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The structural maintenance of chromosome complexes exhibit the remarkable4

ability to actively extrude DNA, which has led to the appealing and popular5

“loop extrusion” model to explain one of the most important processes in biology:6

the compaction of chromatin during the cell cycle. A potential mechanism for7

the action of extrusion is the classic Brownian ratchet, which requires short8

DNA loops to overcome an initial enthalpic barrier to bending, before favoured9

entropic growth of longer loops. We present a simple model of the constrained10

dynamics of DNA loop formation based on a frictional worm like chain, where for11

circular loops of order, or smaller than the persistence length, internal friction to12

bending dominates solvent dynamics. Using Rayleigh’s dissipation function, we13

show how bending friction can be translated to simple one dimensional diffusion14

of the angle of the loop resulting in a Smoluchowski equation with a coordinate15

dependent diffusion constant. This interplay between Brownian motion, bending16

dissipation and geometry of loops leads to a qualitatively new phenomenon, where17

the friction vanishes for bends with an angle of exactly 180 degrees, due to a18

decoupling between changes in loop curvature and angle. Using this theory and19

given current parameter uncertainties, we tentatively predict mean first passage20

times of between 1 and 10 seconds, which is of order the cycle time of ATP,21

suggesting spontaneous looping could be sufficient to achieve efficient initiation22

of looping.23

Introduction24

A fundamental feature of all life is the faithful replication and segregation of DNA into daughter cells25

during cell division, where one of the key steps is the condensation and separation of sister chromatids26

(1); the protein complexes condensin and cohesin that are part of the family of structural maintenance27

of chromosome (SMC) complexes and are highly conserved throughout all domains of life, are essential28
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to this process and interact with DNA to regulate chromosome structure (2,3). Condensin is known29

to play a key role in the compaction of chromosomes during mitosis, while cohesin acts to bind30

the sister chromatids together after DNA replication (4) and aids in chromosome alignment during31

cell division. Early electron micrographs showed the structure of mitotic chromosome consist of a32

central scaffold with loops of chromatin emanating from this central core (5). There is still much not33

understood about how these complexes act to achieve these compact structures and the separation34

of sister chromatids, but SMC complexes have been observed in vitro to exhibit the ability to actively35

extrude DNA into loops (6–9), which has formed the basis of the popular loop extrusion model36

of chromosome compaction: if a number of condensins bind to DNA and extrude loops, this will37

naturally lead to compaction of chromatin, with the condensins forming a backbone (1, 10, 11).38

Although, there are a number of empirical measurements that the loop extrusion model fails to39

capture (12) and there are a number of unanswered questions as to whether loop extrusion can in40

vivo lead to chromosome compaction, due to small stalling forces of motor activity (6) and how41

extrusion can occur in the face of nucleosome obstacles (8), SMC complexes show extrusion activity42

in vitro, which is poorly understood at a mechanistic level.43

SMC complexes are essentially ring shaped protein trimers (13); they comprise a pair of coiled-44

coils which are bound to each other at their hinge domains, while the opposing end comprises the45

ATPase head domains that dimerise by ATP binding and are linked together by a mostly unstructured46

polypeptide called the kleisin subunit. Although, many of the molecular details remain to be firmly47

established and the exact path of DNA within the SMC complex is not known (known as topological,48

pseudo-topological and non-topological in the literature (7,14–16)), a key feature for looping is that49

DNA is constrained or bound to the complex at two contact points (Fig.1), which enable the loop to50

grow. There are various models of how extrusion might occur, but the simplest is a classic Brownian51

rachet mechanism (9), where ATP hydrolysis causes unbinding of the head domains, allowing the52

