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Abstract 25 

1. Efforts to preserve, protect, and restore ecosystems are hindered by long delays 26 

between data collection and analysis. Threats to ecosystems can go undetected 27 

for years or decades as a result. Real-time data can help solve this issue but 28 

significant technical barriers exist. For example, automated camera traps are 29 

widely used for ecosystem monitoring but it is challenging to transmit images for 30 

real-time analysis where there is no reliable cellular or WiFi connectivity. Here, 31 

we present our design for a camera trap with integrated artificial intelligence that 32 

can send real-time information from anywhere in the world to end-users. 33 

 34 

2. We modified an off-the-shelf camera trap (BushnellTM) and customised existing 35 

open-source hardware to rapidly create a ‘smart’ camera trap system. Images 36 

captured by the camera trap are instantly labelled by an artificial intelligence 37 

model and an ‘alert’ containing the image label and other metadata is then 38 

delivered to the end-user within minutes over the Iridium satellite network. We 39 

present results from testing in the Netherlands, Europe, and from a pilot test in a 40 

closed-canopy forest in Gabon, Central Africa.  41 

 42 

3. Results show the system can operate for a minimum of three months without 43 

intervention when capturing a median of 17.23 images per day. The median time-44 

difference between image capture and receiving an alert was 7.35 minutes. We 45 

show that simple approaches such as excluding ‘uncertain’ labels and labelling 46 

consecutive series of images with the most frequent class (vote counting) can be 47 



used to improve accuracy and interpretation of alerts.  48 

 49 

4. We anticipate significant developments in this field over the next five years and 50 

hope that the solutions presented here, and the lessons learned, can be used to 51 

inform future advances. New artificial intelligence models and the addition of 52 

other sensors such as microphones will expand the system’s potential for other, 53 

real-time use cases. Potential applications include, but are not limited to, wildlife 54 

tourism, real-time biodiversity monitoring, wild resource management and 55 

detecting illegal human activities in protected areas.  56 

  57 



Introduction 58 

Goals towards biodiversity protection, the sustainable use of ecosystems, and mitigation 59 

of climate change are now clearly defined for nearly every nation on earth (Convention 60 

on Biological Diversity, 2021; UN General Assembly, 2015). However, efforts to protect 61 

and preserve ecosystems are often hindered by long delays (months, years or more) 62 

between the timing of data collection and data analysis. Ecosystem change and 63 

ecosystem threats can therefore go undetected for extended periods. Affordable 64 

technology for real-time ecosystem monitoring and threat detection could help address 65 

this issue, but significant technological barriers exist. In particular, it has proven a 66 

challenge to generate reliable, real-time data from some sensors such as automated 67 

camera traps in the absence of wireless fidelity networks (WiFi) or broadband cellular 68 

networks. 69 

 70 

Automated camera traps (or ‘trail cameras’) are used to detect and survey wildlife and 71 

by conservation managers to identify ecosystem threats (Bessone et al., 2020; Hobbs & 72 

Brehme, 2017; Wearn & Glover-Kapfer, 2019). A typical camera trap comprises a 73 

movement or heat sensor (e.g. a passive infra-red sensor), one or more digital image 74 

sensors, a flash or night-vision capability, removable digital storage and a battery power 75 

source. Many commercial models are available and cameras can also  be easily 76 

custom-built using off-the-shelf components (Droissart et al., 2021).  77 

 78 

Network-enabled camera traps, which send captured images to users in real-time, are 79 

now commercially available but typically need access to a reliable broadband cellular 80 



network connection. In many countries, however, cellular network coverage is still 81 

limited and is often unreliable, causing ‘data poverty’ (Leidig & Teeuw, 2015). Cellular 82 

network coverage is also usually focused on human population centres, which might be 83 

far from areas of ecological or conservation interest. As a result, camera traps with 84 

network connectivity are rarely deployed at scale in these network-limited landscapes. 85 

 86 

In network-limited landscapes, there have been some attempts to use WiFi or GSM 87 

enabled camera traps by building dedicated infrastructure such as communication 88 

towers and meshed networks. These systems transmit the images over the network for 89 

later analysis. However, it can be prohibitively expensive to build the necessary 90 

infrastructure and it is often logistically impossible in the most rugged landscapes. Legal 91 

barriers also exist and commercial providers can own the exclusive rights to build and 92 

install GSM towers and transmitters. Satellite networks have the best global coverage, 93 

but high data transfer costs mean it is expensive to send images generated by camera 94 

traps to end-users in real time. 95 

 96 

Beyond network connectivity, another challenge limiting the usefulness of camera traps 97 

for timely decision-making has been extracting relevant information from the image, or 98 

“image labeling”. In ecology, images are typically labelled by identifying the species in 99 

the image and counting the number of individuals seen. Camera trap projects collect 100 

large volumes of data and it is not uncommon to generate millions of images or videos 101 

that require terabytes of storage space. Solutions to labeling these large image 102 

databases range from using dedicated software that speeds up manual image labeling, 103 



to large-scale citizen science projects and the use of artificial intelligence algorithms 104 

(Beery et al., 2019; Swanson et al., 2016). The precision and accuracy of the latest 105 

artificial intelligence algorithms for image labelling now approach or match human 106 

experts for some species but they typically require powerful computing resources either 107 

based on ‘the cloud’ or locally using expensive hardware  (Norouzzadeh et al., 2018; 108 

