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Abstract 55 

Complex morphological traits are the product of many genes with transient or lasting developmental effects 56 

that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because 57 

they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, 58 

phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets 59 

that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological 60 

variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of 61 

standardized mouse morphology data spanning numerous genotypes and developmental stages, including 62 

E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-63 

based phenotyping pipeline that combines techniques from image registration, deep learning, and 64 

morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, 65 

dense anatomical landmarks, and segmentations (if available) for each specimen (N=10,056). Our workflow 66 

is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts 67 

are available on FaceBase (www.facebase.org, doi.org/10.25550/3-HXMC) and GitHub 68 

(https://github.com/jaydevine/MusMorph). 69 

Keywords: Mouse, phenomics, craniofacial, imaging pipelines, deep learning, morphometrics, 70 

micro-computed tomography, FaceBase 71 
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Background & Summary 81 

Understanding how genes, development, and the environment produce variation in complex morphological 82 

traits is a core challenge in biology with evolutionary and clinical implications. Explanations for the 83 

generation of variation tend to cohere around the genotype-phenotype map concept. Genetic variation and 84 

genetic effects, like epistasis and pleiotropy, drive variation in developmental processes that act at different 85 

times and scales in anatomical context1-3. Specific developmental and genetic mechanisms then operate 86 

alongside embedded mechanisms, such as nonlinearities4,5 and gene redundancy6, to modulate these effects 87 

to express a phenotype7-9. Despite recent insights into these phenomena, the developmental-genetic basis 88 

for morphological variation remains largely unknown, as there are likely many overlapping and coordinated 89 

mechanisms involved, each with relative contributions10. To help disentangle these mechanisms, it is 90 

important to build and integrate large phenotypic databases for model organisms11-14. In this work, we 91 

present MusMorph, a database of standardized mouse morphology data for meta-analyses of morphological 92 

variability and variation, particularly in the craniofacial complex and brain. 93 

The laboratory mouse is a useful model organism for studying the mechanisms of morphological 94 

variation because of its 99% genetic homology with humans, short gestation, and rich set of tools for 95 

manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often biased by 96 

laboratory-specific data collection protocols. The International Mouse Phenotyping Consortium (IMPC, 97 

www.mousephenotype.org) was born out of a need to determine the relationship between genotype and 98 

phenotype with standardized phenotypic data. Using micro-computed tomography (µCT) and optical 99 

projection tomography, the consortium has studied the anatomy of mouse lines heterozygous or 100 

homozygous for a single gene mutation, particularly at embryonic day E9.5, E14.5-15.5, and E18.515-20. 101 

Less emphasis has been placed on µCT imaging and analysis of adults and mid-gestation (E10 to E11) 102 

mutants, where critical developmental events, like fusion of the craniofacial prominences, occur. Mouse 103 

lines with normal (non-pathological) levels of variation, such as recombinant inbred strains and outbred 104 
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strains with high heterozygosity21-23, have also been poorly characterized. Quantifying such variation is 105 

important, because it drives disease susceptibility and course of disease in humans. 106 

 Recently, model organism phenotyping has transitioned from manual linear measurements to fully 107 

automated computational pipelines. One common approach is voxel-based morphometry24,25. Voxel-based 108 

morphometry is based on the analysis of deformation fields obtained via image registration. After spatially 109 

aligning images to an average atlas, the deformation fields can be quantitatively compared between groups 110 

on a voxel-wise basis to identify differences in morphology. Voxel-based morphometry remains a pillar of 111 

shape analysis, because it can localize small regions of shape change without any a priori knowledge of the 112 

anatomy, but it is prone to the multiple testing problem26,27. Another approach is atlas-based geometric 113 

morphometrics, which instead uses registration fields to automatically derive landmarks, or Cartesian 114 

coordinate points that are homologous across samples. Geometric morphometrics is central to evolutionary 115 

biology and developmental biology, among other fields, because landmarks allow for statistically tractable 116 

quantifications of morphological variation, as well as intuitive visualizations28. These advantages continue 117 

to fuel development of novel geometric morphometric pipelines and extensions29-33. Yet large-scale 118 

morphometric analyses remain rare due to the sparsity of standardized landmark data. 119 

