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ABSTRACT (Approx. 150 words) 14 

The disorganization of cell types within tissues underlies many human diseases and has been 15 

studied for over a century using the conventional tools of pathology, including tissue-marking 16 

dyes such as the H&E stain. Recently, spatial transcriptomics technologies were developed that 17 

can measure spatially resolved gene expression directly in pathology-stained tissues sections, 18 

revealing cell types and their dysfunction in unprecedented detail. In parallel, artificial 19 

intelligence (AI) has approached pathologist-level performance in computationally annotating 20 

H&E images of tissue sections. However, spatial transcriptomics technologies are limited in their 21 

ability to separate transcriptionally similar cell types and AI-based pathology has performed less 22 

impressively outside their training datasets. Here, we describe a methodology that can 23 

computationally integrate AI-annotated pathology images with spatial transcriptomics data to 24 

markedly improve inferences of tissue cell type composition made over either class of data 25 

alone. We show that this methodology can identify regions of clinically relevant tumor immune 26 
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cell infiltration, which is predictive of response to immunotherapy and was missed by an initial 27 

pathologist’s manual annotation. Thus, combining spatial transcriptomics and AI-based image 28 

annotation has the potential to exceed pathologist-level performance in clinical diagnostic 29 

applications and to improve the many applications of spatial transcriptomics that rely on 30 

accurate cell type annotations. 31 

 32 

BACKGROUND 33 

The traditional tools of histopathology, such as tissue-marking dyes like the hematoxylin and 34 

eosin (H&E) stain, remain the primary tool used to study the disorganization and dysfunction of 35 

cells within diseased tissue, representing a principal diagnostic tool in medicine. Although these 36 

tools are very widely applied, they are limited by their reliance on cell morphology1. In the last 37 

five years, sequencing-based spatial transcriptomics technologies2-6 have emerged as a 38 

powerful tool to measure spatially resolved genome-wide gene expression directly within 39 

pathology-stained tissue sections, offering the potential to interrogate diseased tissue biology in 40 

unprecedented detail7,8. Novel computational methods have already begun to address several 41 

analytical challenges posed by these new data, with specific tools developed to identify spatially 42 

varying genes9,10, spatial gene expression patterns11,12, and cell-cell interactions13,14. However, 43 

the most fundamental problem posed by spatial transcriptomics data—upon which almost all 44 

other applications of the data depend—is that of identifying the location and abundance of 45 

different cell types (herein referred to as “cell type decomposition”). Several methods have 46 

already been developed for this task and all function by leveraging the expression of a set of cell 47 

type-specific marker genes to infer the abundance of each cell type at each slide region15-18.  48 

Notably, while mRNA is typically captured from one side of a permeabilized tissue section, 49 

sequencing-based spatial transcriptomics technologies also allow images of the opposite side of 50 

the tissue section to be obtained (e.g. H&E or immunohistochemical stains). Recent advances 51 
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in artificial intelligence, specifically deep convolutional neural networks, have profoundly 52 

improved our ability to computationally extract meaningful information from these types of 53 

stained tissue images19. For example, it was recently shown that deep learning algorithms 54 

applied to H&E-stained pathology slides from The Cancer Genome Atlas (TCGA) could identify 55 

diagnostically informative features of tumors, including clinically relevant estimates of cell-type 56 

composition, chromosomal ploidy and signaling pathway activity20,21. 57 

However, deep learning models and spatial transcriptomics platforms each have limitations and 58 

neither technology alone has displaced conventional pathology techniques. For example, 59 

methods for cell type decomposition in spatial transcriptomics data will always struggle to 60 

differentiate between cell types that are transcriptionally similar due to statistical 61 

multicollinearity22 and deep learning-based models for pathology have often failed to 62 

recapitulate their expected performance when deployed on out-of-test-set data in real-world 63 

settings23,24. 64 

Here, we present a conceptually novel computational methodology termed Guiding-Image 65 

Spatial Transcriptomics (GIST). This method improves cell type decomposition in spatial 66 

transcriptomics data by jointly leveraging gene expression data obtained from the spatial 67 

transcriptomics platform with image-derived information from the same tissue section, for 68 

example, the output of deep learning models applied to images of histopathology stains. We 69 

applied this computational tool to integrate spatial transcriptomics data with deep learning-70 

derived cell type annotations in breast cancer pathology slides where we identified 71 

prognostically relevant immune cell infiltration that was missed by an initial pathologist’s manual 72 

annotation. The methodology presented is generalizable to any sequencing-based spatial 73 

transcriptomics platform where informative image-derived cell-type compositional estimates can 74 

be obtained. Thus, combining spatial transcriptomics and paired pathology images has potential 75 
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applications in clinical diagnostics and can also improve all analytical applications of spatial 76 

transcriptomics data that rely on the correct annotation of cell types.  77 
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RESULTS 78 

Guiding-Image Spatial Transcriptomics (GIST) jointly leverages spatial transcriptomics 79 

and paired tissue images to improve cell type decomposition. 80 

GIST attempts to improve cell type decomposition in spatial transcriptomics data by leveraging 81 

prior estimates of cell type composition from paired pathology images. The method relies on 82 

Bayesian probabilistic modeling, a statistical approach that naturally lends itself to integrating 83 

multiple sources of information, jointly leveraging spatial transcriptomics and imaging 84 

information to improve cell type decomposition estimates over either approach applied alone. 85 

Intuitively, the approach uses the imaging data to provide an initial “suggestion” as to the cell 86 

types in a particular region of the spatial transcriptomics slide, but this suggestion can be 87 

overcome if outweighed by the evidence from the transcriptomic data (schematic representation 88 

in Fig. 1a, model formation in Fig. 1b; see Methods for further technical details). 89 

 90 

 91 

Figure 1: Overview of Guiding-Image Spatial Transcriptomics (GIST) methodology.  92 
a) Schematic representation of GIST. The schematic shows a hypothetical tissue section, where we 93 

wish to identify the location of a hypothetical cell type (colored orange); this could represent, for 94 
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example, immune cell infiltration in a tumor. Estimates of this cell type’s proportions from a deep 95 
learning model applied to an H&E stain image (left) are used to optimize the estimates derived 96 
from the spatial transcriptomics data (right), yielding improved estimates over what could be 97 
achieved from either approach alone (bottom right). 98 

b) Mathematical notation describing the GIST model: We assume that the spatial transcriptomics 99 
data Ym×n can be approximately factorized as a cell type signature matrix Wm×p and a matrix of 100 
cell type compositional estimates Hp×n (eqn. (1)). We propose estimating cell type composition H 101 
using the model in eqn. (2-9). A single-cell RNA-seq dataset from the same tissue type is 102 
represented by Ψ. Each element of W is estimated from Ψ using a negative binomial distribution 103 
(with overdispersion parameter ϕi,k) estimated for each gene i, in each cell type k, from the 104 
expression in each single-cell l. Eqn. (5) shows the model constraints. Eqn. (6-9) show the priors, 105 
denoted by π. Other parameters are assigned weakly informative priors. The key informative prior 106 
is shown in eqn. (9), where the image-derived prior estimate of cell type composition for a cell 107 
type of interest, contained in row a of H, is specified as a beta distribution. For each tissue region 108 
(e.g. unique barcoded spot), this beta distribution is parameterized by its mean, τj, specifying the 109 
prior cell type composition estimate from the image, and the hyperparameter λ, a scalar that 110 
determines how much weight to place on the image data and how much to place on the 111 
transcriptomic data. Notes: Superscript notation (e.g. H(j)) denotes the columns of a matrix.  112 
Vectors are shown using boldface and matrices bold capital letters. All equations herein assume 113 
m genes (indexed by i), n tissue regions (e.g. slide mRNA capture spots, indexed by j), p cell 114 
types (indexed by k). 115 