Tabak et al., 2019; Whytock et al., 2021). However, recent developments in the field of 109 

‘edge computing’ allow artificial intelligence algorithms to be deployed on 110 

microcomputers with relatively low computing and electrical power requirements. It is 111 

therefore possible to integrate artificial intelligence with camera trap hardware for 112 

deployment in the field. These advances mean that data-light image labels generated 113 

by artificial intelligence algorithms can be inexpensively transmitted over wireless 114 

networks (e.g. satellite) instead of the costly, data-heavy images. 115 

 116 

Here, we present an overview of a ‘smart’ camera trap system that integrates artificial 117 

intelligence with a popular off-the-shelf camera trap for real-time alerts over the Iridium 118 

satellite network. The system also transmits information on power status, temperature 119 

and humidity for the purposes of monitoring hardware integrity. Although the system is 120 

based on existing (open source) hardware where possible, our aim is not to provide a 121 

blueprint for a finished ‘tool’, such as the Audiomoth bioacoustic recorder (Hill et al., 122 

2018), but to provide insights into how we solved significant technical challenges. 123 

Individual off-the-shelf components can also rapidly change or become unavailable (e.g. 124 

components for a bioacoustic recorder (Whytock & Christie, 2017)), potentially making it 125 

difficult for end-users to follow blue-print designs. As with all surveillance systems, 126 



including existing camera trap technology, there are significant ethical and legal issues 127 

to consider before using smart cameras in the field, particularly where human subjects 128 

may be intentionally or unintentionally observed (Sandbrook et al., 2018). We therefore 129 

caution that deployment of the technology presented here should be guided by robust 130 

ethical review. 131 

 132 

To evaluate the system’s effectiveness, we present systematic results from testing in 133 

the Netherlands and a field test in a high-canopy tropical forest in Gabon, Central Africa. 134 

In Gabon, we deployed five systems for real-time detection of forest elephant Loxodonta 135 

cyclotis with the long-term aim of using the system to help mitigate forest elephant crop 136 

depredation incidents. These incidents are a pressing concern for the country’s success 137 

in aligning conservation objectives with rural development. Other uses for which the 138 

system could also be used, such as real-time wildlife monitoring and detecting illegal 139 

human activities such as poaching, are also discussed. 140 

 141 

Methods 142 

General summary 143 

Our objective was to create a robust, field-ready system that could (1) provide real-time 144 

alerts from camera traps at an affordable cost, (2) be deployed in the most rural 145 

landscapes without existing GSM, Long Range radio (LoRa) or WiFi coverage, (3) 146 

function without installing additional infrastructure such as communication towers, base 147 

stations or meshed networks, (4) be easily deployed by users who do not have a 148 

specialist background in using artificial intelligence-enabled technology and (5) avoid re-149 



inventing existing technology (e.g. camera traps), thus allowing us to solve the problem 150 

within a relatively short time frame. 151 

 152 

Our solution was to modify a standard BushnellTM camera trap by adding additional 153 

hardware allowing it to communicate wirelessly with separate, self-contained computing 154 

resources installed nearby - which we named the ‘smart bridge’ (Figure 1). The smart 155 

bridge is based on an earlier prototype designed to take photographs of wild penguins 156 

(https://github.com/IRNAS/arribada-pmp), and provides an intelligent link, or ‘bridge’, 157 

between the camera trap and the end user.  158 

 159 

 160 

Figure 1. System deployed in the field showing the solar panel (a) and smart bridge (b) 161 

attached to a tree approximately 6 m above ground level. The BushnellTM camera trap 162 

(c) is installed at ground level approximately 10 m away from the smart bridge.  163 

 164 



We customised the camera trap by installing a microcontroller with LoRa capabilities 165 

based on the OpenCollar Lion Tracker (https://github.com/IRNAS/smartparks-lion-166 

tracker-hardware). Instead of the standard secure digital (SD) card, we used a WiFi-167 

enabled SD card. When an image is captured by the camera trap, the LoRa board in the 168 

camera alerts the smart bridge and activates the WiFi SD card, creating a local WiFi 169 

network. The smart bridge boots a Raspberry Pi Compute Module 4 that joins the WiFi 170 

network and retrieves the image or images from the camera. The species contained in 171 

the image are then identified using an artificial intelligence algorithm for species 172 

classification. The species and metadata associated with the image (time, date, 173 

location) and smart bridge sensor data (internal temperature, humidity and power 174 

status) are finally transmitted in an encoded message from the smart bridge to a web-175 

based application running in the cloud (Google's App Engine). The data are sent over 176 

the Iridium satellite network, which provides global coverage within minutes. To save 177 

power, the Raspberry Pi then shuts down and the smart bridge enters a low-power 178 

sleeping mode. Pairing between the camera and smart bridge is automatic and requires 179 

no user input or setup. A diagram of the system logic is shown in Figure 2.  180 



 181 

 182 

Figure 2. Diagram showing the stepwise logic between the BushnellTM camera trap 183 

capturing an image and sending an alert via the smart bridge. Total duration of the 184 

entire process is approximately five minutes under optimal conditions. 185  



Hardware stack 186 

Camera 187 

We used a BushnellTM Core 24MP Low Glow 119936C camera trap for development but 188 

similar modifications can be made to other models and brands. The camera was set to 189 

take single images (2304 x 1296 pixels, 72 dpi) at 10s intervals with sensitivity set to 190 

auto, and the flash was set to low power mode. Normally, the BushnellTM immediately 191 

cuts power to the SD card once it has finished writing an image or images. This does 192 

not allow sufficient time for images to be transmitted from the WiFi SD card to the smart 193 

bridge using the WiFi network. To address this, the custom microcontroller keeps the 194 

