity. 383 

 To the best of our knowledge, no other viruses are recognized to modulate cell fate 384 

decisions in solid tissues in a way that facilitates persistence. Some herpesviruses impact the 385 

choice between progenitor/differentiated cell fates in infected immune cells, for example Epstein-386 

Barr Virus (EBV) restricts B-cell differentiation to facilitate viral latency (Knox and Carrigan, 1992; 387 

Niiya et al., 2006; Onnis et al., 2012; Romeo et al., 2019; Styles et al., 2017). Herpesviruses, 388 

polyomaviruses, and hepadnaviruses encode proteins proposed to activate YAP1/TAZ or alter 389 

Hippo signaling (Hwang et al., 2014; Liu et al., 2014, 2015; Nguyen et al., 2014; Shanzer et al., 390 

2015; Tian et al., 2004; Z. Wang et al., 2020). Not all of the mechanisms used by these viruses 391 

to activate YAP1 nor the downstream consequences of YAP1 activation have been well defined. 392 
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Our finding that HPV E7 activates YAP1 to manipulate cell fate opens up an exciting new line of 393 

inquiry into how YAP1, TAZ, and the Hippo signaling pathway could impact viral infections by 394 

regulating tissue developmental processes.  395 

 YAP1 activation and PTPN14 are relevant to both viral and non-viral cancers. We found 396 

that a genetically encoded inhibitor of YAP1/TAZ-TEAD transcription inhibited the growth of high-397 

risk HPV E7 expressing cells (Figure 6), indicating that high-risk HPV E7 proteins require YAP1 398 

or TAZ for carcinogenesis. YAP1/TAZ activation is sufficient to drive carcinogenesis in mouse 399 

models of cervical and oral cancer (He et al., 2019; Nishio et al., 2020; Omori et al., 2020), and 400 

the YAP1 inhibitor verteporfin reduced the growth of HPV-positive tumors in a xenograft model 401 

(Liu et al., 2019). YAP1 activation correlates with the clinical stage of HPV infection (Nishio et al., 402 

2020), and YAP1 localizes to the nucleus in HPV-positive cancers (Alzahrani et al., 2017). Basal 403 

cell carcinoma (BCC) is the non-viral cancer that is most clearly linked to PTPN14. Germline 404 

inactivating mutations in PTPN14 are associated with a 4- to 8-fold increase in risk of BCC by age 405 

70 (Olafsdottir et al., 2021) and somatic mutations in PTPN14 are frequent in BCC (Bonilla et al., 406 

2016). YAP1/TAZ-TEAD transcriptional activity also restricts differentiation in BCC cells (Yuan et 407 

al., 2021). We propose that the specific association of PTPN14 with BCC is related to our 408 

observation that PTPN14 loss activates YAP1 in basal epithelial cells. YAP1 inhibition is of major 409 

clinical interest for several cancer types, and it is appealing to speculate that targeting YAP1 could 410 

treat persistent HPV infection and/or HPV-positive cancers. 411 

 412 

  413 
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Materials and Methods 414 

Plasmids and cloning. pInducer20 EGFP-TEADi was a gift from Ramiro Iglesias-Bartolome 415 

(Addgene plasmid # 140145) (Yuan et al., 2020). pQCXIH-Myc-YAP (Addgene plasmid # 33091), 416 

pQCXIH-Flag-YAP-S127A (Addgene plasmid # 33092), and pQCXIH-Myc-YAP-S94A (Addgene 417 

plasmid # 33094) were gifts from Kun-Liang Guan (Zhao et al., 2007). Each YAP1 ORF was 418 

amplified by PCR from pQCXIH, cloned into pDONR223, and transferred into pLIX_402 lentiviral 419 

backbone using Gateway recombination. pLIX_402 was a gift from David Root (Addgene plasmid 420 

# 41394). pLenti CMV GFP Hygro (656-4) was a gift from Eric Campeau & Paul Kaufman 421 

(Addgene plasmid # 17446) (Campeau et al., 2009). PHAGE-P-CMVt N-HA GFP was previously 422 

described (Galligan et al., 2014). pNeo-loxP-HPV18 was the kind gift of Thomas Broker and 423 

Louise Chow (Wang et al., 2009). The ∆DLLC mutation was introduced into the pDONR HPV18 424 

E7 vector using site-directed mutagenesis. HPV18 E7 ∆DLLC and GFP ORFs were cloned into 425 