 116 

A Bayesian probabilistic model for cell type decomposition performs competitively when 117 

compared to existing methods in simulations when no paired image information is 118 

leveraged. 119 

Existing methods for cell type decomposition in spatial transcriptomics data are related to 120 

previous models for bulk gene expression deconvolution and can be broadly conceptualized as 121 

a matrix decomposition, where some reference basis matrix of expression data from purified 122 

cells W (e.g. derived from single-cell RNA-seq) is used to estimate the proportion of each cell 123 

type H in the bulk mixture Y (Fig. 2a for schematic representation). At subcellular resolution, the 124 

H matrix can be thought of as probability estimates, rather than proportion estimates16, although 125 

for simplicity we use the term “proportion” throughout this manuscript. 126 

The statistical model underlying GIST is related to these existing approaches but includes the 127 

ability to leverage prior information derived from paired tissue images. Thus, we were first 128 
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interested in assessing whether our model performed competitively when compared to existing 129 

approaches in the absence of prior information derived from images (henceforth referred to as 130 

the “GIST base-model”). To test this, we first developed two complementary unbiased 131 

benchmarking simulations, one based on the existing tool Splatter25 and one based on a 132 

published benchmarking dataset26, which evaluates methods on a simulated mixture of immune 133 

cell types from a real single-cell RNA-seq dataset. We compared the GIST base-model to two 134 

methods originally designed for bulk gene expression data (CIBERSORT27, DeconRNASeq28), a 135 

method tailored specifically for spatial transcriptomics data (Stereoscope18), and linear 136 

regression (the simplest conceivable model.) Based on the mean absolute error (MAE), 137 

CIBERSORT performed slightly better on the Splatter simulations (Fig. 2b, Supplementary 138 

Figure 1, Supplementary Table S1; MAE = 6.8 × 10-2 for CIBERSORT and 7.4 × 10-2 for the 139 

GIST base-model), while the GIST base-model performed best on the other benchmarking 140 

dataset (Fig. 2c, Supplementary Figure 2, Supplementary Table S2; MAE = 0.09 for 141 

CIBERSORT and 0.06 for the GIST base-model). However, given the conceptual similarity of 142 

the underlying models, it is not surprising that none of these existing methods produce markedly 143 

dissimilar results in either simulation, suggesting that, rather than further model tweaking and 144 

optimization, a new conceptual advance may be necessary to achieve meaningful progress on 145 

the cell type decomposition problem. 146 
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 147 

Figure 2: A Bayesian probabilistic model performs similarly to existing cell type decomposition 148 
methods when no prior information is available. 149 

a) Schematic representation of the cell type decomposition problem posed as a matrix 150 
decomposition. Spatial transcriptomics expression data is arranged in an m genes by n mRNA-151 
capture-spots matrix Y. This matrix is decomposed into a basis matrix W and a matrix H that 152 
contains the proportion of each of p cell types on each spot or (at subcellular resolution) the 153 
probability that a spot matches a cell type (shown for three hypothetical cell types A, B, and C). 154 
The basis matrix W is typically known and can be derived for example from single-cell RNA-seq 155 
data from the same or similar tissue. Given this, all existing cell type decomposition algorithms, 156 
be they designed specifically for spatial transcriptomics data or not, aim to estimate H. 157 

b) Boxplot showing the results of five cell type decomposition methods on simulated mixture gene 158 
expression data, for a mixture of 6 cell types, generated using the tool Splatter (see Methods). 159 
Points have been colored by the simulated cell type and the y-axis shows the deviation from 160 
ground truth, quantified by the difference between the estimated cell type proportions in a sample 161 
and the true proportion used as ground truth for the simulation. The Mean Absolute Error (MAE), 162 
summarizing the overall performance of each method is as follows (lower values imply better 163 
performance): Linear regression = 0.13, CIBERSORT = 6.8 × 10-2, DeconRNAseq = 0.11, 164 
Stereoscope = 0.15, GIST base-model = 7.4 × 10-2. 165 

c) Similar to (b) but based on the simulated dataset obtained from the benchmarking procedure 166 
outlined in Strum et al.26. Points have been colored by the immune cell type and the y-axis shows 167 
the deviation from ground truth, quantified by the difference between the estimated cell type 168 
proportions in a sample and the true proportion used as ground truth for the simulation. The Mean 169 
Absolute Error (MAE), summarizing the overall performance of each method is as follows (lower 170 
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values imply better performance):  Linear regression = 0.14, CIBERSORT = 0.09, DeconRNAseq 171 
= 0.1, GIST base-model = 6.4 × 10-2. Note Stereoscope is not included in this second set of 172 
simulations as it was not possible to pass the CIBERSORT LM22 signature matrix, which is used 173 
as the cell-type reference in this simulation, to Stereoscope (see Methods). 174 
In all boxplots, the center line represents the median, bound of box is upper and lower quartiles 175 
and the whiskers are 1.5× the interquartile range. 176 

 177 

The GIST base-model performs competitively on spatial transcriptomics data obtained 178 

from mouse brain sections when cell type specific immunofluorescence markers are 179 

treated as a ground truth.  180 

We were next interested in comparing the performance of the GIST base-model to other 181 

methods using real spatial transcriptomics data. To do this, we leveraged a publicly available 182 

dataset (see Data Availability), which measured gene expression in the mouse brain using the 183 

10x Genomics Visium spatial transcriptomics platform, and where immunofluorescence (IF) 184 

staining was performed on the reverse side of the tissue section. These IF stains were 185 

conducted for two proteins, RBFOX3 and GFAP, which are protein markers unique to neurons 186 

and glia respectively (Fig. 3a). We calculated the average pixel intensity of each of these two 187 

markers in all image pixels overlapping each spatially barcoded mRNA capture spot on the 188 

Visium slide (Fig. 3b; see Methods), then we used these spot-level intensity estimates to 189 

represent an independent ground-truth approximating the abundance of neurons and glia in 190 

regions of the slide overlapping each of the Visium array’s 4,992 spots. 191 

Next, using the GIST base-model, we estimated the cell type composition on each spot from the 192 

spatial transcriptomics data by leveraging a single-cell RNA-seq dataset that was available from 193 

a similar region of a mouse brain, allowing us to estimate the abundance of glial and neuronal 194 

cell types from the spatial transcriptomics expression data alone (Fig. 3c). We compared the 195 

results obtained from the GIST base-model to popular spatial transcriptomics cell type 196 

decomposition methods Spotlight15, RCTD16, Stereoscope18, and Cell2location29, treating the IF-197 
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derived estimates of neurons and glia at each spot as ground truth. Consistent with our 198 

simulations, the GIST base-model, RCTD, Cell2location, and Spotlight all performed quite 199 

similarly in these benchmarks on real data; however, we note that the GIST base-model had 200 

slightly better performance than the other methods, achieving Spearman’s rank correlations of 201 