 Here, we introduce MusMorph, a database of standardized mouse morphology data generated with 120 

an open-source, atlas-based phenotyping pipeline that integrates techniques from image registration, deep 121 

learning, and morphometrics. We compiled the database (N=10,056) using µCT scans of mice from a 122 

variety of strain/genotype combinations and developmental stages, including E10.5, E11.5, E14.5, E15.5, 123 

E18.5, and adulthood. Most of MusMorph is composed of head morphology data, but there are also whole-124 

body embryo data for different integrative analyses. We provide (1) a developmental atlas for each 125 

timepoint; (2) a rigidly aligned and preprocessed µCT scan, dense anatomical landmarks, and 126 

segmentations (if available) for each specimen; (3) a set of scripts for transforming and comparing an input 127 

scan to an atlas; (4) an approach to validate the transformed landmark data and optimize it, if needed. To 128 

ensure reproducibility and data sharing, we make the data freely accessible from FaceBase34 129 
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(www.facebase.org, doi.org/10.25550/3-HXMC)35 and our code from GitHub 130 

(https://github.com/jaydevine/MusMorph). By incorporating substantial developmental and genetic 131 

variation alongside a rich set of metadata, MusMorph will enable standardized morphometric analyses of 132 

genotype-phenotypes to better understand the mechanistic basis for morphological variation. 133 

Methods 134 

Mice 135 

We compiled mouse embryos and adults from numerous sources. The mouse lines for the E15.5 and E18.5 136 

datasets were generated by the IMPC. These mice were produced and maintained on a C57BL/6N genetic 137 

background, with support from C57BL/6NJ, C57BL/6NTac or C57BL/6NCrl. More details about 138 

husbandry practices can be found at https://www.mousephenotype.org/impress. The mouse lines for the 139 

E10.5, E11.5, E14.5, and adult datasets were produced on a variety of genetic backgrounds at different 140 

institutions for studies of craniofacial variation. We hereafter refer to these lines as the Calgary mice, 141 

because they were ultimately imaged at the University of Calgary. Specific information about study 142 

protocols, such as husbandry practices and genotyping, should be gleaned from the MusMorph dataset 143 

summaries on FaceBase or the original studies themselves. Each dataset within the MusMorph project on 144 

FaceBase represents a study or set of studies defined by a common study design that yielded similar mouse 145 

lines. Details about the experimental design were obtained from the original studies listed in the 146 

“Publication(s)” section of each dataset. In addition, we provide a supplementary comma-separated values 147 

(CSV) file (Study_Metadata.csv) in the project-wide metadata dataset36 on FaceBase that lists the associated 148 

studies. 149 

Micro-computed tomography 150 

Sample preparation. Each IMPC embryo underwent a hydrogel stabilization protocol37 to prepare for 151 

diffusible iodine-based contrast-enhanced µCT (diceCT)38. This involved incubating the embryo in a 152 
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hydrogel solution composed of 4% (wt) paraformaldehyde, 4% (wt/vol) acrylamide (Bio-Rad, USA), 153 

0.05% (wt/vol) bis-acrylamide, 0.25% VA044 Initiator (Wako Chemicals, USA), 0.05% (wt/vol) saponin 154 

(Sigma-Aldrich, Germany), and phosphate-buffered saline at 4°C for 3 days. Following incubation, the air 155 

in the specimen tube was replaced with nitrogen gas and the tube was immersed in a 37°C water bath for 3 156 

h. The whole embryo was then stained with a 0.025 N to 0.1 N Lugol’s iodine (I2KI) solution (Sigma-157 