MSCV-P C-FlagHA GAW or MSCV-Neo C-HA GAW destination vectors using Gateway 426 

recombination. The remaining MSCV-P C-FlagHA and MSCV-Neo C-HA HPV E6 and HPV E7 427 

retroviral plasmids and pHAGE lentiviral plasmids have been previously described (Hatterschide 428 

et al., 2020; White et al., 2016, 2012a, 2012b). A complete list of all plasmids used in this study 429 

is in Supplemental File 1. 430 

 431 

Cell culture, retrovirus production, and lentivirus production. Deidentified primary human 432 

foreskin keratinocytes (HFK) and human foreskin fibroblasts (HFF) were provided by the 433 

University of Pennsylvania Skin Biology and Disease Resource-Based Center (SBDRC). N/Tert-434 

1 cells are hTert-immortalized HFK (Dickson et al., 2000), and N/Tert-Cas9 mock and sgPTPN14-435 

1 are N/Tert-1 cells further engineered to constitutively express Cas9 (Hatterschide et al., 2019). 436 

Keratinocytes for cell fate experiments were cultured in keratinocyte serum-free media (KSFM) 437 

(Life Technologies, Carlsbad, California) mixed 1:1 with Medium 154 (Thermo Fisher Scientific, 438 

Waltham, Massachusetts) with the human keratinocyte growth supplement (HKGS) (Thermo 439 
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Fisher Scientific) (Duperret et al., 2015; Egolf et al., 2019). Keratinocytes for all other experiments 440 

were cultured as previously described (White et al., 2012a). HFF were cultured in Dulbecco’s 441 

Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) supplemented with antibiotic and 442 

antimycotic. HFK harboring the HPV18 genome were previously described (Hatterschide et al., 443 

2020), and were generated by transfecting cells with the pNeo-loxP-HPV18 vector (Wang et al., 444 

2009) along with NLS-Cre and selecting with G418 to generate a stable population. Lentiviruses 445 

and retroviruses were produced in 293T or 293 Phoenix cells respectively as previously described 446 

(White et al., 2016). Stable keratinocyte populations were generated following transduction by 447 

selection with puromycin, G418, or hygromycin alone or in combination.  448 

 449 

Lifespan extension assay. Primary HFK were engineered and cultured as described in cell 450 

culture, retrovirus production, and lentivirus production. The growth of engineered HFK was 451 

monitored in culture for 38 days. Population doublings were calculated using the number of cells 452 

at the beginning and end of each passage.  453 

 454 

Organotypic epithelial culture. Devitalized human dermis was provided as deidentified material 455 

from the University of Pennsylvania SBDRC. Stands for organotypic epithelial cultures were 456 

printed using high temperature, autoclavable resin at the University of Pennsylvania Biotech 457 

Commons 3D-printing facility. Organotypic cultures were generated as previously described 458 

(Duperret et al., 2015; Egolf et al., 2019). Devitalized dermis was seeded with primary HFF on 459 

the dermal side at a density of 3 x 104 cells per cm2 of culturing area and cultured for four days. 460 

Dermis and fibroblasts were then stretched across 3D-printed stands. The epidermal side of the 461 

dermis was seeded with unmodified or engineered keratinocytes at a density of 1 x 106 cells per 462 

cm2. Organotypic cultures were cultured in E media (Fehrmann and Laimins, 2005) with the 463 

dermal layer maintained at the air-liquid interface starting on the day of seeding keratinocytes. 464 

Cultures were allowed to stratify for 12-14 days, then trimmed and fixed in 10% neutral buffer 465 
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formalin for 24 hours. Tissues were embedded in paraffin and sectioned by the SBDRC Core A. 466 

A complete list of all organotypic cultures used in this study is in Supplemental File 2. 467 

 468 

siRNA transfection. Primary HFK were transfected with siRNAs using the Dharmafect 1 469 

transfection reagent. All siRNA experiments were collected 72 h post transfection. Two siRNAs 470 

were used to target each gene in an experiment. The siRNAs used in this study were all 471 

purchased from Dharmacon (Lafayette, Colorado): nontargeting siRNA, siYAP1-06, siYAP1-08, 472 

siWWTR1-06, siWWTR1-08, siPTPN14-05, siPTPN14-08, siLATS1-05, siLATS1-08, siLATS2-473 

09, siLATS2-10. 474 

 475 

Laser capture microdissection. Formalin-fixed paraffin-embedded (FFPE) organotypic cultures 476 

were sectioned onto polyethylene naphthalate (PEN) membrane glass slides by the SBDRC Core 477 