0.49 and 0.77, compared to 0.33 and 0.77 for RCTD (the second best performing method), for 202 

the glial and neuronal comparisons respectively (Fig. 3d; P < 2.2 × 10-16 from Spearman’s 203 

correlation against IF-derived ground truth for all five methods; Supplementary Figures 3-7). 204 

Overall, these results suggest that the GIST base-model performs competitively when 205 

compared to existing methods for cell type decomposition in real spatial transcriptomics data. 206 

 207 

Incorporating image-derived prior information from matched immunofluorescence stains 208 

improves cell type decomposition in spatial transcriptomics data generated from a 209 

mouse brain section. 210 

Even though our GIST base-model performed well compared to existing methods, the results 211 

above also showed that the best-performing methods were not markedly different and fall well 212 

short of an optimal performance when compared to the IF-derived ground truth. Thus, we next 213 

hypothesized that it should be possible to markedly improve our performance by leveraging our 214 

model’s Bayesian implementation and supplying the model with informative image-derived prior 215 

information (henceforth referred to as the “GIST model”). We reasoned that we could first 216 

demonstrate this principle on this mouse brain dataset, leveraging the IF-derived estimates of 217 

cell type abundance. However, IF-derived pixel intensity estimates do not represent proportions 218 

on a 0-1 scale and thus it is not obvious how this information could be leveraged as prior 219 

estimates of cell type composition in the GIST model. To solve this problem, we first normalized 220 

the IF-derived estimates by mapping them onto the quantiles of the spatial transcriptomics-221 

derived cell type proportion estimates, generated by an initial round of model fitting using the 222 
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GIST base-model (Fig. 3e-g; see Methods). We then refit our GIST model, incorporating this 223 

prior knowledge derived from the RBFOX3 IF data, providing “suggestions” of the abundance of 224 

neuronal cell types over each spatial transcriptomics spot. We specified these priors using a 225 

beta distribution applied to the appropriate group of model parameters corresponding to 226 

neuronal cell type estimates. The beta distribution was parameterized by its mean (τ; the point 227 

estimate of the normalized cell type proportion estimate from the IF image) and the total-count 228 

parameter (λ; the strength of the prior, corresponding to the weight placed on the IF image)—229 

any beta distribution is naturally constrained to a 0-1 scale, meaning it is appropriate for 230 

specifying image-derived prior estimates of cell type composition. The key modeling question is 231 

then determining how much weight to place on these image-derived priors and how much to 232 

place on the spatial transcriptomics data itself. This must be determined by tuning the 233 

hyperparameter λ, where selecting a value that is too small will mean there is little to no 234 

influence of the image-derived cell type information on the model’s output but selecting a value 235 

that is too large will overfit the model to the image and degrade performance on unseen test 236 

data.  237 

We chose this hyperparameter λ by observing how the estimates of glial cell type composition 238 

compared to IF-derived glial-cell ground-truth (GFAP stain) when fitting the model with ever-239 

increasing values of λ for the IF-derived neuronal cell type prior (RBFOX3 stain), only placing 240 

priors on the neuronal cell types. As expected, when increasing the value of λ and placing more 241 

weight on the image-derived prior for neuronal cells, the model's output progressively more 242 

closely matched these IF-derived estimates for the neuronal cell types (Fig. 3h). However, as 243 

we continued to increase λ, placing more and more weight on the image-derived estimates of 244 

neuronal cells, we eventually observed a precipitous drop-off in the model’s performance, as 245 

measured by the agreement between the glial cell type estimates from the GIST model and the 246 

IF-derived ground truth from the GFAP glial marker protein (Fig. 3h). This drop-off begins at λ = 247 
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50, suggesting that beyond this point the model has been overfitted, providing us a reasonable 248 

value of λ for image-derived priors. This value of λ concentrates most of the prior probability 249 

mass within approximately ±10% of the mean. Notably, at this λ value, the Spearman’s rank 250 

correlation between the model-derived neuronal cell type estimates and the IF-derived ground 251 

truth increased from 0.7 to 0.85, substantially better than any method that does not leverage the 252 

images and approaching an optimal performance (Figs. 3i and 3j). Overall, these results support 253 

the notion that applying informative prior information, derived from matched images has the 254 

potential to improve the performance of cell type decomposition in spatial transcriptomics data 255 

and provides a reasonable initial estimate of the key hyperparameter λ to now be applied to out-256 

of-batch test datasets.  257 
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 258 

Figure 3: Incorporating image-derived prior information from matched immunofluorescence stains 259 
in mouse brain spatial transcriptomics data. 260 

a) Raw immunofluorescence image of the mouse brain tissue section showing the glial (GFAP) and 261 
neuronal (RBFOX3) cell markers.  262 

b) Spatial distribution of raw IF intensity values for GFAP (glial) and RBFOX3 (neuronal) when 263 
fluorescence intensity has been averaged over pixels corresponding to each spatial 264 
transcriptomics spot’s location. Intensity values were rescaled from 0 to 1. 265 

c) Spatial distribution of glial and neuronal proportions estimated from the spatial transcriptomics 266 
gene expression data using the GIST base-model. 267 

d) Bar plot showing Spearman’s correlation between IF-derived ground truth cell type proportions 268 
and cell type proportions estimated from five different gene expression-based spatial 269 
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transcriptomics cell type decomposition methods (Stereoscope, cell2location, SPOTlight, RCTD, 270 
and the GIST base-model). 271 

e) Quantile-quantile plot (QQ plot) of image-based IF-derived values for total glial and neuronal 272 
content for each spot (y-axis) versus values obtained for total glial and neuronal content from the 273 
spatial transcriptomics gene expression data only using the GIST base-model (x-axis). 274 

f) Same as in (d) except that this QQ plot is generated after post-mapping normalization where the 275 
distribution of cell type compositional estimates from the IF images were mapped onto the 276 
distribution of cell type compositional estimates from the spatial transcriptomics gene expression 277 
data generated using the GIST base-model. 278 

g) Spatial distribution of IF intensity values for the glial and neuronal channel where the values have 279 
now been mapped to a distribution estimated from the gene expression data using the GIST base-280 
model.  281 

h) Line plot showing the change in GIST model performance as we increase the key hyperparameter 282 
λ (x-axis). Performance is quantified by Spearman correlation with IF-derived ground truth (y-283 
axis) and is shown for both neuronal (green) and glial (blue) cell types. The RBFOX3 IF image-284 
derived prior is only applied to the neuronal cell type. A non-informative prior is applied to the 285 
glial cell type. The vertical dashed red line indicates a stopping point (λ = 50) where performance 286 
in the glial channel begins to deteriorate, indicating the model has been overfitted to the RBFOX3 287 
IF data. 288 

i) Scatter plots showing the cell type compositional estimates against IF-derived ground truth (x-289 
axis) in the mouse brain for glia (left) and neurons (right) derived from the spatial transcriptomics 290 
gene expression data using the GIST base-model (y-axis) when no prior information is leveraged. 291 
P-values from Spearman’s correlation test. 292 

j) Similar to (i) but showing the improved agreement with ground truth (x-axis) when the IF-derived 293 
cell type compositional estimates are incorporated as prior information using the GIST model 294 
with a λ hyperparameter value of 50 (y-axis). P-values from Spearman’s correlation test. 295 

Abbreviations: ST, Spatial Transcriptomics; IF: Immunofluorescence. 296 

 297 

Incorporating prior information derived from deep learning models applied to matched 298 