Aldrich, Germany) for 24 h and mounted in agarose for diceCT. This approach has become a popular 158 

alternative to magnetic resonance imaging because it is faster, cheaper, and still offers remarkable contrast, 159 

allowing for high-throughput phenotyping of soft and hard tissue38. 160 

The Calgary embryos were subjected to different fixation and staining protocols. Each embryo 161 

acquired prior to 2017 was fixed in a solution of 4% (wt) paraformaldehyde and 5% (wt) glutaraldehyde. 162 

The specimen was next submerged in the CystoCon Ray II (iothalamate meglumine) contrast agent for one 163 

hour to stain external morphology. Embryos obtained after 2017 were put through a nucleic acid 164 

stabilization protocol that allows for examination of RNA in embryos scanned via µCT39. Each embryo was 165 

fixed with the PAXgene Tissue FIX solution (Qiagen, PreAnalytics, cat #765312), incubated overnight (17 166 

h +/- 1 h) at room temperature, then transferred to a solution of PAXgene Tissue STABILIZER prepared 167 

to manufacturer specification (Qiagen, PreAnalytics, cat #765512). For diceCT, each specimen was placed 168 

in a solution of PAXgene Tissue STABILIZER and 1% to 3.75% (wt/vol) Lugol’s iodine for 24 h. The 169 

head of every embryo was dissected before being mounted in either agarose or soft wax, which was covered 170 

by a microcentrifuge tube and infused with 50-100 µl of tissue stabilizer.  171 

Each Calgary adult was set up with a standardized storage and mounting protocol. The mouse 172 

carcass was stored at -20°C after euthanasia. Prior to the day of scanning, the mouse was retrieved and 173 

thawed overnight at 4°C. The carcasses were then wrapped in foam and placed into a 37 mm diameter 174 

sample holder for µCT. 175 

Imaging. The IMPC embryos were imaged at six centers, including the Baylor College of Medicine, Czech 176 

Center for Phenogenomics, MRC Harwell, Toronto Centre for Phenogenomics, The Jackson Laboratory, 177 
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and University of California, Davis. A 3-D image of each iodine-stained whole embryo was acquired with 178 

a Skyscan 1172 µCT scanner (Bruker, Kontich, Belgium) at 100 kVp and 100 µA. The raw images were 179 

initially obtained with isotropic voxels but variable spatial dimensions and resolutions, ranging between 180 

0.002 mm to 0.04 mm. Image projections were reconstructed into a digital stack using the Feldkamp 181 

algorithm40. 182 

The Calgary mice were imaged in the 3-D Morphometrics Center at the University of Calgary. A 183 

3-D image of each stained embryo head was obtained with either (a) a Scanco µCT 35 scanner (Scanco 184 

Medical, Brütisellen, Switzerland) at 45 kV and 177 µA or (b) a ZEISS Xradia Versa 520 X-ray microscope 185 

(Carl Zeiss AG, Oberkochen, Germany) at 40-50 kV, 4-5 W, and 2 s exposure time. A 3-D image of each 186 

adult skull was acquired with either (a) a Scanco vivaCT 40 µCT scanner (Scanco Medical, Brütisellen, 187 

Switzerland), (b) a Scanco vivaCT 80 µCT scanner (Scanco Medical, Brütisellen, Switzerland), or (c) a 188 

Skyscan 1173 v1.6 µCT scanner (Bruker, Kontich, Belgium) at 55-80 kV and 60-145 µA. Like the IMPC 189 

data, these original images were obtained with isotropic voxels but variable spatial dimensions and 190 

resolutions. Embryo image resolutions ranged between 0.007 mm and 0.027 mm, whereas adult resolutions 191 

ranged between 0.035 mm and 0.044 mm. Image projections were reconstructed with the integrated Scanco 192 

software, the ZEISS XMReconstructor software, or the Skyscan NRecon v1.7.4.2 software. 193 