DNA freedom to diffuse by Brownian motion with constrained electrostatic interactions with the53

head domains and additional protein domains known as HEAT repeat subunits, ; the idea is that on54

re-binding of ATP if the loop has grown by diffusion then this motion has been ratcheted. Molecular55

motors powered by Brownian ratchet mechanisms work by relying on diffusion in some asymmetric56

potential, here for sufficiently long loops entropy will favour the growth of loops. However, for57

initially short loops the growth will be disfavoured by the enthalpy of bending. It is an open and58

important question whether Brownian motion would be sufficiently rapid for SMC complexes to59

initiate extrusion of DNA by this mechanism, or require additional force generation mechanisms to60

drive initial loop growth.61

From a physics perspective, the generic problem is one of the Brownian motion of a semi-flexible62

polymer loop through an aperture whose size is of order the persistence length. Although, there has63

been much theoretical (17,18) and empirical work (19,20) on the problem of DNA cyclisation, which64

studies the rate that short lengths of DNA find their ends, this is not directly relevant to looping65

within SMC complexes, as the constraints on DNA are different and the contour length of the loop66

can grow. These theoretical studies also ignore the role of internal friction, which is dynamical67

resistance to changing conformation due to internal energy barriers (21–23); it is well known from68

Kuhn’s theorem (21, 24) that for flexible polymers internal friction due to dihedral angle rotations69

are negligible for long polymers and the longest wavelengths of their Rouse modes, and conversely70

that for sufficiently short polymers they can be completely dominated by internal friction (25). The71

internal friction of proteins (26–28), unfolded polypeptides (29), polysaccharides (23,30) and single72
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stranded DNA (31) have all been measured empirically using a range of single molecule experimental73

techniques. A key message from these studies is that many dynamical mechanical processes in74

biology are far too slow to be explained if Stokes’ friction with the solvent was the only source75

of dissipation. In the case of semi-flexible or worm-like chain (WLC) polymers, measurements of76

stretched polypeptides (29) and ssDNA (31) show that internal friction increases with tension F with77

a power law ∼ F 3/2 predicted by a frictional worm-like chain (FWLC), which includes dissipation78

due to internal friction which opposes bending (29). The exact origin of bending friction is unclear,79

but will be related to steric constraints between complex molecular potentials giving rise to a local80

roughness that at a coarse-grained level gives an effective friction that opposes bending. Although,81

the bending friction constant of dsDNA has not been measured, we a priori expect the same behaviour82

as empirically determined for ssDNA and unfolded polypeptides.83

In this paper, we address the fundamental theoretical question of Brownian loop growth by84

calculating the mean first passage time to reach a critical loop size such that entropy dominates, in85

the absence of any force generation mechanisms for loop growth. As we show, this is not a trivial86

diffusion problem, since for short loops of DNA we expect frictional resistance to bending (internal87

friction) within the polymer to dominate over Stokes’ friction with the solvent. We formulate the88

frictional worm like chain model to address this question and using Rayleigh’s dissipation function89

show that the constrained loop diffusion problem can be expressed as a 1 dimensional Smoluchowski90

equation in the loop angle with coordinate dependent friction. This analysis demonstrates a new91

physical phenomenon, which arises from an interplay between Brownian motion and loop geometry;92

we find this effective angular friction vanishes at exactly 180 degrees, since at this exact angle,93

infinitesimally, there is no change in curvature/bending of the loop and hence no bending friction.94

Further, given this phenomenon, we predict that even with relatively large initial angles of the loop,95

the mean first passage time to reach an entropically dominated loop is not significantly affected, and96

is dominated by a relatively small range of angles greater than 180 degrees. Given uncertainties of97

the exact parameter values – the internal friction to bending of double stranded DNA has not been98

measured – we make tentative predictions based on reasonable assumptions and estimate that loop99

initiation should take between 1 and 10 seconds. This time is of order the cycle time of ATP and100

suggests that initiation by the purely spontaneous Brownian looping described could be sufficient for101

efficient initiation of extrusion.102

Simple model of Brownian motion of DNA looping in SMC complexes103

Fig.1 shows a diagram representing the simple model of how DNA looping can occur by diffusion104