H&E-stained images improves estimates of immune cell infiltration in breast cancer 299 

spatial transcriptomics data. 300 

The results above provide a convincing proof-of-principle that it should be possible to improve 301 

cell type decomposition in spatial transcriptomics data by leveraging matched images. However, 302 

while IF stains can provide reliable markers of cell types, they are restricted to a small number 303 

of proteins and are much less commonly collected than the H&E stain. Thus, we wondered 304 

whether it would be possible to leverage image information derived from deep learning models 305 

applied to H&E stains—the principal pathology stain that is collected as a part of almost all 306 
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sequencing-based spatial transcriptomics protocols. Deep learning models have already been 307 

developed that can output numerous clinically relevant annotations from H&E-stained tissue 308 

section images alone, which could theoretically be usefully propagated in the spatial 309 

transcriptomics assay. These annotations include cell type composition, expression of signaling 310 

pathways, chromosomal ploidy, and immune cell infiltration20,21,30. To test whether such 311 

information could be usefully exploited in spatial transcriptomics assays, we obtained 8 312 

previously published spatial transcriptomics tissue slides, which had measured gene expression 313 

in biologically independent breast cancer tumors. Critically, each of these tissue sections had 314 

also been H&E stained (Fig. 4a, panel (a) in Supplementary Figures S8-S12), and regions of 315 

immune cell infiltration had been annotated by a previous pathologist (Fig. 4b, panel (b) in 316 

Supplementary Figure S8-S12), providing an independent ground truth against which to assess 317 

our model predictions. Identifying immune cell infiltration has prognostic value31 and is predictive 318 

of response to cancer immunotherapy32, hence represents a particularly interesting use case of 319 

the GIST model. 320 

Thus, we applied a previously published deep convolutional neural network30, which had been 321 

trained using images collected as part of TCGA to identify regions of tumor-infiltrating 322 

lymphocytes from H&E stained tumor tissue sections. This yielded patches of deep learning-323 

derived predictions of immune cell infiltration across each of our breast cancer tumor tissue 324 

sections (Fig. 4c, panel (c) in Supplementary Figures S8-S12), where gene expression had also 325 

been measured using spatial transcriptomics. We then averaged these deep learning derived 326 

predictions over the pixels overlapping each of the spatial transcriptomics mRNA capture spots, 327 

yielding a deep-learning-derived per-spot estimate of immune cell composition in each tumor 328 

(Fig. 4d, panel (d) in Supplementary Figures S8-S12, similar to the approach applied above for 329 

IF data; see Methods). Initial immune cell proportions at each spot were then estimated using 330 

the GIST base-model (Fig. 4e, panel (e) in Supplementary Figures S8-S12). We applied a 331 
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similar normalization approach as we described for the IF data, mapping the deep learning 332 

derived estimates to the quantiles of the initial gene expression derived estimates, then applied 333 

these deep-learning-derived immune cell compositional estimates as informative priors, again 334 

specified as a beta distribution on the appropriate GIST model parameters. We used a λ value 335 

of 50, which was derived from the previous independent mouse brain dataset, avoiding any 336 

potential issues with overfitting to this new dataset (Fig. 3h). If the GIST model performs better 337 

than the expression-only GIST base-model, the expectation is that we should identify more 338 

immune cells in pathologist-annotated immune cell regions, but less in other regions of the 339 

slides. Thus, we quantified model performance by the ratio of immune cells identified within the 340 

pathologist’s annotated regions of immune infiltration, compared to all other regions of the tissue 341 

slide (this ratio is defined herein as 𝑄 (see Methods); note that regions of immune cells had 342 

been identified by the pathologist in six of eight slides). When compared to the pathologist-343 

derived ground truth, the GIST model, leveraging deep learning-derived prior information, 344 

performed better than the expression-only GIST base-model in four out of the six slides (Fig. 4f, 345 

panel (f) in Supplementary Figures S8-S12). The performance increase over the GIST base-346 

model was particularly large for two slides (Fig. 4g, panel (g) in Supplementary Figures S8-S12; 347 

increase in 𝑄 for GIST vs GIST base-model (defined herein as Δ) of 1.95 and 2.69, P = 7.2 × 10-348 

3 and P < 2.2 × 10-16 for slides A1 and G1 respectively; empirical P-values were calculated by 349 

permutation, see Methods). Visual inspection of the results revealed examples of clear regions 350 

where leveraging the deep learning-derived prior information correctly decreased the estimates 351 

of immune cell composition in regions where the pathologist marked an absence of immune 352 

cells (Fig. 4h, black arrowhead, and Fig. 4i) and regions where estimates of immune cell 353 

composition increased to match the pathologist (Fig. 4h, green arrowhead). Thus, leveraging 354 

deep learning derived prior information has the potential to markedly improve cell type 355 

decomposition in data generated from spatial transcriptomics technologies. 356 
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 357 

Figure 4: Tissue image-derived cell type compositional estimates can be leveraged to improve 358 
estimates of immune cell infiltration in breast cancer tissue sections profiled using spatial 359 
transcriptomics. 360 

a) H&E stained tissue image obtained from the reverse side of the breast cancer spatial 361 
transcriptomics slide G1. Green outline shows regions containing ST spots annotated as 362 
containing immune cells by the pathologist. 363 

b) Pathologist annotation for slide G1 showing regions containing spatial transcriptomics spots that 364 
were labeled immune cell infiltrated (marked by dark-colored spots and green outlines).  365 

c) Output from the deep learning model for slide G1 overlayed on top of the breast cancer tissue 366 
section H&E image. The color scale indicates deep learning-derived predictions for the 367 
proportions of immune cells made on 50×50 micron patches of the tissue. Green boxes outline 368 
regions of pathologist’s annotated immune spots.  369 

d) Slide G1 showing the patch level deep learning predictions converted to spot level predictions, so 370 
that they can be used as priors in the GIST model. Spot level predictions are a sum of patch level 371 
predictions weighted by their percent overlap with the spot.  Boxes outline regions of 372 
pathologist’s annotated immune spots.  373 
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e) Slide G1 showing the gene expression-derived immune cell proportions from the GIST base 374 
model. Solid boxes indicate the regions of the pathologist’s annotated immune spots. Green 375 
indicates that the model reasonably identifies immune-infiltrated spots. Red indicates that the 376 
immune spots were not captured by the model. The dashed black box indicates a region of 377 
interest that likely is a false positive (see panels (h) and (i)). 378 

f) Scatterplot showing the performance of the GIST model (y-axis) versus the performance of a 379 
base-model based on only gene expression data (x-axis) for six pathologist-annotated spatial 380 
transcriptomics slides. Performance is defined as the ratio of the median proportion of immune 381 
cells in pathologist labeled immune cell slide spots, versus the median proportion of immune cells 382 
in the other slide spots (Q, see Methods). Points are colored by slide ID. The red line is the 383 
identity line (intercept of 0, slope of 1), and the distance between this line and each point (black 384 
arrow) represents the observed test statistic Δ for that sample. 385 

g) Histogram showing the empirical null distribution of ratio-based test statistic (Δ , see 386 
Methods) generated using a permutation procedure (x-axis). The test statistic is a measure of 387 
improvement in model performance, versus the pathologist-annotated ground truth, when deep-388 
learning derived prior cell type annotations are incorporated. The observed test statistic Δ is 389 
shown using a vertical red line. P-value from permutation test. 390 

h) Slide G1 showing the GIST model-derived immune cell proportions, when the deep learning 391 
immune cell type annotation has been used as an informative prior. Solid boxes indicate regions 392 
of pathologist’s annotated immune spots. Green indicates that immune spots were successfully 393 
identified, and red indicates that immune spots were not well captured. The dashed black box, 394 
highlighted by the black arrowhead, indicates the same region of interest as in (e), where the false 395 
positive immune cell predictions have been mitigated. The green arrowhead highlights a region 396 
where the correct identification of a pathologist annotated immune-infiltrated region has 397 
improved.  398 

i) Tissue image showing the region of interest highlighted by a dashed black box in panels (e) and 399 
(h). The H&E stain shows minimal evidence of immune infiltration in the areas overlapping the 400 
three spatial transcriptomics spots, whose location is shown by black circles. 401 