A. Laser capture microdissection was performed on a Leica LMD 7000 microscope. Hundreds of 478 

microdissections were made per sample amounting to ~1.5 mm2 of total dissected area per 479 

sample. RNA was isolated using the RNeasy FFPE kit (Qiagen, Germantown, Maryland). RNA 480 

concentration was determined using Qubit RNA HS assay kit (Life Technologies).  481 

 482 

Patient derived xenografts. The PDXs were previously established from surgical resections of 483 

treatment-naive HPV-positive OPSCC as described (Facompre et al., 2020). Human tumors were 484 

engrafted subcutaneously in NSG mice and passaged at least twice before cryopreservation 485 

when they reached a volume of 0.5-1.0 cm3. Total tumor RNA was isolated using the QIAamp 486 

RNA Blood Mini Kit (Qiagen). 487 

 488 

Western blotting. Western blots were performed using Mini-PROTEAN (Bio-Rad Laboratories, 489 

Hercules, California) or Criterion (Bio-Rad) Tris/Glycine SDS-PAGE gels and transfers were 490 

performed onto polyvinylidene difluoride (PVDF). Membranes were blocked with 5% nonfat dried 491 
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milk in Tris-buffered saline with 0.05% Tween 20 (TBST). Membranes were incubated with 492 

primary antibodies as specified in Supplemental File 1. Following TBST washes, membranes 493 

were incubated with horseradish peroxidase-coupled secondary antibodies and imaged using 494 

chemiluminescent substrate on an Amersham Imager 600 (GE Healthcare, Chicago, Illinois). 495 

 496 

qRT-PCR. Unless otherwise specified, total cellular RNA was isolated using the NucleoSpin RNA 497 

extraction kit (Macherey-Nagel/Takara, San Jose, California). cDNA was generated from bulk 498 

RNA with the high-capacity cDNA reverse transcription kit (Applied Biosystems, Waltham, 499 

Massachusetts). cDNAs were used as a template for qPCR using Fast SYBR green master mix 500 

(Applied Biosystems) and a QuantStudio 3 system (Thermo Fisher Scientific). 18S rRNA qRT-501 

PCR primers were ordered from Integrated DNA Technologies (Integrated DNA Technologies, 502 

Inc., Coralville, Iowa): FWD, 5- CGCCGCTAGAGGTGAAATTCT; REV, 5- 503 

CGAACCTCCGACTTTCGTTCT (Roh et al., 2005). KiCqStart SYBR green primers for qRT-PCR 504 

(MilliporeSigma, St. Louis, Missouri) were used for the remaining genes assayed in this study: 505 

KRT1, KRT10, IVL, ITGB4, ITGA6, CYR61, CTGF, PTPN14, YAP1, WWTR1, LATS1, LATS2, 506 

G6PD, and GAPDH. 507 

 508 

Immunofluorescence, immunohistochemistry, and microscopy. FFPE sections were 509 

prepared for immunofluorescence by deparaffinization with xylene washes, rehydration through 510 

an ethanol gradient, and heat induced epitope retrieval (HIER). Tissue sections were blocked with 511 

PBS containing 1% bovine serum albumin, 10% normal goat serum, and 0.3% Triton X-100. 512 

Tissue sections were incubated with primary antibodies at 4°C overnight, washed with PBS with 513 

0.05% Tween 20, and incubated with fluorescently labeled secondary antibodies and Hoechst 514 

33342 at room temperature. Antibody dilutions and HIER conditions are specified in Supplemental 515 

File 1. Fluorescent micrographs were captured using an Olympus IX81 microscope. All 516 
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fluorescent micrograph images within the same figure panels were captured using the same 517 

exposure time and batch processed using the same contrast settings. 518 

 The TMA was constructed from surgical resection specimens of 120 HNSCC that vary by 519 

TNM stage and HPV status (Supplemental File 3). Archival FFPE tumors of the oral cavity and 520 

oropharynx were identified retrospectively and oropharyngeal tumors were evaluated for HPV 521 

status as per College of American Pathologists criteria (Lewis et al., 2018) using IHC for p16. 522 

When present, lymph node metastases were included in association with the primary tumor of 523 

origin. All FFPE specimens were represented in the TMA by at least three tissue cores that 524 

incorporate both non-necrotic central tumor regions and invasive margins. Tumor materials and 525 

clinical data were accessed under University of Pennsylvania IRB protocol 417200. Staining for 526 

KRT1 was performed by the Clinical Services Laboratory in the University of Pennsylvania 527 

Department of Pathology and Laboratory Medicine. Antibody information can be found in 528 