WiFI SD card powered on until the images have been transmitted to the smart bridge. 195 

The WiFi SD card is secured permanently into the camera (to prevent the power 196 

connection being damaged, Figure 3), but the images are also stored on a removable 197 

micro SD for later download if required. 198 

 199 

 200 

 201 

Figure 3. Modified bushnellTM camera trap showing the LoRA relay and printed circuit 202 

board, the WiFi SD card and power supply (removed and installed). 203 

 204 



Smart-bridge 205 

The Smart-bridge (Figure 4) contains a custom printed circuit board (PCB) with a LoRa 206 

STM32L0 ultra-low-power microcontroller, RockBLOCK satellite modem and 207 

connections for a Raspberry Pi 4 Compute module. The hardware is stored in a 208 

weatherproof NANUK NANO 330 case (L188 x W130 x H65 mm). By default, the 209 

Raspberry Pi is turned off and thus the system consumes minimal power (less than 50 210 

microampère; see Power later). When the smart bridge receives a LoRa message from 211 

a nearby camera it turns on the Raspberry Pi, which then downloads and classifies the 212 

images from the BushnellTM using artificial intelligence. After sending the results over 213 

the satellite network (see later), the system powers down. 214 

 215 

 216 

Figure 4. Smart Bridge PCB 217 



Raspberry Pi 218 

The Raspberry Pi 4 compute module is integrated onto the Smart-bridge PCB with a 219 

pair of 100-pin mezzanine connectors. Raspberry Pis provide an excellent platform for 220 

development purposes and have been used widely in ecology (Jolles, 2021; Sethi et al., 221 

2018; Sturley & Matalonga, 2020). Furthermore, although the Raspberry Pi 4 is power 222 

inefficient relative to other similar boards on the market (e.g. Arduino based systems), 223 

the Pi 4 can run artificial intelligence models built on relatively large architectures. Our 224 

approach of only briefly powering the Pi when needed allowed us to harness its 225 

computational power in an energy-optimised way. 226 

 227 

The Raspberry Pi 4 Compute module runs Raspbian lite and Python 3 scripts together 228 

with the Tensorflow Lite runtime to fetch the images and run the artificial intelligence 229 

model. A SQLLite database is used to track image status (download status, 230 

transmission status etc). 231 

 232 

Satellite modem 233 

There are many satellite networks available for civilian use. We chose the Iridium 234 

satellite network because it has near global coverage, is relatively inexpensive, and has 235 

widely available hardware including miniaturised, low-power modems. The Iridium 236 

network is also well known in the ecology community where it is regularly used for 237 

animal tracking using GPS collars. We used the RockBLOCK 9603 modem from Rock 238 

Seven to connect to the Iridium network. 239 

 240 



Environmental data 241 

The smart bridge PCB is equipped with a temperature, humidity and barometric 242 

pressure sensor. Since these are mounted directly on the PCB they are not currently 243 

suitable for external environmental monitoring (other than barometric pressure) but they 244 

are useful for evaluating if the smart bridge is intact. For example, the smart bridge 245 

housing is completely sealed once closed and contains silica gel. In a humid 246 

environment such as a tropical forest, the humidity should drop once the bridge is 247 

installed and closed. A future rise in humidity could be used as an indicator of a possible 248 

hardware problem. We do not present data from these sensors or discuss them further. 249 

 250 

Power 251 

For the smart bridge we used six NCR18650PF rechargeable batteries totalling 16,500 252 

mAh power and a 6 volt 6 watt solar panel for charging. Initial testing in the Netherlands 253 

showed an active smart bridge, processing and transmitting approximately 17 images 254 

per day (see results), could be powered indefinitely by a solar panel without 255 

intervention.  256 

 257 

For the BushnellTM camera trap, we used six Energizer© Ultimate LithiumTM AA 258 

batteries (non-rechargeable). Normally the BushnellTM has a battery life of 259 

approximately one year using these batteries. The addition of the microcontroller and 260 

the WiFi SD card draws additional power, however, which will reduce deployment times. 261 

During testing in the Netherlands the camera achieved three months of battery life when 262 

activated up to 17 times per day on average (see Results). We expect field deployment 263 



times to be longer than this since the camera is likely to be triggered less frequently 264 

when correctly installed and parameterized. 265 

 266 

Optimising alerts and minimizing data transmission costs 267 

The Iridium satellite network supports short burst data and a maximum of 340 bytes can 268 

be sent in a single transmission. Satellite data is relatively expensive so we optimised 269 

the alerts to maximise the amount of information transmitted per message. The 270 

timestamp was reduced to 4 bytes by sending the number of elapsed seconds since 271 

