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 2 

Abstract  21 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms 22 

ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that 23 

may push a moderate to severe disease into a critical state. Human serum contains abundant evidence 24 

of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to 25 

determine the extent to which a patient responded to a pathogen. We examined serum and plasma 26 

from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to 27 

negative-control sera.  Cytokine and chemokine concentrations varied depending on the severity of 28 

infection, and antibody responses were significantly increased in severe cases compared to mild to 29 

moderate infections. Neutralization data revealed that patients with high titers against an early 2020 30 

isolate had detectable but limited neutralizing antibodies against newly circulating SARS-CoV-2 variants 31 

of concern. This study highlights the potential of re-infection for recovered COVID-19 patients.  32 

 33 
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 3 

Introduction  37 

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in 38 

the city of Wuhan, Hubei province, China, causing variably severe respiratory tract pathology termed 39 

coronavirus disease 2019 (COVID-19).  COVID-19 is often a mild disease associated with low-grade fever 40 

and loss of taste and smell. However, critical cases of COVID-19 do occur, and are characterized by 41 

severe pneumonia and acute respiratory distress syndrome (1) leading to organ failure and death (2). As 42 

of October 20th 2021, over 241 million cases have been reported worldwide, and over 4.9 million people 43 

have died of COVID-19 (https://coronavirus.jhu.edu/map.html).  44 

The spectrum of disease caused by SARS-CoV-2 ranges from no or mild to critical. Mild to 45 

moderate cases are characterized by mild symptoms ranging to mild pneumonia and account for up to 46 

81% of infections. Severe cases account for 14% of cases, which involve dyspnea, hypoxia, or greater 47 

than 50% lung involvement as determined by imaging. Five percent of patients are deemed critical 48 

based on conditions of respiratory failure, shock, or multiorgan system dysfunction (3, 4). In many 49 

severely affected patients, SARS-CoV-2 infection triggers an overactive immune response known as a 50 

“cytokine storm.” Immune cells produce high levels of inflammatory cytokines leading to systemic shock 51 

and death (5). As such, cytokines have been studied extensively in the context of SARS-CoV-2 infection 52 

and have been found to be central to the pathophysiology of COVID-19 (6, 7).   53 

A thorough understanding of appropriate immune responses is vital to the development of 54 

effective medical intervention strategies and vaccines. Besides cytokine and chemokine production 55 

following infection, antibodies generated by COVID-19 patients have been studied and reported in 56 

detail.  Infection with SARS-CoV-2 has been found to induce non-class-switched, class-switched, and 57 

neutralizing antibodies in immunocompetent patients (8-12). The long term stability of the antigen-58 

specific and neutralizing antibody response has been found to be up to 13 months in patients (13-16). 59 

Pre-existing antibody populations may also contribute to disease severity such as autoantibodies to type 60 

I interferons (17). As SARS-CoV-2 mutates, changes to the sensitivity of pre-exisitng neutralizing 61 

antibody populations may be effected (18). As such, the beta and delta variants both have displayed 62 

decreased sensitivity to pre-existing neutralizing antibodies (15, 19-21).  63 

In this study, we evaluated 131 serum and plasma samples from 55 COVID-19 patients alongside 64 

serum and plasma from 20 uninfected patients for the presence of 38 cytokines and chemokines, anti-65 

SARS-CoV-2 spike protein-specific IgG, and neutralizing antibodies. Our results indicate that infection 66 

with SARS-CoV-2 results in changes in a number of cytokines and chemokines that correlate to disease 67 
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severity. We also found that COVID-19 patients exhibit increased titers of antigen-specific IgG and 68 

neutralizing antibody titers compared to uninfected individuals. Furthermore, we determined that the 69 

neutralizing activity of our sample cohort extended to three new SARS-CoV-2 variants of concern (VOC), 70 

Alpha (a; B.1.1.7), Beta (b; B.1.351), and Delta (d; B.1.617.2) which emerged months after the start of 71 

the pandemic. This study corroborates previous data examining serum concentrations of cytokines, 72 

chemokines, and antigen-specific antibodies in COVID-19 patients. Most importantly, it highlights the 73 

cross-reactive neutralization capabilities of unvaccinated COVID-19 survivors against emerging SARS-74 