in a SMC complex like condensin or cohesin, based on the Brownian ratchet model (9). The main105

assumptions of the simple model are that 1) DNA is bound to the protein complex at two points106

separated a distance d indicated with the small green circles, but free to slide frictionless through107

the point and with no imposed constraint in angle and 2) the conformation of the loop between108

the attachment points is an arc of a circle which has radius R (red line). After ATP hydrolysis and109

coiled-coil head disengagement, one of the binding points to DNA correspond to an electrostatic110

interaction with what is known as the head module (HEAT repeat subunit), which is bound to111

one of the coiled-coils, while the other in reality only provides a steric constraint on DNA by the112

same coiled-coil, but potentially constrained laterally by a kink in the coiled-coil referred to as the113
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Figure 1: Diagram showing an idealisation of SMC complexes and DNA in gripping and slipping state
(a & b) and c) how the looping of DNA is parameterised as an arc of a circle, where the d is the
distance of the aperture constraining dsDNA and R is the radius and θ the angle of the loop. Note
that although this diagram is based on the Brownian ratchet model (9) other models of extrusion
can be represented by the same simple model shown in c) where the aperture d would correspond to
a different distance.

elbow; their separation gives the effective aperture of size d ≈ 25nm through which the loop can114

grow (9, 32). These assumptions are reasonable as more compact DNA conformations are likely to115

be entropically and energetically disfavoured and unlikely to contribute significantly to random paths116

that lead to looping through the complex. However, there are a number of uncertainties about the117

exact molecular details (7, 14–16), and there may be alternative paths DNA can take as it loops118

(topological vs pseudo-topological vs non-topological); a key element is that post-hydrolysis DNA119

has freedom to diffusively slide (slipping state) – constrained to different degrees by electrostatic120

binding to the head and hinge domains (via the HEAT subunits) – and upon ATP binding with the121

head domains and DNA, any Brownian loop growth is ratcheted (9,32). There are also very different122

models of how extrusion can occur within an SMC complex (33, 34), which broadly share the need123

for looping through an aperture, but where d would correspond to a different distance within the124

SMC complex. It should be further noted that this model does not include the initial search process125

and binding to DNA of the SMC complex, which means all estimates of mean first passage times126

below are lower bounds.127

Given a circular loop we can write down the energy in terms of the radius R and the angle the loop128

subtends to it’s centre θ, given its persistence length `p: U =
kBT`pθ

2R . However, our simplification129

of the DNA strand being bound at both attachment points allows us to write down the radius in130

terms of the distance d and the angle θ, R = d
2 sin (θ/2) , and so the energy of the loop as a function131

of θ only:132

U(θ) =
kBT`p
d

θ sin (θ/2) (1)

where increasing θ corresponds to increased progress of looping and a larger radius. We can now133

characterise the looping as a Brownian walk in the variable θ in a potential landscape given by U(θ),134

which is plotted in Fig.2a in units of kBT for d = 25nm and `p = 50nm, where we see that maximum135
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energy of a loop occurs at around θ ≈ 4 radians or 230◦.136

Figure 2: a) Potential energy βU(θ) (blue line) and the effective dynamical potential βŨ(θ) =
βU(θ) + ln(ζθ(θ)) (red line) as a function of θ, where the latter incorporates the effect of internal
friction in the dynamics of the loop. Note that the dynamic potential does not affect the Boltzmann
distribution of angles which is still given by U(θ). The diagrams show the geometry of the DNA loop
constrained to a distance d at two freely sliding attachment points, and also the relative loops sizes
for different angles of θ = π (minimum friction), θ = 4 (maximum internal energy) and θ = 5.4,
which corresponds to when the contour length of the loop L = 3`p and when the loop will tend to
adopt non-circular conformations. b) Effective angular friction of a loop ζθ(θ) as a function of θ,
showing vanishing friction at θ = π radians due the decoupling with changes in curvature at this
angle.