January 1st 2010. The image label from the artificial intelligence model (e.g. elephant) 272 

was mapped to a 1 byte number and later converted back to a text label on the web 273 

backend. All other data, like AI prediction ‘confidence’ for the top-scoring species label 274 

(softmax algorithm probabilities), temperature and smart bridge voltage are mapped to 1 275 

byte numbers. This allowed us to send up to 55 image classification results in a single 276 

satellite message. 277 

 278 

Software stack 279 

Artificial intelligence model 280 

Our aim was to provide reliable alerts of species detections without requiring images to 281 

be transmitted to the end-user over a wireless network. Since our focus was on forest 282 

elephants during the pilot, we initially tested the model from (Whytock et al., 2021), 283 

which classifies 26 central African forest mammal and bird species, including forest 284 

elephants. However, the model was built using a relatively large convolutional neural 285 

network (CNN) architecture (ResNet50) and is 100 MB in size. This model took over 20 286 



seconds to classify a single image using the Raspberry Pi 4 compute module, which 287 

drew a substantial amount of power and made the model unsuitable for our purposes.  288 

 289 

To find a suitable alternative architecture to ResNet50, we compared inference times 290 

among a suite of 16 pre-trained computer vision models using their Fast.ai (Howard & 291 

Gugger, 2020) implementations (see Figure S1 for results). We did not evaluate 292 

classification accuracy using these models but only inference times. Then, we trained a 293 

Tensorflow Lite model (using Google Cloud’s AutoML service) and a Fast.ai model 294 

(SqueezeNet 1.1, the second-fastest from our tests) using a dataset of 105,000 images 295 

(a subset from Whytock et al. (2021)) with three, almost equally distributed classes 296 

(elephant, human and other). For these two models, we compared model precision and 297 

accuracy using a smaller, held out subset of 14,642 images, with almost equal 298 

distribution among the classes. We found that the TensorFlow Lite model provided the 299 

shortest inference time (~100 ms vs ~1200 ms for SqueezeNet) and precision and 300 

accuracy was similar between the two architectures (Table S1). Therefore, the 301 

Tensorflow Lite model trained using AutoML was chosen for deployment during the 302 

pilot.  303 

 304 

Back-end 305 

An important element of receiving real-time alerts from camera traps is a centralised 306 

platform that can be used to receive, interpret and display the incoming data. Following 307 

our philosophy of using existing technology, we integrated the system with the 308 

EarthRanger platform (www.earthranger.org). Incoming data is first stored on our own 309 



Django-based back end. Once an alert is received the raw data is stored in a SQL 310 

database. A task-queue based system is then used to send the data to integrated 311 

platforms (e.g. EarthRanger or others). As well as offering a web-platform and mapping 312 

capabilities for displaying alerts, EarthRanger can also be configured to send messages 313 

in real-time using WhatsAppTM, short message service (SMS), e-mail and other 314 

methods.  315 

 316 

Case study 317 

Real-time alerts from cameras have many potential applications but our interest was 318 

testing if they could be used to help manage human-elephant interactions during crop 319 

depredation, in Gabon, central Africa. Gabon is almost 270,000 km2 with 88% of the 320 

country covered in closed-canopy forest. The country is home to more than 50% of the 321 

global population of the critically endangered forest elephant (Gobush et al., 2021). 322 

Although Gabon’s human population is relatively small (c. 2 million), with most people 323 

living in urban areas, rural communities across the country can suffer significant 324 

agricultural losses due to elephants (Walker, 2012). This affects the safety and 325 

wellbeing of both humans and elephants (e.g. retaliatory killing of elephants, humans 326 

injured or killed during interactions) and can have substantial economic consequences 327 

for rural communities (Terada, 2021). 328 

 329 

Many villages work with Gabon’s National Park Agence (ANPN: the Agence Nationale 330 

des Parcs Nationaux) to manage elephant crop depredation. We therefore partnered 331 

with ANPN to test the camera’s ability to detect elephants and send real-time alerts to 332 



ANPN ecoguards (employees of the national park who lead fieldwork, tourism, and law 333 

enforcement) over WhatsAppTM in two locations. The first location was the Station 334 

d’Etudes des Gorilles et Chimpanzés (SEGC) in Lopé National Park, where elephants 335 

are common in the surrounding area. The facilities at the research station allowed us to 336 

test the system under controlled but realistic conditions (elephants regularly enter the 337 

station grounds). The second location was Kazamabika village, in the northern edge of 338 

Lopé National Park, where communities have established farms. Kazamabika received 339 

an electric fence to protect crops from elephants in 2016, and the local community is 340 

highly engaged in research to help understand and mitigate human-elephant conflict 341 

(Rakotonarivo et al., 2021). Although the electric fence is functional and effective, 342 

elephants still enter the village and surrounding forest to feed on domestic fruit trees 343 

that are also harvested by people. Although rare, elephants also occasionally succeed 344 

in entering the fence, potentially causing some damage to crops. 345 

 346 

We tested whether alerts from the smart cameras could be used by ANPN ecoguards in 347 