CoV-2 variants and the potential for re-infection. 75 

 76 

Materials and Methods  77 

Cells and Viruses 78 

Vero E6 cells (mycoplasma negative) were grown at 37°C in 5% CO2 in Dulbecco’s modified Eagle’s 79 

medium (DMEM) (Sigma-Aldrich, St. Louis, MO) containing 10% fetal bovine serum (FBS) (Wisent Inc.), 2 80 

mM L-glutamine (Thermo Fisher Scientific, Waltham, MA), 50 U/mL penicillin (Thermo Fisher Scientific), 81 

and 50 μg/mL streptomycin (Thermo Fisher Scientific). SARS-CoV-2 isolate nCoV-WA1-2020 82 

(MN985325.1) (22), SARS-CoV-2 isolate B.1.351 (hCoV-19/South African/KRISP-K005325/2020), SARS-83 

CoV-2 isolate B.1.1.7 (hCOV_19/England/204820464/2020), and SARS-CoV-2 isolate B.1.617.2 (hCoV-84 

19/USA/KY-CDC-2-4242084/2021) were used for the neutralizing antibody assays. The following reagent 85 

was obtained through BEI Resources, NIAID, NIH: Severe Acute Respiratory Syndrome-Related 86 

Coronavirus 2, Isolate hCoV-19/England/204820464/20200, NR-54000, contributed by Bassam Hallis.   87 

SARS-CoV-2 B.1.351 was obtained with contributions from Dr. Tulio de Oliveira and Dr. Alex Sigal 88 

(Nelson R Mandela School of Medicine, UKZN). SARS-CoV-2 B.1.617.2 was obtained with contributions 89 

from B. Zhou, N. Thornburg and S. Tong (Centers for Disease Control and Prevention, USA). All viruses 90 

were grown and titered on Vero E6 cells, and sequence confirmed. 91 

 92 

Serum and plasma samples  93 

A total of 131 serum and plasma samples collected from 75 unique individuals were analyzed in this 94 

study. All samples were either remnant sera or plasma (from EDTA-anticoagulated whole blood), 95 

originally collected for standard-of-care diagnostic testing from inpatients being treated for COVID-19 (n 96 

= 55 [73%]) or were from SARS-CoV-2-uninfected volunteers (n = 20 [27%]; referred to as “normal” 97 

samples). Of the patients, the average age was 58 years (range 13-93 years), 25 (45%) were female and 98 
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27 (49%) had more than one specimen assessed. Based on review of clinical charts and according to CDC 99 

criteria (www.cdc.gov/coronavirus/2019-ncov), patients were grouped into three illness severity 100 

categories: Mild to moderate (mild symptoms to mild pneumonia), severe (dyspnea, hypoxia or more 101 

than 50% lung involvement on imaging), and critical (respiratory failure, shock or multiorgan system 102 

dysfunction). Of the normal samples, volunteers who provided a one-time sample were an average age 103 

of 44 years (range 26-89 years) and 15 (75%) were female. All samples, including patients and 104 

volunteers, were deidentified and assigned study-specific identifiers to protect patient confidentiality. 105 

Samples were then aliquoted and frozen at -80°C until shipment to the Rocky Mountain Laboratories for 106 

analysis. Samples were g-irradiated (4 MRad) to inactivate potential infectious pathogens upon receipt 107 

and prior to analysis. This work was approved by the Indiana University Institutional Review Board (IRB# 108 

2004155084).  109 

 110 

Cytokine analysis 111 

Samples were diluted 1:2 in serum matrix for analysis with Milliplex Human Cytokine/Chemokine 112 

Magnetic Bead Panel as per manufacturer’s instructions (EMD Millipore Corporation). Concentrations 113 

for analytes (EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFNγ, GRO, IL-10, 114 

MCP-3, IL-12p40, MDC, IL-12p70, IL-13, IL-15, sCD40L, IL-17A, IL-1RA, IL-1α, IL-9, IL-1β, IL-2, IL-3, IL-4, IL-115 

5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, TNFα, TNFβ, and VEGF) were determined for all samples 116 

using the Bio-Plex 200 system (BioRad Laboratories, Inc.). 117 

 118 

Antibody level determination 119 

Antibody titers were determined using enzyme-linked immunosorbent assay (ELISA). Flat-bottom 120 

immuno 96-well plates (Nunc Maxisorp, Thermo Fisher Scientific) were coated overnight with 1 ug/ml 121 