Abbreviations: ST, Spatial Transcriptomics. 402 

 403 

The GIST model identified large regions of immune cell infiltration that were missed by 404 

the initial pathologist. 405 

Surprisingly, one of the six breast cancer slides assessed demonstrated a statistically significant 406 

decrease in performance when we leveraged the image-derived prior estimates of immune cell 407 

infiltration (slide H1 in Fig. 4f, P = 3.56 × 10-11, Supplementary Figure S12g). However, closer 408 

inspection of this slide’s results revealed that there was a large region of this tumor that was 409 

identified as immune cell infiltrated by both the spatial transcriptomics assay and the deep 410 

learning model, but this region was not marked by the initial pathologist’s annotation 411 
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(Supplementary Figure S12a-S12e and S12h)). Unsurprisingly, this region was predicted as 412 

heavily immune cell infiltrated by the GIST model, which also correctly identified the original 413 

pathologist’s annotated regions of immune infiltration in this slide (Fig. 5a, Supplementary 414 

Figure S12f).  415 

Thus, we hypothesized that the apparent decrease in performance may have represented an 416 

oversight in the initial pathologist’s annotation, and thus a deficiency in the assumed ground 417 

truth, rather than a deficiency in the GIST model’s prediction. To test this, we devised a 418 

procedure that would allow a second independent pathologist (see Author’s Contributions) to re-419 

examine the relevant regions of this slide, while remaining blinded to the GIST model’s output 420 

and the original pathologist’s annotation. The second pathologist was presented with (n = 115) 421 

100 × 100-micron subregions from this slide and asked to categorize them as either low, middle, 422 

or high levels of immune cell infiltration. These subregions were chosen either from (i) the first 423 

pathologist’s annotated immune cell regions (ii) high-confidence immune cell regions identified 424 

by the GIST model but not the first pathologist or (iii) other randomly chosen regions 425 

(representative examples shown in Fig. 5b; see Methods). Remarkably, the second 426 

pathologist’s reannotation determined no statistical difference between the high-confidence 427 

regions of immune cell infiltration annotated by the first pathologist and the additional high-428 

confidence regions identified by the GIST model, which were missed by the first pathologist 429 

(Fig. 5c; P = 0.15 from Wilcoxon rank-sum test). However, the high-confidence regions of 430 

immune cell infiltration identified by GIST were much more likely to be marked as high 431 

probability regions of immune cell infiltration when compared to randomly chosen slide regions 432 

(Fig. 5c, P = 3.5 × 10-9). Additionally, the second pathologist’s high confidence immune 433 

infiltrated regions were mirrored by higher estimated proportions by GIST (Fig. 5d). These 434 

results support the notion that the additional regions identified by the GIST model were true 435 

regions of immune cell infiltration and that the poor performance on this slide arose from an 436 
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omission in the original pathologist’s annotation, not falsely identified regions by the GIST 437 

model. 438 

We also reexamined the two available spatial transcriptomics slides where the original 439 

pathologist’s annotation of the H&E images had not identified any regions of immune cell 440 

infiltration (Supplementary Figure S13a-b). Surprisingly, for both slides the deep learning model 441 

(Fig. 5e, Supplementary Figure 13c) and the expression-only cell type predictions from the 442 

spatial transcriptomics assay (Fig. 5f, Supplementary Figure 13d) agreed that there were in fact 443 

regions of immune cell infiltration (Fig. 5g, Spearman’s correlation = 0.46, P < 2.2 × 10-16; 444 

Supplementary Figure 13e, Spearman’s correlation = 0.25, P < 2.2 × 10-4). Unsurprisingly, these 445 

same regions were identified by the GIST model (Fig. 5h, Supplementary Figure 13f) and thus it 446 

seemed plausible that the initial pathologist had also missed these immune infiltrated regions in 447 

their initial examination of these two slides. We used the same scoring procedure outlined 448 

above to reannotate these slides by the second pathologist, who convincingly annotated these 449 

predicted regions as true regions of immune cell infiltration (Figure 5i, P = 1.5 × 10-9; 450 

Supplementary Figure 13g, P = 4.5 × 10-2; see Methods), which were also mirrored by higher 451 

proportions estimated by GIST (Supplementary Figure 13h-i). Taken together, these results 452 

suggest that our GIST model, which can jointly leverage image-derived deep learning 453 

predictions with spatial transcriptomics data, has the potential to outperform a human 454 

pathologist in identifying predictive and prognostically important features in human tissue 455 

sections. 456 
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 457 

Figure 5: GIST model identifies regions of immune cell infiltration that were missed by an initial 458 
pathologist’s annotation. 459 

a) GIST model-derived proportions plotted on top of tissue from slide H1. Green outline indicates 460 
the original annotation of immune infiltrated spot regions identified by the initial pathologist.  461 

b) Three representative 100×100 micron images showing spots from the first pathologist’s annotated 462 
regions of immune cell infiltration (top), additional high confidence immune infiltrated regions 463 
identified by the GIST model (middle), and additional randomly selected regions (bottom). Spots 464 
are taken from slide H1. 465 

c) Dot plot showing the second pathologist’s immune infiltration grading with a score of low, 466 
middle, and high (y-axis) for spots from different regions of the tissue (x-axis). Spots were taken 467 
from slide H1 from regions previously annotated by the first pathologist as immune-rich, 468 
additional high confidence regions from the GIST model, and additional random regions on the 469 
slide. P-values from Wilcoxon rank sum test. 470 
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d) Boxplot showing distribution of GIST model predicted immune cell proportions (y-axis) broken 471 
down by immune infiltration grade (x-axis) provided by the second pathologist. For each 472 
pathologist grade (low, middle & high), GIST scores are shown for spots from annotated, GIST 473 
high confidence, and random regions. Spots taken from slide H1. 474 

e) Deep learning-derived proportions for spots on slide B1. The color scale shows the predicted 475 
proportion of immune cells at a spot. 476 

f) Gene expression-derived proportions for slide B1 from GIST base-model. The color scale shows 477 
the predicted proportion of immune cells at a spot. 478 

g) Scatter plot showing the per-spot correlation between deep learning-derived predictions (y-axis) 479 
and ST gene expression-derived proportions (x-axis) for slide B1. Each dot is a spot and the red 480 
line is the regression line. P-value from Spearman’s correlation test. 481 

h) GIST model-derived proportions for slide B1. The color scale shows the predicted proportion of 482 
immune cells at a spot. 483 

i) Dot plot showing the second pathologist’s immune infiltration grading with a score of low, 484 
middle, and high (y-axis) for spots from different regions of the tissue (x-axis). Spots were taken 485 
from slide B1 from high confidence regions from the GIST model and random regions on the 486 
slide. P-value from Wilcoxon rank sum test. 487 