The diffusion problem can be represented by the Smoluchowski equation:137

∂p(θ, t)

∂t
=

∂

∂θ

(
kBT

ζθ(θ)

∂p(θ, t)

∂θ
+
p(θ, t)

ζθ(θ)

∂U(θ)

∂θ

)
(2)

where p(θ, t) is the time-dependent probability density function of the angle θ as a function of time138

t and where the friction coefficient ζθ(θ) is the effective coarse grained opposition to motion to139

changes in the angular velocity θ̇, which as we will show is in general a function of the coordinate140
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θ. The possible contributions to this effective angular friction are solvent dynamics in the nucleus141

and/or internal friction within the DNA, which dynamically opposes changes in conformation.142

The natural model for the dynamics that encompasses both types of friction is the frictional143

WLC (29, 35), which is a model of semi-flexible polymer dynamics, which adds a term to the WLC144

model (36–38) that penalises changes in conformation that have rapid changes in curvature, as145

expressed by the following Langevin equation (35):146

ζs
∂R(s, t)

∂t
+ ζB

∂

∂t

∂4R(s, t)

∂s4
+ κB

∂4R(s, t)

∂s4
= f(s, t) (3)

where ζs ≈ 6πη is a solvent friction per unit length (η is the solvent viscosity), ζB is the bending147

friction constant and κB = kBT`p is the bending elastic constant and f(s, t) is a spatially and148

temporally white noise term whose moments follow from the fluctuation dissipation theorem. A149

normal mode analysis shows the relaxation τq of different modes has a mode- and length-dependent150

contribution to the relaxation which arises from solvent dynamics, whilst there is a mode- and length-151

independent contribution from internal frictional processes, since both internal friction and bending152

elasticity are coupled to curvature, they give the same dispersion relation with mode number:153

τq =
ζs

κBq4
+
ζB
κB

(4)

where q is the wavenumber of the mode. Comparing these two contributions for the relaxation of154

loops, whose contour length is of order the persistence length, then internal friction dominates the155

dynamics when ζB � ζs(`p/2π)
4; given `p = 50nm and ζs = 6πη ≈ 10−5µg/(nm msec), we find156

ζB � 0.1µgnm3/msec. If we treat the semi-flexible polymer as an viscoelastic rod with an effective157

internal friction per unit length ζi, then simple arguments show that the bending friction should158

scale as ζB = ζir
4, with r is the radius of the rod (35). Although ζB has not been measured for159

dsDNA, AFM experiments have estimated the bending friction for ssDNA as ζB ≈ 11µgnm3/msec160

(31) and ζB = 0.3µgnm3/msec for an unfolded polypeptide chain (29), which give an estimate161

of ζi = 176µg/msec/nm and ζi = 187.5µg/msec/nm, respectively. The consistency of these two162

estimates suggests that the local energy barriers or the local roughness of potentials that determine163

the effective internal viscosity of both ssDNA and unfolded polypeptides are similar, at least to order164

of magnitude, and so if we take ζi ≈ 180µg/msec/nm, then the internal friction bending constant165

of dsDNA will be ζB ≈ 180µgnm3/msec, which means for short loops of order a persistence length166

in contour length, internal friction will dominate and we only need consider this contribution to167

the Brownian motion of the loops. Alternatively, the double-stranded ladder structure of dsDNA168

may have a peculiar internal bending friction profile, which is not well approximated by a uniform169

viscoelastic rod, so at the other extreme we would expect dsDNA to have at least the internal friction170

of two strands of ssDNA acting in parallel, which would give twice the internal friction of ssDNA:171

i.e. ζB ≈ 22µgnm3/msec, which is still comfortably in the regime where internal friction dominates172

solvent dynamics.173

Now as the loop angle performs a random walk the internal friction mediating this is related to the174

changes in curvature and so we need a way of calculating the coupling between these processes – in175

other words we want to translate a bending friction constant ζB into an effective angular friction ζθ.176