SARS-CoV-2 (2019-nCoV) Spike Receptor Binding Domain (polyhistidine-tagged) recombinant protein 122 

(Sino Biological) diluted in PBS. Plates were washed and blocked the following day with 3% milk. After 123 

washing, serum and plasma samples were diluted 1:100, and then serially diluted 1:4 in 1% milk and 124 

incubated for one hour at room temperature. Plates were washed before addition of peroxidase-labeled 125 

anti-human IgG (KPL). Following a one-hour incubation at room temperature, plates were washed and 126 

ABTS 2-component Microwell Peroxidase Substrate (SeraCare) was added. Plates were incubated for 30 127 

minutes in the dark before being read at 405 nm on a GloMax Explorer (Promega). 128 

 129 

Neutralizing antibody assay 130 
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Neutralization antibody assays were performed as detailed in van Doremalen et al. (1). Briefly, serum 131 

and plasma samples were heat-inactivated for 30 minutes at 56°C. They were diluted 1:10 and then 1:2 132 

for subsequent dilutions. SARS-CoV-2 virus stocks were diluted to 2,000 TCID50/ml and 70 µl was then 133 

added to each well of diluted sample. Following a one-hour incubation at 37°C, the serum-virus mixture 134 

was transferred to 96-well plates containing high-passage Vero E6  cells. After six days, cytopathic effect 135 

(CPE) was read. The virus neutralization titer was determined to be the lowest concentration of serum 136 

antibody where CPE was not observed. 137 

 138 

Statistical analysis 139 

Statistical analysis was performed using Prism 8. Statistically significant differences between groups for 140 

cytokines were determined using one-way ANOVA; IgG and neutralzing titers were evaluated applying 141 

Mann-Whitney test. Significance is indicated as follows: p<0.0001 (****), p<0.001 (***), p<0.01 (**) and 142 

p<0.05 (*). 143 

 144 

Results 145 

COVID-19 patients exhibit different levels of cytokines and chemokines, which correlate with disease 146 

severity 147 

We received 111 patient serum and plasma samples that were categorized according to CDC guidelines 148 

into mild to moderate and critical cases. In addition, we obtained 20 serum and plasma samples from 149 

healthy adult volunteers designated “normal” controls in our studies. We first sought to determine the 150 

circulating immune status by assessing the presence of 38 different cytokines and chemokines in the 151 

serum and plasma of patients infected with SARS-CoV-2, alongside uninfected volunteers. We found 152 

that infection with SARS-CoV-2 resulted in significant changes in multiple cytokines and chemokines 153 

compared to negative control serum and plasma (Figure 1). This phenomenon was evident in both mild 154 

to moderate and critical infections. For instance, serum and plasma from patients with a mild to 155 

moderate infection contained significantly greater levels of MCP-3, IL-1α, TNFβ, IL-4, IL-5, IL-6, IL-8, IL-9, 156 

and IL-13 compared to serum and plasma from patients that were critically ill (Figure 1A). Mild to 157 

moderate infections also showed significant increases in these cytokines, along with IL-15, compared to 158 

healthy adults (Figure 1B). Critical infections resulted in significantly increased levels of sCD40L, IP-10, 159 

and IL-15 compared to normal controls (Figure 1 B). All of the other cytokines and chemokines tested 160 

showed no significant differences between control and infected patients (Supplementary Figure 1) . 161 
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 162 

Cytokine levels remain steady when measured over time 163 

Nine of the COVID-19-infected patients were sampled more than once. We determined longitudinally 164 

whether cytokine and chemokine concentrations varied over time.  Overall, there were no significant 165 

changes in any of the evaluated cytokines or chemokines during the periods of time that were sampled 166 