Image preprocessing 194 

We preprocessed each image to account for differences in image acquisition that would interfere with the 195 

atlas-based registration workflow described below (Fig. 1). The preprocessing scripts are provided in the 196 

MusMorph GitHub repository (https://github.com/jaydevine/MusMorph/tree/main/Preprocessing). In this 197 

preprocessing step, we first converted the reconstructed imaging data (.nrrd, .aim, .tiff) to the Montreal 198 

Neurological Institute (MNI) .mnc format using file conversion scripts written in Bash and Python (see 199 

AIM_to_MNC.sh, NII_to_MNC.sh, TIFF_to_MNC.sh, DCM_to_MNC.sh, and NRRD_to_MNC.py). As 200 

part of the open-source MINC library (http://bic-mni.github.io/man-pages/), the .mnc format is 201 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.11.468142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468142
http://creativecommons.org/licenses/by/4.0/


8 

 

implemented using HDF5 (Hierarchical Data Format, version 5), which supports hierarchical data structure, 202 

internal compression, 64-bit file sizes, and other modern features41.  203 

Figure 1. Schematic overview of the phenotyping pipeline. Specimens were staged, prepared (fixed/stored), 204 

stained, and imaged with different but standardized lab-specific protocols. While the E10.5, E11.5, E14.5, 205 

and adult specimens were obtained in Calgary, the E15.5 and E18.5 specimens were acquired from the 206 

IMPC. To account for differences in image acquisition (e.g., intensity artifacts, image resolution and 207 

dimensions, and position), each image was subjected to a series of preprocessing steps. Next, each 208 

preprocessed image was non-linearly registered to a stage-specific reference atlas with a detailed set of 209 

landmarks and segmentations. We recovered deformation fields, landmarks, and segmentations (if 210 

available) for each specimen. To optimize the landmark predictions of poorly registered specimens, as 211 

measured by cross-correlation similarity, a downstream neural network was used.  212 

Staining artifacts, such as extreme intensity gradients and variable penetrance, can bias the image 213 

registration process. To minimize intensity inhomogeneities, we applied the N3 method42. Since many of 214 

the E15.5 images had background noise, where the stained scanning medium was indistinguishable from 215 

the anatomy, we employed a thresholding script in Bash (see Threshold.sh). This script computes a lower 216 
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anatomical density threshold, masks the voxels above this bound and those in proximity via dilation, and 217 

equates all voxels outside the mask to 0. To ensure the image resolutions and dimensions were consistent 218 

with the atlas, we implemented an image resampling script in Bash (see Downsample_and_Correct.sh). We 219 

also used this script to control for differences in bit depth among scanners by including a min-max 220 

normalization, which scaled the embryo intensities between 0 and 1. Table 1 outlines the source of the 221 

image data, developmental stage, voxel dimensions, image resolutions, stage-specific sample sizes, and the 222 

presence or absence of atlas anatomical labels. Note that the E14.5 images were solely used to create another 223 

stage-specific atlas, as they are from a smaller, unpublished dataset. 224 

Source Stage Anatomy X Y  Z Resolution 

(mm) 

N Landmark

s 

Segmentations 

Calgary E10.5 Head 220 295 350 0.012 434  × 

Calgary E11.5 Head 502 503 390 0.012 531  × 

Calgary E14.5 Head; 

Body 

486 567 723 0.027 84 

(84) 

 ×

IMPC E15.5 Head; 

Body 

486 567 723 0.027 1426   

IMPC E18.5 Head; 

Body 

293 414 667 0.054 1657  × 

Calgary Adult Skull 642 586 979 0.035 6000 

(154) 

  

 225 

Another essential step to all image registration workflows is the initialization, or a rigid alignment 226 

between an image pair. Using initialization scripts written in Bash (see Preprocessing.md) and R 227 