This can be done by using the Rayleigh dissipation function of the DNA loop; within a Langrangian177

formulation of mechanics, this in general is the dissipation rate of a system expressed in terms of the178
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squared velocities and the friction constant of the system, and so by using the relationship between179

the curvature of the loop κ = 1/R = 2 sin (θ/2)/d and θ, we can derive an expression for the180

effective angular friction ζθ. The Rayleigh dissipation function of the DNA strand is:181

D =
ζBL

2

(
dκ

dt

)2

(5)182

=
ζBL

2

(
dκ

dθ

dθ

dt

)2

(6)183

=
ζBL

2

(
dκ

dθ

)2(dθ

dt

)2

(7)184

=
ζθ
2

(
dθ

dt

)2

(8)185

(9)186

where L is the contour length of the loop between the points separated by d. This result means the187

effective angular friction of the loop is188

ζθ = ζBL

(
dκ

dθ

)2

(10)189

= ζB
dθ

2 sin (θ/2)

cos2 (θ/2)

d2
(11)190

=
ζBθ

2d

cos2 (θ/2)

sin (θ/2)
(12)191

where we have used the fact that L = Rθ. We see that once translated to θ space the effective192

friction of the random walk has a very strong θ dependence, as plotted in Fig.2b, which shows in fact193

that the friction vanishes at exactly θ = π and diverges for θ = 2π. We can understand both these194

phenomenon in geometric terms; given the constraint that the loop emerges from an aperture of size195

d, when θ → π radians, small infinitesimal changes in the angle do not affect the radius of the loop,196

which means the curvature is unaffected and the friction must vanish, whilst the converse occurs as197

θ → 2π radians, where small changes in the angle lead to a very large changes in the size of the198

loop and so rapid changes in curvature, where in the exact limit, the radius of the loop must become199

infinite. Of course, a vanishing internal friction means that at angles close to 180 degrees Stokes’200

friction will become dominant, which nonetheless we expect to make a negligible contribution to the201

mean first passage time and we ignore this in this treatment.202

In practice, in the latter case once the contour length of the loop is much greater than the persis-203

tence length, the loop will adopt a very non-circular conformation before the divergence is reached.204

If we assume that once the contour length reaches a factor α larger than the persistence length,205

non-circular looping becomes dominant then these considerations give an approximate expression for206

the critical angle at which this occurs as207

θ∗ =
2πα`p
d+ α`p

. (13)
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For d = 25nm, `p = 50nm and α = 3, this gives θ∗ = 5.4 radians, or θ ≈ 310◦, so this would predict208

that loops remain reasonably circular, before degenerating into a more random configuration.209

Mean first passage time for loop intiation210

Figure 3: Mean first passage time τ(θ) (Eqn.14) for loop to reach angle θ assuming `p = 50nm,
d = 25nm, ζB = 180µgnm3/msec.

Given the Smoluchowski Eqn.2, using the flux over population method (39), it is possible to211

show that the mean first passage time (MFPT) to reach an angle θ is given by the following exact212

expression:213

τ(θ) = β

∫ θ

0
dθ′ζθ(θ

′)eβU(θ′)

∫ θ′

0
dθ′′e−βU(θ′′) (14)

where β = 1/kBT . Although, various approximations can be obtained to evaluate this double214

integral, it is simple to numerically evaluate this instead, as shown in Fig.3 for different values of215

θ, where we take ζB = 180µgnm3/msec, the value we estimated for dsDNA; note that as ζθ ∼ ζB,216

which can come out of this integral, such that the MFPT τ ∼ ζB, so that different assumptions217

about ζB give a proportional scaling. We see that the MFPT increases rapidly for increasing angle θ,218

which diminishes as the loop approaches 180◦ at which there is an inflection point; this demonstrates219

the significant effect of the vanishing friction constant at θ = π. For angles greater than 180◦ the220