(Supplementary Figure 2).  167 

 168 

Failure to recover from critical COVID-19 is correlated with increased levels of IL-6 and IP-10 coupled with 169 

insufficient levels of sCD40L 170 

Amongst critical patients, we found that the serum and plasma of those who succumbed to the infection 171 

contained significantly more IL-6 and IP-10 than control patients. Additionally, patients who survived 172 

infection had significantly increased sCD40L compared to normal controls (Figure 2). Although serum 173 

and plasma from fatal disease patients contained more sCD40L than serum and plasma of normal 174 

controls, it was not significantly increased relative to serum and plasma from patients who recovered 175 

from infection, indicating that this soluble mediator may be important for surviving COVID-19. 176 

 177 

Critically infected patients develop strong anti-SARS-CoV-2 IgG and neutralizing antibody responses 178 

Next, we assessed whether serum and plasma of COVID-19 patients contained IgG specific for the 179 

receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. We found that half of the patients who 180 

had a mild to moderate infection produced RBD-specific IgG, and the data was statistically significant 181 

compared to healthy controls (Figure 3A). In contrast, critically-infected patients developed high titers of 182 

RBD-specific IgG, which was significantly greater than both healthy controls and those with mild to 183 

moderate COVID-19. The presence of RBD-specific IgG did not predict disease outcome, as there was no 184 

significant difference in titers between patients that recovered from infection and those that did not 185 

(Figure 3B). 186 

Three of the healthy control serum and plasma samples contained SARS-CoV-2-specific IgG 187 

without COVID-19 medical history. We postulated that the presence of IgG may not translate to the 188 

ability to neutralize SARS-CoV-2. Therefore, we assessed the serum and plasma for neutralizing 189 

antibodies against SARS-CoV-2. The majority of control serum and plasma did not contain detectable 190 

levels of neutralizing antibodies, with the exception of one patient who exhibited a detectable, albeit 191 

very low, titer (Figure 4A). However, mild to moderate infection led to the production of significantly 192 

higher levels of neutralizing antibody titers compared to controls. Patients that were critically infected 193 
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exhibited high titers of neutralizing antibodies, approximately two logs greater than healthy controls and 194 

one-and-a-half logs higher than patients with mild to moderate disease. 195 

Some COVID-19 patients that participated in this study were sampled repeatedly over the 196 

course of infection and recovery. Therefore, we determined whether their neutralizing antibody titers 197 

remained stable over time. We found that these patients continued to produce neutralizing antibodies 198 

against SARS-CoV-2 over the course of the disease (Supplementary Figure 3). Antibody titers remained 199 

nearly the same, exhibiting less than a log change, from the first to the final day of sampling (up to nine 200 

days post-admission). Unfortunately, no further time points were sampled from the patients. 201 

 202 

COVID-19 serum and plasma contains neutralizing antibodies against VOC 203 

Finally, we sought to determine whether human COVID-19 serum and plasma contains antibodies 204 

capable of neutralizing three VOC that emerged later in the pandemic – Alpha, Beta, and Delta variants.  205 

Therefore, we tested serum and plasma samples that contained high titers of neutralizing antibodies 206 

against the original virus, but this time we assessed neutralizing antibodies against the 3 VOC. We found 207 

that the serum and plasma contained antibodies capable of neutralizing these SARS-CoV-2 variants, but 208 

the antibody titers were significantly lower than the titers against the original virus (Figure 4B).  209 

Interestingly, the titers against the Alpha variant were significantly higher than those for the Beta and 210 

Delta variants indicating limited protection from re-infection with the currently circulating Delta variant 211 

(Figure 4B). 212 

 213 

Discussion 214 

Since the beginning of the COVID-19 pandemic, clinicians and scientists have sought to investigate the 215 

components of patient serum for evidence of either sufficient or aberrant immune responses. 216 

Components of serum have been shown to be effective in the treatment of those suffering from COVID-217 

19, as convalescent plasma infusion can lead to a decrease in the severity of disease (23, 24). 218 