Lopé National Park to detect when elephants are approaching the electric fence or 348 

village, allowing them to alert villagers to potential problems. There remains uncertainty 349 

about the most effective action villagers can take when they receive an alert, but at 350 

minimum they can have pre-warning and avoid the forest where elephants are detected 351 

to not be endangered, or they can take action to scare the elephants (e.g. creating 352 

noise, or smoke fires). In future, the system could potentially trigger auto-deterrents, 353 

such as sounds or lights, assuming effective deterrents are developed (see Discussion). 354 

Mitigating human-elephant conflict using sound, smoke, bees and plant species (e.g. 355 



chilli pepper) is an active area of research across Africa and Asia (Dror et al., 2020; 356 

Ndlovu et al., 2016; Pozo et al., 2019) and we did not explore the effectiveness of 357 

particular deterrents during our trials. 358 

 359 

Field testing 360 

We constructed seven systems and tested five under different settings for a combined 361 

total of 72 days (Table 1). Camera locations were chosen to test (a) how the position of 362 

the smart bridge and vegetation structure (e.g. forest canopy cover) affected data 363 

transmission and satellite connectivity, (b) how far the smart bridge could be installed 364 

from the camera, (c) how well the solar panel functioned under different light levels, and 365 

(d) how well the artificial intelligence algorithm performed with different camera 366 

backgrounds (open areas, farmland and forest). We chose the testing locations based 367 

on qualitative differences in vegetation structure, light availability and image background 368 

(Table 1). In summary, the smart bridge and solar panel were installed together on a 369 

tree 2 - 6 m above ground level at a distance of 5 - 20 m from the camera trap. Camera 370 

traps were installed on a tree approximately 40 - 50 cm above ground level, 371 

perpendicular to and approximately four metres from the centre of well-used elephant 372 

paths. 373 

 374 

We compared results from field testing with benchmark data from two systems operated 375 

in the Netherlands for three months during the development stage. Both of these 376 

systems were deployed in urban settings (a private garden and empty roof-top) with a 377 

clear view of the sky. During field testing, all images were stored on the camera trap SD 378 



card and retrieved at the end of the testing period for validating artificial intelligence 379 

labels. 380 

 381 

Table 1. Description of test locations and field conditions with qualitative descriptions of 382 

light availability (Light: low, medium, high), distance between camera and smart bridge 383 

(Bridge: near < 5 m, moderate 5 - 10 m, far 10 - 20 m), the positioning of the Smart 384 

Bridge (Bridge position) and image background (considered important for artificial 385 

intelligence performance). 386 

 387 

Site name General 
description 

Days Light Bridge 
distance 

Bridge position Image 
background 

SEGC Research 
station with 
buildings and 
open short 
grassland. No 
forest cover.  

7 High Near Approximately 2 
m above ground 
level under the 
canopy of a 
small shrub. 

Open grassland, 
buildings 

Forest West Closed canopy 
forest with 
vegetated 
understory. 
Moved a short 
distance to a 
new location 
due to false 
positives from 
the artificial 
intelligence 
algorithm (see 
Results). 

15 Low Moderate Approximately 5 
m above ground 
level on the 
trunk of a tree 
approximately 
15 cm diameter 
at breast height 
(DBH) 

Green vegetation 
in the background 
and a large tree 
crossing the left of 
the image. 

Forest East Closed canopy 
forest with 
open 
understory 

18 Mode
rate 

Far Approximately 5 
m above ground 
level on a large 
tree trunk.  

Background of 
large woody 
lianas, a fallen 
tree and little 
vegetation. Brown 
forest floor. Little 
green vegetation. 

Kazamabika Village edge. 
Closed canopy 
forest beside a 

17 High Far Approximately 5 
m above ground 
level on a large 

Green vegetation 
with some brown 
forest floor 



small river, tree trunk.  

Cayette Forest 
fragment of 
secondary 
growth. With a 
rather open 
understory. 

15 Low Far Approximately 2 
m above ground 
level on a small 
tree.  

Green vegetation 
with some brown 
forest floor. 

 388 
 389 
Data analysis 390 

To evaluate the speed at which alerts were transmitted and received, we calculated the 391 

median time-difference in minutes between image capture and receipt of the alert by the 392 

back end for each location individually, and for all stations. For each of the test locations 393 

we also created time-series plots showing changes in smart bridge power during 394 

deployment. Camera power was also monitored during tests in the Netherlands but not 395 

during the field testing. 396 

 397 

We assessed artificial intelligence model performance (precision, recall, accuracy and 398 

F1 score (Kuhn, 2020)) on the newly captured images by comparing artificial 399 

intelligence-generated image labels with ‘expert’ labels. Expert labels were created by 400 

first labeling the captured images using the Mbaza AI software (Whytock et al., 2021) 401 

and manually validating all results (co-author RW). 402 

 403 

During field testing we observed that, within a given image sequence of elephants (i.e. a 404 

number of images taken during the same presence event), the first and last images 405 

could be mislabelled when only a small part of the elephant was visible. We therefore 406 

tested if (a) a simple vote-counting approach (i.e. counting the most frequently predicted 407 

top-one label in an image series) could improve predictions on an event, and (b) if 408 



thresholding on the softmax values (i.e. excluding images below a softmax threshold 409 

before vote counting) could improve event prediction accuracy. Events were defined as 410 

a series of images taken within an independent 30-minute time window. Softmax 411 

thresholds were from 0 to 0.9 in 0.1 intervals. In some instances, vote counting resulted 412 

in a tie between the number of votes for each class. In these cases, we chose ‘elephant’ 413 

if it was among the ties, or otherwise chose the label ‘other’. 414 

 415 

Results 416 

A total of 814 images were captured during the field test (Table S2) and alerts for 588 417 

images were received by the backend. Of the 226 alerts not received, 72 were from 418 