MFPT again rapidly increases, begins to plateaus for angles greater than θ = 5 radians, and then221

divergences for angles very close to θ = 2π, because of a diverging infinite friction, as observed above,222

although as discussed this divergence can be ignored, as in reality the chain will not be constrained223

to a circular conformation. For loop initiation dynamics in SMC complexes, the critical angle of224

interest is θ ≈ θ∗ ≈ 5.4, where the loop remains approximately circular. However, we see that on a225

log-scale the mean first passage time has already nearly plateaued for this angle; in other words the226
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MFPT is strongly dominated by the time it takes to traverse a quite narrow range of angles, roughly227

between 4 and 5.4 radians or 230◦ and 310◦.228

To understand this we note that the MFPT continues to increase rapidly even after the loop229

has passed the angle of maximum energy (θ ≈ 4 radians), which can be explained because of230

the still rapidly increasing internal friction of the loop; if we plot the effective dynamic potential231

Ũ(θ) = U(θ) + kBT ln ζθ(θ), which appears in the integrand of Eqn.14 for the MFPT, then we see232

that it has a maximum at θ ≈ 4.5 radians and falls to more than kBT from the maximum at θ ≈ 4233

radians and θ ≈ 5.4 radians. The angles which are within kBT of the maximum of the effective234

potential represents the regions over which diffusion is effectively flat, and relatively slow, due to the235

large internal friction at these angles.236

Discussion237

The observation of loop extrusion within SMC complexes, like cohesin and condensin, suggests that238

such processes could be fundamental in the regulation of chromatin structure. Not least, it plays239

a central role in the simple “loop extrusion” model of chromosome compaction during mitosis,240

which is still an important and poorly understood fundamental biological process. Here we develop241

the simplest first model of how loops can grow to sufficient size by Brownian motion within SMC242

complexes, which is required for initiation of extrusion. We use this model of constrained Brownian243

motion of dsDNA, to calculate the mean first passage time (MFPT) to quantify how quickly such244

loops can form purely by the action of thermal Brownian motion, and so the degree to which loop245

initiation is dynamically constrained.246

As we show small loops with contour length of order the persistence length are very likely domi-247

nated by internal friction to bending, rather than simple Stokes’ friction, which gives rise to a very248

different and to date little studied polymer dynamics problem, in general, and in particular with249

respect to understanding the dynamics of semiflexible polymers or worm-like chains like dsDNA. As250

the DNA chain is constrained to emerge from a aperture of fixed size, we can formulate the Brownian251

dynamics of looping using this frictional WLC model (29,35), in terms of a 1D Brownian walk in the252

angle of the loop. From these considerations we see that bending friction and geometry interplay253

in a non-trivial way to determine the Brownian dynamics of loop growth, where friction vanishes at254

exactly 180◦ and the overall MFPT is dominated by a narrow range of angles approximately centred255

around a three-quarter circle (270◦).256

Evaluating the MFPT for θ = θ∗, we find τ ≈ 10, 000 msecs or 10secs and as the MFPT257

plateaus for angles approaching θ > θ∗ this estimate will be robust to order of magnitude given258

our assumption that dsDNA is a uniform viscoelastic rod with internal bending friction constant259

ζB = 180µgnm3/msec. Alternatively, if we assume the internal bending friction constant is at least260

the internal friction of two ssDNA strands in parallel, this would give ζB = 22µgnm3/msec (31),261

which is an order of magnitude smaller and thus giving an order of magnitude smaller estimate of262

τ ∼ 1sec. The range of angles which dominate the MFPT are unchanged as changing ζB just gives a263

constant vertical shift in the effective dynamical potential Ũ(θ). Empirical loop extrusion rates are of264

order ∼ 0.1 to 1kbp/s (6–9), or ≈ 1 to 10`p/s, and our result here suggests that the rate of initiation265

of loops is at least 1/τ = 0.1s−1 to 1s−1, since this calculation ignores the time to find and then266

bind DNA; although these two quantities need not agree, this suggests that loops are initiated at267
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roughly the same rate, or slower than, the rate at which they are extruded, once initiated. However,268

more importantly the cycling time of ATP is of order ∼ 1sec (9) and so this would suggest that if269