In all boxplots, the center line represents the median, bound of box is upper and lower quartiles 488 
and the whiskers are 1.5× the interquartile range. 489 
Abbreviations: ST, Spatial Transcriptomics. 490 

 491 

DISCUSSION 492 

We have presented a conceptually novel computational methodology that can leverage data 493 

derived from paired tissue images to improve inferences of cell type composition in spatial 494 

transcriptomics data. The most exciting application of such a methodology may be the ability to 495 

leverage inferences from deep-learning models applied to pathology images, which itself has 496 

recently reached close to pathologist level performance in annotating clinically relevant features 497 

of tissue sections20,21,30. However, the methodology is highly generalizable and could be easily 498 

extended to any image-derived prior information, which we have demonstrated for 499 

immunofluorescence. Our proposed integrated approach may have clinical applications in areas 500 

of prognostics and diagnostics that rely on cell type information but also has the potential to 501 

improve all downstream applications of spatial transcriptomics that rely on accurate cell type 502 

annotations, including identification of cell-cell or gene-gene interactions. 503 
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Our framework will also spur the development of future similar computational approaches. 504 

Indeed, any cell type decomposition method that could be re-implemented in a Bayesian 505 

framework could be adapted to leverage image-derived prior information and this is likely 506 

possible for most of the existing models used in our comparisons-of-methods (Figs. 2 and 3). 507 

Thus, there is scope for future model development and optimization within our novel framework. 508 

We also anticipate that our framework will lead to new modes of spatial transcriptomics 509 

experimental design. For example, we showed that IF data could also be informatively 510 

leveraged. This opens the possibility of a priori staining for a few particularly informative protein 511 

markers, knowing that such markers can be used in downstream analyses to directly influence 512 

and improve the results of the spatial transcriptomics data analysis. This may be particularly 513 

useful for separating cell types when multicollinearity affects the performance of conventional 514 

models for cell type decomposition22. 515 

Additionally, while we have shown some illustrative examples, the Bayesian implementation 516 

allows enormous flexibility in how prior information is specified. It is theoretically possible to, for 517 

example, apply one prior to groups of cell types, or apply multiple partially overlapping priors 518 

derived from various sources of information. For the breast cancer dataset shown, we also fixed 519 

the λ hyperparameter to 50, using information obtained in the previous dataset. While certainly 520 

avoiding overfitting, this is likely a conservative means by which to choose this key value and 521 

also assumes that the influence of the image and gene expression data should be treated as 522 

equal at each spot—almost certainly an oversimplification. Methods could likely be devised to 523 

adaptively adjust the value of the λ hyperparameter, such that, for example, the differences in 524 

uncertainty associated with the deep learning-based outputs could be accounted for at each 525 

tissue region. Thus, it is likely that creative applications within the described framework will 526 

eventually yield improvements over the results presented here. 527 
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In conclusion, we anticipate that jointly leveraging spatial transcriptomics and pathology images 528 

collected from the same tissue section will represent an important conceptually novel 529 

computational methodology, which has the potential to improve many applications of emerging 530 

spatial transcriptomics technologies, including potential translational applications in clinical and 531 

diagnostic pathology. 532 

 533 

METHODS 534 

Technical details of the GIST statistical model. 535 

The expression of gene 𝑖 at each spatial transcriptomics mRNA capture spot 𝑗 is assumed to be 536 

approximately a weighted sum of the average expression of that gene in each of the cell types 537 

captured by that spot. If our spatial transcriptomics data are arranged in a matrix 𝒀, where the 538 

rows represent 𝑖 =  1, … , 𝑚 genes and the columns represent 𝑗 =  1, … , 𝑛 spots, then this 539 

relationship can be summarized by the following equation (see also Fig. 2a): 540 

𝒀 ≈ 𝑾𝑯 541 

where 𝑾 is an 𝑚 ×  𝑝 matrix of cell type specific gene expression signatures, approximating the 542 

average expression of each gene in each cell type in this tissue, with each column of 𝑾 543 

representing one of the 𝑝 cell types and each row representing one of the 𝑚 genes. 𝑯 is a 544 

𝑝 ×  𝑛 matrix of cell type proportions (or probabilities if the data are subcellular resolution) 545 

where each column 𝑯( ) represents the proportions of each of 𝑝 cell types at spot 𝑗.  546 

Each element of 𝑾 is best modeled from 𝚿 (a reference single-cell RNA-seq dataset) using a 547 

negative binomial distribution estimated for each gene 𝑖, in each cell type 𝑘, from the expression 548 

data of the available single-cells indexed by 𝑙. ϕ ,  represents the overdispersion parameter of 549 

such a distribution: 550 

Ψ , , ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑤 , , ϕ ,  551 
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𝑖 = 1, … , 𝑚;  𝑘 = 1, … , 𝑝 552 

For practical reasons, we approximated the elements of 𝑾 by taking the mean normalized 553 

(details below) expression of each gene in each cell type in the reference single-cell RNA-seq 554 

dataset 𝚿.  555 

Given 𝒀 and 𝑾, the following model is then used for estimating 𝑯: 556 

𝑦 , | 𝚿 , 𝑾 , 𝑯( ), ν , β , , σ  ∼  𝑡 ν , β , + 𝑾 𝑯( ), σ  557 

𝑖 =  1, … , 𝑚;  𝑗 =  1, … , 𝑛;  𝑘 =  1, … , 𝑝 558 

We place a gamma prior (priors are denoted herein by π) on the degrees of freedom parameter 559 

ν of the t-distribution, using shape and rate parameter values previously proposed by Juarez 560 

and Steele33: 561 

π ν ∼ 𝐺𝑎𝑚𝑚𝑎(2, 0.1) 562 

ν > 3 563 

We constrain the elements of 𝑯 to be positive and to sum to one within each spot: 564 

ℎ , = 1 565 

ℎ , > 0 566 

This is achieved by placing a non-informative Dirichlet prior on the columns of 𝑯: 567 

π 𝑯( ) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛂) 568 

α = α = ⋯ = α = 1 569 

All other parameters are assigned non-informative priors. 570 
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We use the image data to generate a prior estimate of the abundance of some cell type 𝑎 (e.g. 571 

immune cells) at each spot 𝑗 (details below), then we place a beta distribution prior on the 572 

corresponding proportion of cell type 𝑎 at spot 𝑗: 573 

π ℎ , ∼ 𝐵𝑒𝑡𝑎 τ , λ  574 

Here, τ  is the mean of the beta distribution representing the image-derived prior estimate for 575 

the proportion of this cell type 𝑎 at spot 𝑗. λ is a hyperparameter, representing the total count 576 

parameter of the beta distribution, determining how much weight is to be placed on the image 577 

data and how much to place on the transcriptomic data.  578 

In the notation above, vectors are shown using boldface and matrices bold capital letters. We 579 

assume 𝑚 genes (indexed by 𝑖), 𝑛 spots, (indexed by 𝑗), and 𝑝 cell types (indexed by 𝑘). 580 