Cayette, which was not able to send any alerts due to the position of the smart bridge (2 419 

m above ground level under a tall, closed canopy) and 154 were from Forest East 420 

because the smart bridge unexpectedly ran out of battery after just six days. This was 421 

caused by a problem with the charging circuit and was inconsistent with tests in the 422 

Netherlands, which achieved > 3 months of battery life (see Battery life for further 423 

details). We removed a further 17 images which had no timestamp (human error during 424 

camera setup) and which could not be used to evaluate alert time delays, leaving n = 425 

571 alerts from four systems for the analysis.  426 

 427 

Alert times 428 

There was a median 7.35 minutes time difference between capturing an image and 429 

sending an alert (n = 4 camera stations). Median, minimum and maximum alert times 430 

are given in Table S3 for each location. Of the four systems, Kazamabika had the 431 



slowest median alert time (306.3 min). A total of 296 (52%) of alerts were received 432 

within 15 minutes or less (Figure 5, Figure S2). 433 

 434 

 435 

Figure 5. Histogram showing time difference between image capture and alert 436 

transmission time. The dashed line shows the median alert time of 7.35 minutes. 437 

 438 

Battery life 439 

Preliminary tests in the Netherlands showed that even with a median of 17.23 image 440 

captures per day (range 0 - 40), the systems could operate continuously during the 441 

winter under low sunlight for a minimum of three months (Figure 6). During field testing 442 

in Gabon, we found mixed results (Figure 7) and one system discharged in six days 443 

(Forest East). Forest West lasted the full 18 days but did not show signs of substantial 444 



charging as was seen in the Netherlands. Kazamabika and SEGC both operated as 445 

expected. 446 

 447 

Initially it was thought that the forest canopy was preventing charging by the solar panel 448 

in Forest East and Forest West, despite careful positioning. However, further tests 449 

revealed the mechanism designed to prevent the charging circuit from overheating was 450 

being triggered prematurely by the high ambient temperatures and high voltage output 451 

from the solar panel in Gabon, in contrast to the Netherlands. This problem has been 452 

solved by removing the overheating protection. 453 

 454 



Figure 6. Smart bridge and camera voltage change over time during testing of two 455 

systems in the Netherlands using a solar panel. 456 

 457 

 458 

 459 

Figure 7. Smart bridge voltage changes over time during testing of four systems in 460 

Gabon using a solar panel. 461 

 462 

Artificial intelligence model accuracy and interpreting alerts 463 

Overall model accuracy on new data collected during the field test (n = 571 images) was464 

84%, with a Kappa statistic of 0.74. For the elephant class, precision was 82% and 465 

recall 86%, with a balanced accuracy of 86%. Test statistics for all classes and a 466 

confusion matrix are given in Table 2 and Figure 8. Classification of events using vote 467 

counting without any softmax thresholding (i.e. choosing the most frequently predicted 468 

class in a 30 minute time window) gave an overall performance of 78% and a Kappa 469 

as 



statistic of 0.64 (n = 142 events) (Table 2). Excluding uncertain image labels using a 470 

softmax threshold before vote counting improved overall accuracy for event 471 

classification, as well as balanced accuracy for the elephant events (n = 29 true events, 472 

n = 30 predicted), which reached 98% at a threshold where images were excluded with 473 

a softmax value < 0.9 (Figure 9). This almost matched human accuracy with just one 474 

false positive event and no false negatives. 475 

 476 

One camera (Forest West) returned several false-positive elephant detections during 477 

the first two days of deployment. Verification of the images in the field showed this was 478 

likely to be caused by an unusual branch resembling an elephant trunk or limb, close to 479 

the camera lens. Moving the camera to another location a short distance away solved 480 

this issue. 481 

 482 

  483 



Table 2. Model performance by class for n = 571 images and n = 142 events using vote 484 

counting. 485 

 486 

Test statistic Elephant_African Human Other 

Images    

Pos Pred Value 0.82 0.92 0.81 

Neg Pred Value 0.89 0.95 0.91 

Precision 0.82 0.92 0.81 

Recall 0.86 0.80 0.82 

F1 0.84 0.86 0.82 

Prevalence 0.44 0.22 0.34 

Detection Rate 0.38 0.18 0.28 

Detection Prevalence 0.46 0.20 0.34 

Balanced Accuracy 0.86 0.89 0.86 

    