Supplemental File 1. The KRT1 stained slides were reviewed with a standard light microscope, 529 

and evaluation was based on the presence or absence of staining in the cytoplasm of tumor cells.  530 

 531 

Bioinformatic analysis. Genomic mutation and copy number variation data as well as tumor 532 

RNA-seq gene expression data from TCGA (Lawrence et al., 2015) were analyzed using the 533 

cBioPortal.org graphical interface (Cerami et al., 2012; Gao et al., 2013). RNA-seq V2 RSEM 534 

(RNA-Seq by Expectation Maximization) normalized expression values for individual genes were 535 

downloaded directly from cBioPortal.org. OPSCC were distinguished from HNSCC by clinical 536 

annotation of primary tumor site and HPV-positive and HPV-negative status was assigned based 537 

on previously reported HPV transcript status (Chakravarthy et al., 2016). Genes included as a 538 

part of each pathway analysis are listed in Supplemental File 4. Missense, truncating, and splice 539 

mutations of unknown significance as well as amplifications of tumor suppressor genes and 540 

deletion of oncogenes were excluded from total alteration tallies. 541 
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 Single cell-RNA sequencing dataset derived from the human neonatal foreskin epidermis 542 

and subsequent clustering analysis were retrieved from GitHub (S. Wang et al., 2020) and 543 

reanalyzed with MATLAB. PTPN14 expression was calculated by averaging mRNA expression 544 

for all cells by cluster and donor. 545 

  546 
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Figure Legends 560 

Figure 1 | HPV E7 activates YAP1 in basal epithelial keratinocytes. (A) cBioPortal analysis 561 

for total genomic mutations and copy number alterations in HPV+/- OPSCC and HNSCC. Graph 562 

displays the percent of tumors with alterations in each pathway. Statistical significance was 563 

determined by Fisher’s exact test. (B-D) Organotypic cultures were grown from primary HFK, HFK 564 

harboring the HPV18 genome, or HFK transduced with retroviral expression encoding HPV E6 or 565 

E7 proteins. FFPE sections of cultures grown from (C) HFK or HFK harboring the HPV18 genome, 566 

(D) HFK or HFK expressing HPV16 E7 or HPV18 E7, or (E) HFK or HFK expressing HPV16 E6 567 

or HPV16 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). White dashed 568 

lines indicate the basement membrane. White boxes indicate the location of insets in main 569 

images. Main image scale bars = 100 μm. Inset scale bars = 25 μm. 570 

 571 

Figure 2 | HPV E7 activates YAP1 in basal keratinocytes through PTPN14 degradation. 572 

Organotypic cultures were grown from N/Tert-Cas9 keratinocytes or primary HFK transduced with 573 

retroviral expression vectors encoding HPV18 E7 WT or R84S. (A) FFPE sections of cultures 574 

grown from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1 575 

(magenta), IVL (green), and Hoechst (Gray). (B) FFPE sections of cultures grown from parental 576 

HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1 (magenta), 577 

PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement membrane. White 578 

boxes indicate the location of insets in main images. Main image scale bars = 100 μm. Inset scale 579 

bars = 25 μm. (C-F) Quantification of the number of (C and E) basal cells and (D and F) suprabasal 580 

cells per 100 μm of epidermis. Graphs display the mean ± SD and each individual data point 581 

(independent cultures). Statistical significance was determined by ANOVA (*p<0.05, ***p<0.001). 582 

 583 

Figure 3 | PTPN14 expression is enriched in basal keratinocytes. (A-B) Single-cell RNA 584 

sequencing data and clustering analysis from Wang et al. was reanalyzed to assess PTPN14 585 
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expression in different subsets of epidermal cells. (A) Diagram of epidermis; shading depicts 586 

tissue localization of cell clusters. (B) For each donor, the mean of PTPN14 mRNA expression 587 

was calculated for each cell cluster. Graphs display the mean of PTPN14 mRNA expression for 588 

each donor (circles) as well as the mean of all five donors ± SEM (bars and error bars). Statistical 589 

significance was determined by ANOVA (*p<0.05, **p<0.01). (C-F) Basal and suprabasal layers 590 

from organotypic cultures were dissected using laser capture microdissection. (C) Representative 591 

images of HFK cultures before and after individual laser dissections. Hundreds of such cuts were 592 

performed per sample. (D-F) RNA was purified from isolated layers and qRT-PCR was used to 593 

assess the expression of PTPN14 (D), basal cell markers ITGA6 and ITGB4 (E), and 594 

differentiation markers KRT1 and IVL (F). Graphs display the mean and each individual data point.  595 