ζB ≈ 180µgnm3/msec corresponding to τ ∼ 10secs, then typically Brownian motion alone would270

not quite be sufficient to generate a large enough loop in a single ATP cycle, although the probability271

would not be small, and may require a few cycles. If on the other hand ζB ≈ 22µgnm3/msec, which272

corresponds to τ ∼ 1secs, then the probability of loop extrusion in a single cycle would be large.273

There are other potential models of loop extrusion, such as the “tethered-inchworm” model (33)274

and the segment capture model (34), which postulate extrusion through the SMC complex in an275

unfolded conformation. These models do not discuss loop initiation and the simple model presented276

here is equally applicable, but with d > 25nm and a consequent expectation of a reduced mean first277

passage time for looping.278

There are a number of simplifications in this first model of Brownian looping applied to loop279

initiation in SMC complexes. Firstly, it is clear that the binding of DNA to the hinge domain will not280

be frictionless or unrestricted in angle. In addition, there could potentially be torsional constraints281

on DNA on binding. Including some friction for sliding is relatively trivial and not affect the physical282

phenomenon due to the interplay of loop bending and internal friction discussed, but would tend283

to increase the quantitative estimates of MFPT. Regarding the constraints, given the electrostatic284

and non-specific nature of binding to DNA it is likely that once ATP is hydrolysed and the complex285

is in the slipping state any constraint on angle or torsion will be relatively weak. In any case, any286

such constraints would tend to be somewhat relaxed some distance along the contour of the loop287

and would likely give rise to a smaller effective aperture d, with a consequent increase in MFPT as288

shown in Fig.3. We have also ignored the out of plane entropy of the DNA loop, which will have289

some dependence on the contour length of the loop. However, as we have determined, the loop will290

maintain a roughly circular conformation up until the critical angle θ∗, with fluctuations about this291

mean conformation, such that entropic corrections will be logarithmic and relatively weak compared292

to the role of internal friction of the loops.293

Finally, there is a large literature on the cyclisation dynamics of short lengths of dsDNA, which294

are of order a persistence length. The random walk problem of WLC like DNA finding its two295

ends is very different to the question considered here, since the constraints are different and the296

loop contour length can grow, although they both pertain to looping of DNA. Recent more careful297

experiments (19, 20) have shown that cyclisation times are very much longer (∼ 1 minutes) than298

previously measured or predicted using the standard WLC. Despite the difference in constraints, the299

calculation of the regimes where internal friction vs solvent friction are important for contour lengths300

of dsDNA of order a persistence length are equally valid for the cyclisation problem and would suggest301

the standard WLC model would significantly underestimate cyclisation times due to its neglect of302

internal friction.303

To summarise, we present a simple theory of Brownian loop growth in SMC complexes, where304

internal friction to bending of double stranded DNA couples to the changing geometry of the loop to305

determine the stochastic dynamics in a non-trivial way. For condensin/cohesin to act as a Brownian306

ratchet, loops must first grow to sufficient size to overcome the initial enthalpic barrier; the model307

remarkably predicts that friction for loop growth will vanish at 180◦ — with a corresponding plateau308

in the MFPT — and that the MFPT for the loop to grow large enough that entropy favours its309

growth is dominated loops that are roughly a three-quarter circle. This latter prediction conversely310

means that loop initiation is largely insensitive to the initial angle of the bend induced in DNA in311
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the “gripping” state. Overall, we predict loop initiation times of order ∼ 1s to 10s, which is of order312

the cycle time of ATP, suggesting loop initiation could initiate purely by Brownian motion without313

the aid of additional active force generation mechanisms.314
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