Understanding the difference between an immune response that leads to recovery from infection and 219 

one that leads to a negative outcome (aberrant) is essential in the design of treatments and vaccines, 220 

which are necessary to bring an end to this devastating pandemic.  221 

One avenue taken by investigators has been to explore the presence or absence of various 222 

cytokines and chemokines in patient serum. Severe disease has been associated with an aberrant 223 

immune response termed “cytokine storm,” which is characterized by an overactivation of the immune 224 
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system leading to exaggerated levels of cytokines released into the circulation. Multiorgan dysfunction 225 

and failure associated with septic shock can be fatal (5, 25). In contrast, those with mild disease exhibit 226 

functional immune responses characterized by appropriate levels and types of cytokines, leading to 227 

disease resolution (7).  One cytokine that has been highlighted amongst research studies is IL-6. For 228 

instance, Herold et al. found that IL-6 was a key predictor of respiratory failure in hospitalized COVID-19 229 

patients (26). Other studies have yielded similar results, indicating a role for IL-6 in the severity and 230 

outcome of the disease (27-29). Our study supports previous studies showing that high levels of IL-6 lead 231 

to poor outcomes for COVID-19 patients. 232 

Interestingly, our data show that moderate levels of key cytokines and chemokines are evident 233 

in mild to moderate cases of COVID-19. It is the “Goldilocks” phenomenon: too much or too little of 234 

some cytokines is not good; rather, the levels must be “just right”. In support of this concept, Yang et al. 235 

observed that serum IL-1β, IL-1Ra, IL-6, IL-7, IL-10, IP-10, and TNF-α are all important in classifying 236 

COVID-19 cases into mild, moderate, and severe (30). This study also found that IP-10 was significantly 237 

higher in severe cases of COVID-19 compared to mild cases. Another study found that IP-10 levels were 238 

highest in patients that required ICU admission (31). Our study supports the previous work finding very 239 

high levels of IP-10 in the serum of patients who succumbed to SARS-CoV-2 disease.  240 

Serum antibodies are known to be important for both protection and treatment of COVID-19. Effective 241 

humoral immune responses to vaccination or infection lead to the production of neutralizing antibodies 242 

that contribute to clearance of the virus. Our data demonstrate that infection with SARS-CoV-2 results in 243 

increased levels of antigen-specific IgG, and that severe infection leads to higher levels compared to 244 

mild to moderate infection, corroborating other studies. For instance, Chen et al. determined that 245 

symptom severity correlated directly with the magnitude and durability of class-switched serum 246 

antibodies, as well as other studies (13, 32, 33). However, little is known if the magnitude of antibody 247 

level correlates with re-infection potential particularly with VOC. 248 

Although presence of IgG is evidence of an effective immune response, it is important to 249 

decipher whether these antibodies are capable of neutralizing virus. It has been found that not all 250 

recovered COVID-19 patients develop sufficient neutralizing antibody titers (12). Our study showed that 251 

while SARS-CoV-2 cross-reactive IgG antibodies were present in control patients, these antibodies were 252 

not capable of neutralizing SARS-CoV-2. A recent study suggests that exposure to a seasonal coronavirus 253 

can induce the production of antibodies against SARS-CoV-2, but these antibodies are not protective 254 

against the virus (34). Therefore, detection of IgG alone cannot always predict protection from 255 

reinfection. This is an important distinction that clinicians need to make when examining data from 256 
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recovered patients.  Optimally, a test to determine the presence of specific neutralizing antibodies 257 

would be more informative than our current ELISA, which only detects antibodies that are specific for 258 

SARS-CoV-2. 259 

A key feature of SARS-CoV-2 is its high mutation rate (35, 36). Selective pressures acting on the 260 

virus have led to mutations that allow the virus to spread more efficiently and to evade host immune 261 

responses (37). Fortunately, we and others have found that there appears to be some albeit limited 262 

cross-protection against the circulating VOC (38, 39). In our hands, patients who survived infection with 263 

the original SARS-CoV-2 generate antibody responses capable of neutralizing three different VOC, and 264 

these antibodies are more effective against the Alpha variant compared to the Beta and Delta variants. 265 

It is important to note that the cross-reactive neutralizing potential from the original SARS-CoV-2 was 266 

significantly less for all three of the VOC tested. However, recent studies provide hope that even low 267 

levels of neutralizing antibodies will lead to better outcomes after re-infection with VOC for patients 268 

who have been vaccinated or survived natural infection with SARS-CoV-2 early in the pandemic (38, 40, 269 