 596 

Figure 4 | YAP1/TAZ regulate differentiation downstream of PTPN14. (A) Venn diagram 597 

comparing the MSigDB YAP conserved signature to the differentially expressed genes (DEG) 598 

from our two published experiments that reflect PTPN14 loss in keratinocytes. (B-D) YAP1 and 599 

WWTR1 were simultaneously knocked down by siRNA transfection in HFK. Transfected HFK 600 

were then transduced with PTPN14 lentivirus at 24h post transfection. Cells were lysed for protein 601 

and total cellular RNA at 72h post transfection. (B) Cell lysates were subjected to 602 

SDS/PAGE/Western analysis and probed with antibodies to PTPN14, YAP1, TAZ, and Actin. (C 603 

and D) qRT-PCR was used to measure the expression of the differentiation markers KRT1 and 604 

IVL relative to G6PD. Graphs display fold change in gene expression relative to the mock 605 

transduced cells. (E-I) Primary HFK were transfected with siRNAs targeting YAP1, WWTR1 606 

(TAZ), PTPN14, LATS1, and LATS2. Two siRNAs were used per target. qRT-PCR was used to 607 

measure gene expression for: the differentiation markers IVL (E) and KRT1 (F), and the canonical 608 

YAP1/TAZ targets CTGF (G) and CYR61 (H). Data confirming that individual siRNA transfections 609 

depleted intended transcripts is summarized in a heatmap of log2(fold-change) levels (I). Bar 610 
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graphs display the mean ± SD of three independent replicates. Statistical significance was 611 

determined by ANOVA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 612 

 613 

Figure 5 | HPV-positive HNSCC are less differentiated than HPV-negative HNSCC. (A) 614 

Human HNSCC tumor samples were stained for KRT1 (left). Scale bar = 100 μm. Graph displays 615 

the percentage of tumors that were KRT1+ (right). Statistical significance was determined by 616 

Fisher’s exact test. (B-C) Total RNA was purified from PDX samples and qRT-PCR was used to 617 

assess gene expression of (B) the differentiation markers KRT1, KRT10, and IVL and (C) the 618 

canonical YAP1/TAZ targets CTGF and CYR61. Statistical significance was determined by Mann-619 

Whitney nonparametric test. (*p<0.05, **p<0.01, ****p<0.0001). 620 

 621 

Figure 6 | High-risk HPV E7 requires YAP1/TAZ-TEAD transcriptional activity to extend the 622 

lifespan of primary keratinocytes. Primary HFK were transduced with retroviruses encoding 623 

HPV16 E7, HPV18 E7, or GFP, plus pInducer20 TEADi lentivirus. Each cell population was 624 

cultured with or without 1 μg/mL doxycycline in the media for 38 days and population doublings 625 

were tracked with each passage. Graph displays the mean ± SD of two independently transduced 626 

cell populations per condition. 627 

 628 

Figure 7 | PTPN14 loss and YAP1 activation by HPV E7 promote basal cell retention in 629 

organotypic cultures. Organotypic cultures were grown from GFP-labeled HFK mixed with 630 

unmodified HFK. (A-B) GFP-labeled HFK were transduced with lentiviral vectors encoding YAP1 631 

WT, YAP1 S127A, or YAP1 S94A under the control of a doxycycline inducible promoter. GFP-632 

labeled YAP1 cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown 633 

from the mixture. Cultures were grown +/- 1 μg/mL doxycycline. (C-D) GFP-labeled HFK were 634 

transduced with LentiCRISPR v2 vectors encoding control or PTPN14 targeting sgRNAs. GFP-635 
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labeled cells were mixed 1:25 into unmodified HFK and organotypic cultures were grown from the 636 

mixture. (E-F) GFP-labeled HFK were transduced with HPV18 E7 WT, HPV18 E7 R84S, or the 637 

empty vector (EV). GFP-labeled HPV18 E7 cells were mixed 1:50 into unmodified HFK and 638 

organotypic cultures were grown from the mixture. (A, C, E) FFPE sections of cultures were 639 

stained for GFP (green), IVL (grey), and Hoechst (blue). Scale bar = 100 μm. (B, D, F) 640 

Quantification of the percentage of GFP+ cells found in the basal layer. Graphs display the mean 641 

± SD and each individual data point (independent cultures). Shapes indicate cultures grown from 642 

different HFK donors. Statistical significance was determined by ANOVA. (*p<0.05, **p<0.01). 643 