 581 

Fitting the GIST and GIST base-model. 582 

The statistical model described above was implemented in the Stan programming language 583 

using the rstan package. The Hamiltonian Monte Carlo (HMC) algorithm was used to estimate 584 

the model parameters. The HMC algorithm was run for 2000 iterations where the first 1000 585 

iterations were discarded as burn-in. The posterior mean was used as final parameter 586 

estimates. 587 

 588 

Prior construction. 589 

Mouse brain dataset: To avoid outlier bias in the IF image data the pixel-level image intensity 590 

values were first capped at the 99th percentile and values below the 1st percentile were set to 591 

zero. These pixel-level intensity values were then rescaled from 0 to 1, by dividing all values by 592 
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the maximum capped value. Pixels overlapping each spatial transcriptomics mRNA capture spot 593 

were defined as those centered around the middle of the spatial transcriptomics spot in a 70-594 

pixel radius—the center of the spot was defined in an annotation file that was output by the 10x 595 

Genomics SpaceRanger software. The rescaled pixel-level intensity values were then averaged 596 

over the slide regions corresponding to each spatial transcriptomics spot to obtain a single 597 

intensity value for each spot. This procedure was repeated for both IF channels—RBFOX3 598 

(Neuron) and GFAP (Glia). Finally, the intensity values for each spot in each channel were 599 

mapped onto the quantiles of the cell type proportion estimates obtained from a first round of 600 

model fitting using the GIST base-model. These IF image-derived mapped spot level intensity 601 

values, which act as a proxy for the abundance of neurons or glia, were used as priors on the 602 

appropriate parameters in the GIST model. 603 

Breast cancer dataset: The deep learning models used in the breast cancer analyses were 604 

previously published by Saltz et al.30 and were obtained from the Quantitative Imaging in 605 

Pathology (QuIP) group’s website (https://sbu-bmi.github.io/quip_distro). These are 606 

convolutional neural network-based deep learning models, which had been pre-trained to 607 

recognize tumor-infiltrating lymphocytes. The original authors had trained these models using 608 

pathologist annotated H&E-stained tissues sections from TCGA.  We used the VGG16-based 609 

model provided by the group. The breast cancer H&E images were converted from JPEG format 610 

to tiled TIFF format and the software suite VIPS was used to encode the TIFF files with a micron 611 

per pixel (MPP) value for each slide. The encoded TIFF files were processed using QuIP’s deep 612 

learning pipeline to generate a probability map over the entirety of each breast cancer H&E 613 

stained slide image. The deep learning model assigned probability values to patches of 50×50 614 

microns. For a given spot, the assigned patch-level probability values were converted to spot-615 

level probability values by taking a weighted sum of the patches, where the weight is the pixel 616 

overlap between the patch and the spot. This generated values for each spatial transcriptomics 617 
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spot that approximately corresponded to the probability of immune cell infiltration. Similarly to 618 

the mouse brain IF dataset, these probability values were then mapped onto the distribution of 619 

total lymphocyte (T cell and B cell) content estimated from gene expression-derived proportions 620 

alone, obtained by an initial round of model fitting using the GIST base-model. These mapped 621 

values were used as informative priors on the appropriate model parameters in the GIST model. 622 

The image processing code was implemented in Python using imaging libraries PIL.Image and 623 

imageio. Visualization and analysis of imaging data were carried out using the NumPy, pandas, 624 

and Matplotlib libraries.  625 

 626 

Quantifying the improvement achieved by the GIST model, compared to an expression-627 

only model, by benchmarking against a pathologist-defined ground truth. 628 

For each slide in the breast cancer dataset, we quantified a model’s ability to accurately 629 

estimate regions of immune cells by the median of immune cell proportions in spots labeled as 630 

immune-infiltrated by the original pathologist, divided by the median of immune cell proportions 631 

estimated in the other remaining spots: 632 

𝑄 =
𝑚𝑒𝑑𝑖𝑎𝑛 𝒉𝑰𝒎𝒎𝒖𝒏𝒆𝑺𝒑𝒐𝒕𝒔

𝑚𝑒𝑑𝑖𝑎𝑛 𝒉𝑶𝒕𝒉𝒆𝒓𝑺𝒑𝒐𝒕𝒔

 633 

𝒉𝑰𝒎𝒎𝒖𝒏𝒆𝑺𝒑𝒐𝒕𝒔 is a vector of model-estimated immune cell proportions for spots annotated by the 634 

pathologist as containing immune cells, and 𝒉𝑶𝒕𝒉𝒆𝒓𝑺𝒑𝒐𝒕𝒔 are the immune cell proportions 635 

estimated at the other spots on the same slide. 636 

With better performance, the scalar value 𝑄 will increase, as the model’s output better matches 637 

the pathologist-defined ground truth for this slide. Having defined this performance metric, we 638 

defined the improvement of the GIST model over the expression-only GIST base-model below 639 
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as Δ, a scalar representing the difference between this ratio statistic 𝑄 when immune cell 640 

proportions were estimated with the GIST model (𝑄 ) or the GIST base-model 641 

(𝑄 ):  642 

Δ = 𝑄 − 𝑄  643 

To assess whether the improved performance Δ observed for the GIST model over the GIST 644 

base-model was statistically significant, we used a permutation-based strategy, building a null 645 

distribution by randomly shuffling the pathologist's spot level annotations. Specifically, for each 646 

permutation, the spots were randomly assigned as either immune infiltrated or non-immune, 647 

fixing the total number of immune infiltrated spots to the same number as the pathologist’s 648 

annotation of that slide; we then computed the improvement in the performance Δ  of the 649 

GIST model over the GIST base-model using the same procedure that was applied to the real 650 

arrangement of the pathologist’s annotations. This was repeated for 100,000 permutations, 651 

generating a null distribution against which to compare the observed test statistic Δ. A P-value 652 

was then calculated by the proportion of permuted values Δ  that achieved a value at least 653 

as extreme as Δ, the test statistic observed in the pathologist’s real annotations. In the cases 654 

where no permutated value more extreme than the original test statistic was observed (G1 and 655 

H1), a P-value was calculated by approximating the null distribution using a normal distribution, 656 

with a mean and standard deviation equal to that of the Δ  values from the 100,000 657 

permutations. 658 

 659 

Second pathologist’s re-annotation of the breast cancer spatial transcriptomics slides. 660 

A second pathologist was asked to assign new immune infiltration grades from H&E images of 661 

spots for three spatial transcriptomics breast cancer slides – B1, C1, and H1. The pathologist 662 

(co-author Dr. Heather Tillman) was asked to blindly score H&E images of slide regions 663 
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overlapping the spatial transcriptomics mRNA capture spots from three groups of spots: These 664 

were (i) spots that were annotated as immune cell infiltrated by the original pathologist (slide H1 665 

only), (ii) spots that were identified as high-confidence immune infiltrated by the GIST model, or 666 

(iii) other randomly chosen spots. High-confidence immune-cell-infiltrated spots from the GIST 667 

model were selected as the spots having a predicted proportion of immune cells that was 668 

greater than the upper quartile plus 1.5 times the interquartile range of the data, a de facto 669 

metric used to define outliers. For each slide, the number of random spots selected was equal 670 

to the number of spots included from the GIST model. This second pathologist was then asked 671 

to score/grade an H&E stain image of each spot, scoring immune cell infiltration levels as low, 672 

middle, or high, while remaining blinded to the group from which the spot image was selected. 673 