(Tag_Combine.R), we rigidly transformed each image to a stage-specific atlas or, if an atlas did not exist, 228 

an arbitrary but stage-specific reference image. To determine the rigid transformation matrices, we utilized 229 

a manual and automated approach, or a strictly automated approach, depending on anatomical orientation. 230 

If the mouse was scanned in a random orientation, we rendered a minimum threshold surface in MINC, 231 

Table 1. Summary of imaging data. Source is where the image was acquired. Stage is the age of the 

specimen at sacrifice. Anatomy is the labelled and scanned anatomy. X, Y, and Z are the voxel lengths of 

each atlas axis. Resolution is the isotropic resolution of each scan. N is the sample size, with the number 

of scans awaiting publication of primary research in parentheses.  Landmarks and segmentations indicate 

the presence () or absence (×) of labels on the stage-specific atlas.  
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then manually placed five homologous three-dimensional (3-D) landmarks at anatomical extrema (e.g., 232 

ears, nose, top of the head, and back of the head), resulting in an MNI tag point file (.tag) with landmark 233 

coordinates. Next, we concatenated the reference and arbitrary landmark matrices, and minimized their 3-234 

D Euclidean distances via least squares. If the specimen was already roughly aligned to the reference image, 235 

we performed an automated, intensity-based rigid alignment using the full registration process outlined 236 

below (see the “Image Registration and Label Propagation” section). This intensity-based rigid alignment 237 

was also repeated for the manually aligned volumes to ensure consistency. With the rigid transformation 238 

matrices, we resampled each image into their stage-specific reference coordinate space using tri-linear 239 

interpolation. 240 

Reference atlases 241 

We generated a population average atlas for each stage, excluding E15.5 and adulthood, by spatially 242 

normalizing 25 µCT images of wildtype mice with a group-wise registration workflow43,44 (Fig. 2 and 3). 243 

A nearly identical workflow was used to create the existing E15.5 and adult atlases. The atlas construction 244 

script is available in the MusMorph GitHub 245 

(https://github.com/jaydevine/MusMorph/tree/main/Processing) and is written in Python (see 246 

HiRes_Atlas.py or LoRes_Atlas.py). This script produces Bash scripts that can be executed automatically 247 

and in parallel on a compute cluster to maximize computational efficiency. Without massively parallel 248 

computing, the volumetric registrations would need to be performed sequentially, each requiring hours of 249 

computation and a large amount of memory. Before executing the workflow, the user must upload the 250 

initialized images and registration scripts to a compute cluster. In addition, the user needs to install a MINC 251 

Toolkit module onto the cluster via Docker (https://bic-mni.github.io/) or GitHub (https://github.com/BIC-252 

MNI/minc-toolkit-v2), or define a pre-existing module, because the scripts utilize the open-source MINC 253 

software. An atlas can also be generated locally, but it will be significantly slower without massively 254 

parallel computing. 255 
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 256 

Figure 2. Embryo reference atlases. Sagittal cross-sections of the E10.5 (www.facebase.org/id/6-

F00W), E11.5 (www.facebase.org/id/6-F012), E14.5 (www.facebase.org/id/6-F016), E15.5 

(www.facebase.org/id/6-F6SE), and E18.5 (www.facebase.org/id/6-F6T4) atlas volumes are shown 

to display the stained internal anatomy. Each head surface was labelled with a dense landmark 

configuration to capture global and local aspects of morphology. Lateral, superior, and anterior views 

of each head isosurface are shown. The semi-landmark patches (small, color-coded points) were 

interpolated between a set of sparse homologous landmarks (large, red points). They can be slid and 

resampled for morphometric analyses. 
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Spatial normalization involves an initial affine transformation for global alignment, followed by a 257 

deformable transformation for non-linear alignment. To account for global variation in location, orientation, 258 

and scale, we computed a series of multi-resolution (coarse to fine) affine transformations among the 259 

images by optimizing a cross-correlation objective function45. Given that sample-wide pairwise 260 

registrations yield an improved affine template46, or intensity average, we completed all possible (N=25*24) 261 

pairwise affine registrations, then averaged the resulting transformation for each specimen. Using the 262 

averaged transformations, we resampled each initialized image into the affine coordinate space with tri-263 

linear interpolation and averaged the resulting images to produce an affine template. To correct for local 264 

variation in shape, we computed a series of multi-resolution non-linear transformations with the ANIMAL 265 