 644 

Figure 1—figure supplement 1 | HPV-positive HNSCC have fewer Hippo pathway 645 

alterations and lower expression of differentiation genes. cBioPortal analysis for genomic 646 

mutations and copy number alterations in HPV+/- HNSCC and OPSCC. Oncoprint displays 647 

specific genomic alterations in individual tumor samples.  648 

 649 

Figure 1—figure supplement 2 | HPV18 E7 activates YAP1 in basal keratinocytes. (A-B) 650 

Additional replicates of organotypic cultures grown from primary HFK or HFK harboring the 651 

HPV18 genome. FFPE sections were stained for YAP1 (magenta), PCNA (green), and Hoechst 652 

(gray). White dashed lines indicate the basement membrane. White boxes indicate the location 653 

of insets in main images. Main image scale bars = 100 μm. Inset scale bars = 25 μm. 654 

 655 

Figure 1—figure supplement 3 | HPV E7 activates YAP1 in basal keratinocytes. Additional 656 

replicates of organotypic cultures grown from primary HFK or HFK transduced with retroviral 657 

expression encoding HPV E7 proteins. FFPE sections of cultures grown from (A) HFK or HFK 658 

expressing HPV16 E7 or HPV18 E7, (B) HFK or HFK transduced with HPV16 E7, or (E) HFK and 659 

HFK expressing HPV18 E7 were stained for YAP1 (magenta), PCNA (green), and Hoechst (gray). 660 
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White dashed lines indicate the basement membrane. White boxes indicate the location of insets 661 

in main images. Main image scale bars = 100 μm. Inset scale bars = 25 μm. 662 

 663 

Figure 1—figure supplement 4 | HPV E6 does not activate YAP1 in basal keratinocytes. 664 

Additional replicates of organotypic cultures grown from primary HFK or HFK transduced with 665 

retroviral expression encoding HPV E6 or E7 proteins. FFPE sections were stained for YAP1 666 

(magenta), PCNA (green), and Hoechst (gray). White dashed lines indicate the basement 667 

membrane. White boxes indicate the location of insets in main images. Main image scale bars = 668 

100 μm. Inset scale bars = 25 μm. 669 

 670 

Figure 2—figure supplement 1 | PTPN14 knockout activates YAP1 in basal keratinocytes. 671 

Additional replicates of organotypic cultures grown from N/Tert-Cas9 keratinocytes (A-C) FFPE 672 

sections from mock or sgPTPN14 transfected N/Tert-Cas9 keratinocytes were stained for YAP1 673 

(magenta), IVL (green), and Hoechst (Gray). White dashed lines indicate the basement 674 

membrane. White boxes indicate the location of insets in main images. Main image scale bars = 675 

100 μm. Inset scale bars = 25 μm. 676 

 677 

Figure 2—figure supplement 2 | HPV E7 activates YAP1 in basal keratinocytes through 678 

PTPN14 degradation. Additional replicates of organotypic cultures grown from primary HFK 679 

transduced with retroviral expression vectors encoding HPV18 E7 WT or R84S. FFPE sections 680 

from parental HFK, HPV18 E7 WT or HPV18 E7 R84S expressing HFK were stained for YAP1 681 

(magenta), PCNA (green), and Hoechst (Gray). White dashed lines indicate the basement 682 

membrane. White boxes indicate the location of insets in main images. Main image scale bars = 683 

100 μm. Inset scale bars = 25 μm. 684 

 685 
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Figure 3—figure supplement 1 | PTPN14 expression is enriched in basal keratinocytes in 686 

HPV 18 E7 expressing organotypic cultures. Basal and suprabasal layers from a 3D 687 

organotypic culture grown from HFK transduced with a retroviral expression vector encoding 688 

HPV18 E7 were dissected using laser capture microdissection. RNA was purified from isolated 689 

layers and qRT-PCR was used to assess the expression of PTPN14 (A), the basal cell markers 690 

ITGA6 and ITGB4 (B), and the differentiation marker IVL (C). Graphs display individual data 691 

points.  692 

 693 

Figure 4—figure supplement 1 | PTPN14 overexpression promotes differentiation in 694 

keratinocytes. NTert-Cas9 Mock and sgPTPN14-1 keratinocytes were transduced with 695 

lentiviruses encoding GFP or PTPN14 or the empty vector control. (A) Cell lysates were subjected 696 

to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, V5-tag, Involucrin, and 697 

Actin. (B) qRT-PCR was used to measure the expression of the differentiation markers IVL and 698 