Events    

Pos Pred Value 0.62 0.72 0.94 

Neg Pred Value 0.97 0.96 0.72 

Precision 0.62 0.72 0.94 

Recall 0.90 0.81 0.77 

F1 0.73 0.76 0.85 

Prevalence 0.20 0.18 0.61 

Detection Rate 0.18 0.15 0.47 

Detection Prevalence 0.30 0.20 0.50 

Balanced Accuracy 0.88 0.87 0.85 

 487 
 488 

 489 



 490 

 491 

 492 

Figure 8. Confusion matrix for image-based classification 493 

  494 



495 

Figure 9. Effects of using a softmax threshold to exclude uncertain labels before vote 496 

counting to classify an event on (a) overall accuracy, (b) balanced accuracy for events 497 

labelled as elephant and (c) the number of elephant events detected (dashed horizontal 498 

line shows n = 29 true events). 499 

 500 

Discussion 501 

Sending real-time alerts from ecological sensors such as camera traps in areas with 502 

poor data connectivity is complex and involves fine tuning a large number of software 503 

and hardware parameters. These include camera settings, camera positioning, 504 

achieving reliable network connectivity, training and running artificial intelligence 505 

models, interpreting and displaying artificial intelligence outputs and providing a reliable 506 

source of power. Our results demonstrate that these parameters can be tuned to 507 

achieve reliable, near real-time alerts from camera traps under challenging field 508 

conditions. We also identified potential pitfalls and areas that should be prioritised for 509 

future research and development. 510 

 511 

 512 

 

al 
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Problems and solutions 513 

Battery charging using the solar panel in Gabon did not function in forests as expected 514 

given results from testing in the Netherlands. However, this was rapidly diagnosed as 515 

an issue with the charging circuit and has now been rectified. 516 

 517 

At one camera location, false positive elephant detections were quickly remedied by 518 

moving the camera position. However, this could be difficult to detect during a real 519 

deployment after cameras have been left in-situ by field teams. Improved models and 520 

training data will likely reduce this issue in future (Beery et al., 2018). The problem can 521 

also be mitigated by ensuring that cameras are positioned so that new images replicate 522 

training data as closely as possible.  523 

 524 

A total of 588 alerts were generated by our four systems during 18 days of testing, and 525 

the final total could have been as high as 814 if all alerts had been received. This is a 526 

substantial amount of data to interpret on a rolling basis with just four systems and three 527 

label classes. In future, we recommend first implementing vote-counting combined with 528 

softmax thresholding on the smart bridge to reduce the total number of alerts, which 529 

would have been just 30 (with one false positive) if restricted only to elephants. Similar 530 

vote counting approaches have also been successfully used to summarise camera trap 531 

image labels made by citizen scientists using online platforms (Swanson et al., 2015). 532 

Summarising alerts into temporally independent events using vote counting would not 533 

only improve alert accuracy but also reduce data transmission costs. This approach will 534 

be implemented into future versions of the smart camera system. 535 



Our system does not currently send images but this would be possible using an on-536 

demand approach. For example, users could request certain images or an image series 537 

by sending a message (relayed via satellite) to the smart bridge. The main limitations to 538 

implementing this is achieving a reasonable trade-off between image quality and 539 

transmission cost. For example, sending an extremely compressed thumbnail would 540 

cost $2 USD per image with a $20 per month contract on the Iridium network (Figure 541 

10). Scaling this up to hundreds of cameras could be financially unfeasible for many 542 

use-cases. 543 

 544 

 545 

Figure 10. Camera trap image of a chimpanzee, with example compressed thumbnail 546 

(left) compared to the original image (right). The compressed thumbnail would require 547 

three messages sent over the Iridium network using a RockBlock modem and cost 548 

approximately 2 USD (on a 20 USD monthly contract). The thumbnail provides limited 549 

information for interpretation by both human and artificial intelligence algorithms.  550 

 551 

The next generation of camera traps will run artificial intelligence models on the camera 552 

hardware directly (known as ‘edge computing') instead of using a separate smart bridge. 553 

However, if the goal is to transmit real-time data from cameras installed near the ground 554 



for wildlife monitoring, then developers should be aware that it will be difficult to achieve 555 

network connectivity under a dense forest canopy. We were not able to send any 556 

images from Cayette forest patch, where the smart bridge was installed just 2 m above 557 

ground level. The wireless smart bridge, which can be mounted in a tree, might 558 

therefore be a useful design feature for future edge computing solutions.  559 

 560 

A final problem that only became apparent during field testing was that users need to 561 

know if the system is still functioning when no alerts are received. The latest version of 562 

the system now sends a timed, daily ‘keep-alive’ message notifying the user that it is 563 

functioning as expected.  564 

 565 

Potential applications beyond our case study 566 

Our results show that we have created a viable hardware solution for running powerful 567 

artificial intelligence algorithms in the field and transmitting results over a satellite 568 

network. The computing power of the Raspberry Pi 4 is currently underused and there is 569 

scope for attaching other sensors, such as microphones for bioacoustic recording. 570 

There are already a substantial number of open-source Raspberry Pi projects available 571 

for ecological research, and many of these could be integrated with the smart bridge 572 

with relatively minimal effort (Jolles, 2021). Likewise, there is scope for implementing 573 

other artificial intelligence models, for example to count animals in images or to 574 

recognise species from other ecoregions. The list of potential applications for the 575 

hardware is limited only by imagination, but some examples relevant to ecology and 576 

conservation are given in Table 3. 577 



Table 3. Potential ecology and conservation applications for real-time, artificial 578 

intelligence-enabled smart cameras 579 

 580 

Application Description Considerations 

Phenology Monitoring the timing of 
biological events (e.g. tree 
flowering) in real-time across 
landscapes. 