41). It has been demonstrated that individuals whom have been previously infected more rapidly 270 

develop neutralizing antibodies post-vaccination with an mRNA vaccine. The neutralizing antibody titer 271 

is blunted across multiple VOC with the Beta and Gamma variants have the most dramatic decrease 272 

followed by the Delta variant (42). The decrease in neutralization efficiency can be attributed to the 273 

mutations the spike protein has acquired, specifically the dominant epitopes that are targeted by 274 

neutralizing antibodies to each variant. It has recently been shown that patients infected with an earlier 275 

isolate, similar to the ancestral WA1 isolate we used in this study, develop neutralizing antibodies 276 

against class 2 epitopes, while patients infected with the Beta variant develop neutralizing antibodies 277 

against class 3 epitopes (43). It would be interesting to know if protection against newly emerging VOC is 278 

enhanced by the neutralizing antibody response in one group or the other. 279 

Our study provides additional support for the growing body of literature examining human 280 

COVID-19 serum samples. Our data supports established work that increased levels of IL-6 and IP-10 281 

contribute to enhanced disease phenotype. In addition, our study highlights the importance of both the 282 

antigen-specific antibody response and its functionality to neutralize emerging VOC. The more fully we 283 

understand effective immune responses to this pathogen, the greater our ability to successfully treat 284 

those who are infected, and vaccinate those we hope to protect against infection. 285 

 286 

  287 
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 329 

Figure 1. COVID-19 patients exhibit varying levels of cytokines and chemokines that correlate with 330 

disease severity.  Cytokine and chemokine levels for day-of-admission COVID-19 serum samples 331 

alongside 20 normal samples. Error bars represent standard error. Statistically significant differences as 332 

determined by one-way ANOVA are indicated as p<0.0001 (****), p<0.001 (***), p<0.01 (**), and 333 

p<0.05 (*). 334 
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 343 

 344 
 345 

Figure 2. Serum IL-6, IP-10, and sCD40L predict disease outcome in COVID-19 patients. Cytokine and 346 

chemokine levels for day-of-admission critically infected COVID-19 patients who either recovered from 347 

infection (living) or failed to recover (deceased), alongside 20 uninfected (normal) patients. Error bars 348 

represent standard error. Statistically significant differences as determined by one-way ANOVA are 349 

indicated as p<0.0001 (****), p<0.001 (***), p<0.01 (**), and p<0.05 (*). 350 
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 364 

Figure 3. Critical COVID-19 induces high titers of anti-SARS-CoV-2 IgG. (A) IgG titers specific to SARS-365 

CoV-2 spike receptor-binding domain  for COVID-19 and normal serum samples. (B) IgG titers of critically 366 

infected COVID-19 patients who either recovered from infection (living) or failed to recover (deceased), 367 

alongside 20 uninfected (normal) patients. Error bars represent standard error. Statistically significant 368 

differences as determined by Mann-Whitney test are indicated as p<0.0001 (****), p<0.001 (***), and 369 

p<0.05 (*). 370 
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 389 

Figure 4. Critical COVID-19 induces high titers of anti-SARS-CoV-2 neutralizing antibodies. (A) SARS-390 

CoV-2-specific neutralizing antibody titers for COVID-19 and normal serum samples.  (B) Neutralizing 391 

antibody titers for COVID-19 serum samples comparing SARS-CoV-2 variants USA-WA1, Beta, Alpha, and 392 

Delta. Error bars represent standard error. Statistically significant differences as determined by Mann-393 

Whitney test are indicated as p<0.0001 (****), p<0.001 (***), and p<0.05 (*). 394 
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Supplementary Figure 1 Griffin et al., 
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Supplementary Figure 1. Cytokine and 
chemokine levels for day-of-admission 
COVID-19 serum samples alongside 20 
normal samples. Error bars represent 
standard error.
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Supplementary Figure 2 Griffin et al., 
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Supplementary Figure 2.  Cytokine and chemokine levels of selected patients over time.  
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Supplementary Figure 3 Griffin et al., 
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Supplementary Figure 3. Anti-SARS-CoV-2 neutralizing antibodies remain steady over time 
in selected patients.  
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