This provided a new score for each spot from each of the three groups (annotated, GIST, 674 

random). We then applied a one-sided Wilcoxon rank-sum test to assess whether these scores 675 

were significantly higher in the group of spots predicted as high confidence immune infiltrated by 676 

the GIST model compared to the randomly selected spots or the immune infiltrated spots from 677 

the initial pathologist’s annotation, where low, middle and high scores were encoded on an 678 

ordinal scale as 1, 2 and 3 respectively.  679 

 680 

Simulations to assess the ability of the GIST base-model to accurately identify cell type 681 

composition in gene expression data from a mixture of cell types. 682 

Splatter 683 

The accuracy of cell type proportions estimated from the various computational methods was 684 

compared to the GIST base-model by first creating synthetic mixtures of gene expression data 685 

using the popular Splatter model25. We used the Splatter model with a slight modification, which 686 

was recently proposed by Zhang et al.34, who reported that the native Splatter model did not 687 
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capture the empirical distribution of log fold changes observed in real data. The enhanced 688 

Splatter model was obtained from the GitHub repository of Zhang et al. 689 

(https://github.com/Irrationone/splatter), where the author’s had learned the simulation 690 

parameters from the counts matrix of a publicly available PBMC single-cell RNA-seq dataset 691 

generated by 10X Genomics. The parameters for log fold changes were learned by fitting a 692 

truncated student’s t-distribution to the log fold changes between B cells and CD4 T cells in this 693 

same PBMC dataset.  694 

Using the enhanced Splatter framework, we generated a dataset with 100 gene expression 695 

samples, each created from mixtures of cell types, along with a simulated paired reference 696 

single-cell RNA-seq dataset. The paired single-cell RNA-seq data were collapsed by their mean 697 

to create the required reference signature matrix 𝑾, which was passed to each of the 698 

computational methods. Each expression mixture sample was generated by taking a weighted 699 

average of gene expression across 100 cells (generated independently of the reference single-700 

cell RNA-seq data) from each of six synthetic cell types. Ground truth cell type proportions for 701 

the 100 simulated mixture samples were randomly generated from a Dirichlet distribution, where 702 

each cell type was assigned equal weight.  703 

 704 

Immune cell deconvolution. 705 

We performed a second set of benchmarking simulations using the framework developed by 706 

Strum et al.26, which rather than relying entirely on simulation, created a mixture gene 707 

expression dataset by computationally mixing real single-cell RNA-seq data, previously 708 

generated by Schelker et al.35. In this benchmark, ground truth was established by mixing gene 709 

expression counts from 500 single-cells from each of eight immune cell types in known 710 

proportions and the simulated mixture was created by taking an average across cells. For the 711 
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fairest comparison, we supplied each of the methods the LM22 cell type signature matrix36 712 

(corresponding to 𝑾 in our notation herein), which is a signature matrix created by the 713 

developers of CIBERSORT that represents average gene expression values in each of 22 714 

immune cell types. Note this was not possible for Stereoscope, which only accepts single-cell 715 

RNA-seq data as the reference input, from which it estimates the cell type signature matrix 716 

internally. Because the LM22 cell types do not have a strict one-to-one correspondence with the 717 

cell types annotated in Schelker et al., the results were mapped to the most relevant cell type 718 

using the same mappings previously employed by Strum et al.  719 

In all simulations, the performance of each method was summarized by the mean absolute error 720 

(MAE), which is the average of the absolute value of the difference between each predicted cell 721 

type proportion and the known simulated ground truth proportion: 722 

MAE =
∑ |𝑦 − 𝑥 |

𝑛
=

∑ |𝑒 |

𝑛
 723 

Where 𝑦  is a predicted cell type proportion, 𝑥  is a predicted proportion, 𝑒  is the error 724 

associated with the prediction, and 𝑛 is the total number of predicted data points generated by a 725 

given method. 726 

 727 

Datasets used in the analyses. 728 

Mouse Brain 729 

The mouse brain spatial transcriptomics Visium data with associated IF images were 730 

downloaded from the 10X Genomics website:  https://support.10xgenomics.com/spatial-gene-731 

expression/datasets/1.1.0/V1_Adult_Mouse_Brain_Coronal_Section_2 732 
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As a cell type reference 𝑾 for these data, we used the curated mouse brain single-cell RNA-seq 733 

data provided by Andersson et al.18. This data had been originally retrieved from 734 

http://www.mousebrain.org and was processed by Andersson et al. for use in spatial 735 

transcriptomics analysis: https://github.com/almaan/stereoscope/tree/master/data/mousebrain  736 

 737 

Breast Cancer 738 

The eight separate breast cancer spatial transcriptomics slides, previously generated by 739 

Andersson et al., were downloaded from https://github.com/almaan/her2st. This repository 740 

contained count matrices generated from the spatial transcriptomics assays, H&E images of the 741 

tissue sections (with and without pathologist annotation), and matrices detailing the location of 742 

the spots.  743 

The single-cell RNA-seq breast cancer dataset, used to generate the cell type reference matrix 744 

𝑾 for all breast cancer analyses, was previously generated by Karaayvaz et al.37 and obtained 745 

from: https://github.com/Michorlab/tnbc_scrnaseq. 746 

 747 

Data preprocessing, filtering, normalization and imputation. 748 

All public datasets were obtained as preprocessed counts matrices, which had been processed 749 

according to the previous authors. Generally, spatial transcriptomics data displayed greater 750 

sparsity than the single-cell RNA-seq data, which arises because of differences in platform-751 

specific mRNA capture efficiency. To alleviate this difference, we used a non-parametric 752 

imputation approach. Specifically, we used the knnSmooth38 algorithm (available at the GitHub 753 

repository https://github.com/yanailab/knn-smoothing) to impute the spatial transcriptomics data.  754 
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For the IF mouse brain dataset, we set the “number of nearest neighbors to aggregate” 755 

parameter 𝑘 to 5 and the “number of principal components” parameter 𝑑 to 10 (author’s 756 

suggested default). For the breast cancer dataset, we used the same approach with slight 757 

modifications. The resolution of spots on the breast cancer slides was coarser than on the 758 

Visium array and transcript capture was poorer. Thus, to overcome these limitations, we 759 

combined the spots from all the breast cancer spatial transcriptomics slides and imputed them 760 

together using the knnSmooth algorithm with a 𝑘 parameter of 10, mitigating the lower transcript 761 

capture efficiency in the breast cancer dataset. 762 

Thereafter, both the spatial transcriptomics and single-cell RNA-seq data were normalized 763 

separately by using Seurat’s SCTransform39, which importantly removes technical effects such 764 

as library size effects. We restricted the single-cell RNA-seq and spatial transcriptomics data to 765 

the intersection of their 2,000 most highly variable genes, yielding totals of 1,024 and 837 genes 766 

used for GIST model fitting in the mouse and breast cancer datasets respectively.  767 

 768 

Software and code availability. 769 

The GIST model has been made available as an R package, which can be obtained at:  770 

https://github.com/asifzubair/GIST  771 

All the code for the analyses presented in this manuscript are available on GitHub: 772 

https://github.com/asifzubair/GIST-paper 773 

Note: These are private repositories accessible by the links above for peer review, these 774 

repositories will be made publicly accessible upon completion of manuscript review. 775 

 776 

 777 
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