KRT10 relative to G6PD. Graphs display the mean ± SD of two independent replicates.  699 

 700 

Figure 4—figure supplement 2 | YAP1 and TAZ are required for PTPN14 to promote 701 

keratinocyte differentiation. Primary HFK were transfected with control or YAP1 and WWTR1 702 

targeting siRNAs then transduced with PTPN14 encoding lentivirus. qRT-PCR was used to 703 

measure the expression of the differentiation markers (A) KRT1 and (B) IVL relative to G6PD. 704 

Graphs portray the change in gene expression relative to siC. Graphs display the mean ± SD of 705 

three independent replicates. Statistical significance was determined by ANOVA (**p<0.01, 706 

***p<0.001). 707 

 708 

Figure 5—figure supplement 1 | HPV-positive HNSCC express lower levels of 709 

differentiation genes. RNA-seq data from TCGA were accessed through cBioPortal. Violin plots 710 

display the distribution in log2 mRNA expression of differentiation markers (A) KRT1, (B) KRT10, 711 
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and (C) IVL, and the canonical YAP1/TAZ targets (D) CTGF and (E) CYR61. Statistical 712 

significance was determined by Mann-Whitney nonparametric test. (**p<0.01, ***p<0.001, 713 

****p<0.0001). 714 

 715 

Figure 7—figure supplement 1 | PTPN14 degradation by HPV E7 promotes basal cell 716 

retention. (A-B) GFP-labeled HFK were transduced with YAP1 WT, YAP1 S127A, or YAP1 S94A 717 

under the control of a doxycycline inducible promoter. (A) GFP expression was confirmed by 718 

fluorescence microscopy. Scale bar = 100 μm. (B) Total RNA was purified from monolayer cells 719 

+/- treatment with 1 μg/mL doxycycline for 72h. qRT-PCR was used to assess gene expression 720 

of YAP1 and CTGF. (C-D) GFP-labeled HFK were transduced with retroviral vectors encoding 721 

HPV18 WT, HPV18 ΔDLLC, HPV18 E7 R84S, or the empty vector control (EV). (C) GFP 722 

expression was confirmed by fluorescence microscopy. Scale bar = 100 μm. (D) Cell lysates were 723 

subjected to SDS/PAGE/Western analysis and probed with antibodies to PTPN14, RB1, and 724 

Actin. (E-F) GFP-labeled HFK were transduced with LentiCRISPR v2 sgNT-1, sgPTPN14-3, or 725 

sgPTPN14-4 vectors. (E) GFP expression was confirmed by fluorescence microscopy. Scale bar 726 

= 100 μm (F) Cell lysates were subjected to SDS/PAGE/Western analysis and probed with 727 

antibodies to PTPN14 and Actin.  728 

 729 

Figure 7—figure supplement 2 | HPV18 E7 can promote basal cell retention in the absence 730 

of RB1 binding. Organotypic cultures were grown from GFP-labeled cells mixed with unmodified 731 

HFK. GFP-labeled HFK were transduced with HPV18 E7 ΔDLLC or the empty vector (EV). GFP-732 

labeled cells were mixed 1:50 into unmodified HFK. (A) FFPE sections were stained for GFP 733 

(green), IVL (grey), and Hoechst (blue). Scale bar = 100 μm (B) Quantification of the percentage 734 

of GFP+ cells found in the basal layer. Graphs display the mean ± SD and each individual data 735 

point (independent cultures). Statistical significance was determined by t-test. (**p<0.01).  736 

  737 
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Key Resources Table 

Reagent 
type 
(species) or 
resource 

Designation 
Source or 
reference 

Identifiers 
Additional 
information 

antibody 
anti-Actin 
(Mouse 
monoclonal) 

Sigma-Aldrich Cat#: MAB1501 
WB 
(1:20,000) 

antibody 
anti-GFP 
(Rabbit 
polyclonal) 

Invitrogen Cat#: A6455 

WB 
(1:1,000); 
IHC-P 
(1:2000) 

antibody 

anti-Mouse IgG 
Alexa Fluor 488 
(Goat 
polyclonal) 

Invitrogen Cat#: A11001 
IHC-P 
(1:250) 

antibody 
anti-Mouse IgG 
HRP (Horse 
monoclonal) 

Cell Signaling 
Technologies 

Cat#: 7076 WB (1:2000) 

antibody 

anti-Rabbit IgG 
Alexa Fluor 594 
(Goat 
polyclonal) 

Invitrogen Cat#: A11012 
IHC-P 
(1:250) 

antibody 
anti-Rabbit IgG 
HRP (Goat 
monoclonal) 