(Automatic Nonlinear Image Matching and Anatomical Labelling) algorithm47, again optimizing for cross-266 

correlation. This iterative, four-step process involves non-linearly deforming each mouse to an evolving 267 

template at increasingly higher resolutions, with the first template being the affine average and the next 268 

three being improved versions of the non-linear average48. The final product is a stage-specific average with 269 

excellent contrast and a high signal-to-noise ratio.  270 

 Since the goal of MusMorph was to aggregate landmark data for morphometrics, and our primary 271 

imaging data are head scans, we focused on labelling each atlas head surface with a standardized landmark 272 

configuration (Fig. 2 and 3). Specific information about the number of landmarks and their anatomical 273 

definitions can be found below in the “Data Records: Landmarks” section. To generate the landmarks, we 274 

first rendered a minimum density isosurface in MINC, which uses ITK’s marching cubes algorithm, and 275 

saved the 3-D rendering as a Stanford PLY (.ply) file. We then used 3D Slicer49 or the MINC Toolkit to 276 

acquire a landmark configuration on each surface that provided a comprehensive representation of shape50. 277 

For the embryos, we used 3D Slicer and the SlicerMorph extension32 to identify sparse landmarks and 278 

interpolate landmark patches of variable density in between, depending on the size of the area, resulting in 279 

dense coverage of the head. This also ensured that the patches were homologous, allowing for a 280 

developmental morphospace into which all specimens may be superimposed. Because developmental 281 
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homology was not a consideration for the adults, we landmarked the adult atlas in MINC using built-in 282 

display tools, again ensuring sparse and dense landmark coverage.  283 

Figure 3. Adult reference atlas. Cranium (top), mandible (middle), and endocast (bottom) surfaces were 284 

segmented from the skull atlas (www.facebase.org/id/6-F6VC), then labelled with a dense landmark 285 

configuration to capture global and local aspects of morphology. Lateral, superior, and anterior views of 286 

each segmentation isosurface are shown. There are sparse landmarks (red) as well as surface (blue) and 287 

curve (green) semi-landmarks that can be slid and resampled for morphometric analyses.  288 

 Shared developmental pathways lead to correlated morphological variation, or morphological 289 

integration51-57. To enable analyses of integration, we added landmark configurations to segmented surfaces 290 

of the adult skull atlas. We manually segmented the cranium, mandible, and neurocranial endocast (i.e., a 291 

proxy for the brain) in MINC, then rendered these segmentations as isosurfaces before landmarking them 292 

with a dense configuration. Once again, the landmark details are described below in the “Data Records: 293 

Landmarks” section. The segmentations may further be used for surface-based analyses58, measures of size 294 

(e.g., volume or surface), or as masks to reduce the shape dimensionality of a voxel-based morphometry 295 

analysis. Unlike the adult atlas, the embryo atlases do not come with segmentations due to the scope of this 296 
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work, apart from the pre-existing E15.5 atlas, which has 48 manually segmented structures 297 

(http://www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html).  298 

Image registration and label propagation 299 

We pairwise registered each image to their stage-specific atlas to obtain a composite (affine and non-linear) 300 

transformation for label propagation (Fig. 1). Like the atlas workflow described above, the registration 301 

scripts are available in the MusMorph GitHub 302 

(https://github.com/jaydevine/MusMorph/tree/main/Processing) and are written in Python (see 303 