None 

Detecting illegal 
activities (e.g. 
logging, hunting) 

Detecting human hunters with 
guns, hunted animals or humans 
entering protected areas 
illegally. 

At minimum must comply with local 
surveillance laws. Significant ethical 
concerns have been raised (Sandbrook 
et al., 2018).  

Human-wildlife 
conflict 

Detect and provide alerts of 
predators and crop pests or 
trigger sounds and lights to act 
as an automated deterrent. 

There is a risk of harm to people and 
wildlife when acting upon an alert. 

Non-timber forest 
product 
monitoring 

Provide alerts of wild resource 
availability (e.g. seasonally 
available wild fruits or other non-
timber forest products). 

Increased efficiency of gathering wild 
resources could create or contribute to 
unsustainable levels of harvesting. 

Wildlife tourism It can be challenging to keep 
track of wildlife such as 
habituated apes. Alerts could 
help wildlife guides locate 
species of interest more easily. 

The tourists could be satisfied by 
bringing them to a location where they 
can watch wildlife without searching 
around, but there is risk to disturb their 
environment to often 

 581 
 582 

Current limitations 583 

Using the system outside of our case study would require both technical expertise to 584 

build or modify all of the necessary hardware components and sufficient training data to 585 

create a new artificial intelligence model. The Audiomoth bioacoustic recorder (Hill et 586 

al., 2018) project has overcome this challenge using a ‘group buy’ format, where the 587 

design is completely open-source and customers order the units in advance. The units 588 

are then only manufactured and shipped when a target number is reached. Currently, 589 



the system presented here costs approximately 1000 euros per unit including the 590 

camera, smart bridge and solar panel, but this does not include labour costs for building 591 

the units, satellite contract costs or field deployments. This is more expensive than a 592 

standard camera trap but like all technology these costs will reduce in future. We 593 

anticipate that our approach will be superseded by new developments in the next five 594 

years, but hope the lessons learned here can help drive and inform the development of 595 

new technologies. 596 

 597 

Other limitations include the sometimes low accuracy of the artificial intelligence model 598 

at the image-level. However, our main focus was building a complete system that was 599 

field-ready rather than attempting to achieve perfect artificial intelligence predictions, 600 

and we found that the model was usable, particularly when applying a vote-counting 601 

approach. Improved models can be built using new incoming data and new approaches 602 

will give gains in precision and accuracy in future (Beery et al., 2019; Schneider et al., 603 

2019). 604 

 605 

Conclusion 606 

We have shown that it is possible to send reliable, real-time information from camera 607 

traps over the Iridium satellite network by integrating artificial intelligence, off-the-shelf 608 

and custom hardware. Our solution does not depend on installation of additional 609 

network infrastructure in the landscape and can be operated by non-experts from 610 

anywhere on earth. Real-time data gathering and interpretation will change how 611 

ecologists and conservationists understand and manage ecosystems. We piloted the 612 



system for detecting elephants, but new artificial intelligence algorithms will be created 613 

in future to capture other species or objects in images, such as illegal human activities 614 

in protected areas. 615 
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Supplementary Material 780 
 781 
Table S1. Comparison between model accuracy for the Fast.ai SqueezeNet model and 782 
the TensorFlow Lite model trained using three classes. 783 
Model Class Number correct Percentage correct 

SqueezeNet Human 4529 / 5000 90.58% 

TensorFlow Lite Human 4631 / 5000 92.62% 

SqueezeNet Elephant_African 4516 / 5000 90.32% 

Tensorflow Lite Elephant_African 4507 / 5000 90.14% 

SqueezeNet Other 4358 / 5000 87.16% 

Tensorflow Lite Other 4586 / 5000 91.72% 

 784 
 785 
 786 
  787 



Table S2. Images captured during each day of the field test for each location. NA 788 
indicates the system was deactivated. 789 

Day (June 2021) Forest East Forest West Cayette Kazamabika SEGC 

13 12 2 NA NA 50 

14 18 4 NA 24 5 

15 13 14 NA 1 NA 

16 13 29 5 5 NA 

17 8 4 4 32 NA 

18 17 5 0 0 NA 

19 1 8 3 0 NA 

20 10 12 1 0 NA 

21 7 9 11 32 NA 

22 1 8 7 13 NA 

23 16 30 2 1 NA 

24 7 2 7 2 NA 

25 12 7 7 27 NA 

26 8 40 2 2 8 

27 38 18 7 18 4 

28 12 34 2 1 4 

29 25 1 3 6 4 

30 4 27 13 3 5 

 790 
 791 
  792 



Table S3. Mean, minimum and maximum time difference between image creation time 793 
and alert time for four sites. 794 

Site Minutes Min. Max. 

Forest East 6.9 2.37 863.8 

Forest West 6.5 1.28 1299.2 

Kazamabika 306.3 1.68 9473.9 

SEGC < 1 < 1 1277.1 
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  796 



 797 

798 
Figure S1. Mean inference time in seconds (n = 8 images 224 x 224 pixels) for 16 pre-799 
trained computer vision CNN architectures run on the Raspberry Pi 4 compute module 800 
using PyTorch. 801 
 802 
  803 

 



 804 
Figure S2. Alert times for each of n = 4 camera stations. 805 
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