Cell Signaling 
Technologies 

Cat#: 7074 WB (1:2000) 

antibody 
anti-HA-
Peroxidase (Rat 
monoclonal) 

Roche 
Cat#: 
12013819001 

WB (1:500) 

antibody 
anti-ITGB4 
(Rabbit 
polyclonal) 

Sigma-Aldrich 
Cat#: 
HPA036348 

IHC-P 
(1:100) 

antibody 
anti-IVL (Mouse 
monoclonal) 

Santa Cruz 
Biotechnology 

Cat#: 
sc-398952 

IHC-P 
(1:100) 

antibody 
anti-KRT1 
(Mouse 
monoclonal 

Enzo Life 
Sciences 

Cat#: 
C34904 

 

antibody anti-PCNA 
Santa Cruz 
Biotechnology 

Cat#: 
sc-56 

IHC-P 
(1:100) 
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antibody 
Anti-PTPN14 
(Rabbit 
monoclonal) 

Cell Signaling 
Technology 

D5T6Y; Cat#: 
13808 

WB (1:500) 

antibody 
anti-TAZ 
(Rabbit 
monoclonal) 

Cell Signaling 
Technology 

D3I6D; Cat#: 
70148 

WB (1:1000) 

antibody 
anti-V5 (Mouse 
monoclonal) 

Invitrogen Cat#: 46-0705 WB (1:1000) 

antibody 
anti-YAP1 
(Rabbit 
monoclonal) 

Cell Signaling 
Technology 

D8H1X; Cat#: 
14074 

WB 
(1:1000); 
IHC-P (1:50) 

transfected 
construct 
(human) 

nontargeting 
siRNA 

Dharmacon 
Cat#: D-
001810-01 

 

transfected 
construct 
(human) 

siRNA to YAP1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
012200-06 

 

transfected 
construct 
(human) 

siRNA to YAP1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
012200-08 

 

transfected 
construct 
(human) 

siRNA to 
WWTR1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
016083-06 

 

transfected 
construct 
(human) 

siRNA to 
WWTR1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
016083-08 

 

transfected 
construct 
(human) 

siRNA to 
PTPN14 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
008509-05 

 

transfected 
construct 
(human) 

siRNA to 
PTPN14 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
008509-08 

 

transfected 
construct 
(human) 

siRNA to 
LATS1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
004632-05 

 

transfected 
construct 
(human) 

siRNA to 
LATS1 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
004632-08 
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transfected 
construct 
(human) 

siRNA to 
LATS2 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
003865-09 

 

transfected 
construct 
(human) 

siRNA to 
LATS2 
(OnTarget Plus) 

Dharmacon 
Cat#: J-
003865-10 
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Supplemental File 3
Tumor microarray specimen information

Oral Cavity Oropharynx Total HPV-positive HPV-negative*
# Patients 72 48 120 33 87
Primary tumor (T-stage) †

Early (T1 or T2) 60 40 100 27 73
Advanced (T3 or T4) 12 8 20 6 14

Nodal metastasis
Positive 24 39 63 29 34
Negative 48 9 57 4 53

Overall pathologic stage †
Early (I or II) 43 7 50 3 47
Advanced (III or IV) 29 41 70 30 40

† 7th edition AJCC staging manual

*HPV status was defined by IHC for p16 for oropharyngeal tumors during routine clinical and was inferred as negative for 
oral cavity tumors per standards of the College of American Pathologists (Lewis et al. (2018) Archives of Pathology & 
Laboratory Medicine 142:559–597).  
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Supplemental File 4

Gene Lists for Pathway Mutational Analyses

HIPPO Pathway Cell Cycle p53
STK4 CDKN1A TP53
STK3 CDKN1B MDM2
SAV1 CDKN2A MDM4
LATS1 CDKN2B ATM
LATS2 CDKN2C CHEK2
MOB1A CCND1 RPS6KA3
MOB1B CCND2
YAP1 CCND3
WWTR1 CCNE1
TEAD1 CDK2
TEAD2 CDK4
TEAD3 CDK6
TEAD4 RB1
PTPN14 E2F1
NF2 E2F3
WWC1
TAOK1
TAOK2
TAOK3
CRB1
CRB2
CRB3
LLGL1
LLGL2
HMCN1
SCRIB
HIPK2
FAT1
FAT2
FAT3
FAT4
DCHS1
DCHS2
CSNK1E
CSNK1D
AJUBA
LIMD1
WTIP
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