HiRes_Pairwise.py or LoRes_Pairwise.py). The purpose once more is to produce Bash scripts en masse for 304 

massively parallel computing on a compute cluster due to the computational requirements of volumetric 305 

deformable registration and anatomical labelling.  Only the initialized images and registration scripts need 306 

to be uploaded to the cluster to execute the workflow. While the pairwise registrations involved the same 307 

multi-resolution affine alignment described above, the non-linear alignment differed. Here, we 308 

implemented the geodesic SyN (Symmetric Normalization) algorithm59, because it was previously 309 

validated for atlas-based landmarking and morphometrics of mouse models44. The SyN registrations were 310 

optimized using cross-correlation. After registration, we used labelling scripts written in Bash and produced 311 

via Python (see Label_Propagation.py) to recover the non-linear transformations, concatenate them with 312 

the affine transformations, invert them, and propagate the atlas labels to the rigid space of each image.  313 

Neural network shape optimization 314 

Although top-performing registration algorithms provide an effective and generalizable way to 315 

automatically label anatomy, there are instances where outliers and problematic landmarks can alter shape 316 

representations. This is particularly true for model organisms, where mutant phenotypes may show little to 317 

no resemblance with an atlas. To demonstrate how biological signal can be restored, we implemented a 318 

supervised deep learning workflow available in the MusMorph GitHub 319 

(https://github.com/jaydevine/MusMorph/tree/main/Postprocessing), which employs scripts written in R 320 
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and Julia (see GPA_and_Projection.R and Landmark_Optimization.jl)60. Using a subset of 68 sparse adult 321 

craniofacial landmarks (N=2,000) described in previous work61-65, we trained a deep feedforward neural 322 

network to learn a domain-specific loss function that minimizes automated and manual shape differences. 323 

The sparse landmark numbers amenable to optimization (see Optimization_Order.csv)36 are available on 324 

FaceBase. We focused on the adults because that was the only stage with a large existing set of homologous 325 

manual landmarks for training. 326 

We tested the network predictions on a random subset (N=500) of adult skulls described further in 327 

the “Technical Validation” section. To help others initialize the network without having to retrain it, we 328 

provide the adult network model (Calgary_Adult_Cranium_Model.bson) and weights 329 

(Calgary_Adult_Cranium_Weights.bson) in the Binary JSON (.bson) file format on GitHub. We also make 330 

available the optimized sparse shape predictions for the entire adult crania dataset 331 

(Adult_Cranium_Sparse_Landmarks.csv)36. Although we focused on adults, this optimization strategy is 332 

generalizable, so other research groups with manual landmark data on any structure of the atlases may use 333 

the network architecture to improve outlier predictions. 334 

Data Records 335 

Specimen metadata 336 

Each specimen is associated with a rich set of identifiers to accommodate morphometric analyses using 337 

multiple factors and/or covariates. Alongside detailed metadata descriptions in FaceBase, we provide the 338 

specimen metadata as a supplementary CSV file (MusMorph_Metadata.csv)36 for convenience and to 339 

include auxiliary fields. Table 2 enumerates the metadata and Table S1 summarizes the metadata 340 

distributions for each dataset on FaceBase. 341 
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 342 

Fig. 4a-b illustrates the distributions of sex, strain type, and genotype across the embryo and adult 343 

datasets. Sex is well-annotated for the E15.5, E18.5, and adult datasets, but is missing (“NA”) for many of 344 

the E10.5 and E11.5 specimens. While most of the embryo mouse models were produced on an isogenic 345 

inbred background, particularly C57BL/6N, strain diversity is a focal point of the adult datasets. Among 346 

the nine adult strain types provided, there are 98 unique background strains. The majority are recombinant 347 

inbred lines (e.g., the Collaborative Cross dataset66), wild-derived crosses (e.g., the Hybrid dataset67), and 348 

outbred lines (e.g., the Diversity Outbred dataset68). We have included 459 unique genotypes for the embryo 349 

datasets, most of which derive from the IMPC dataset69, as well as 179 genotypes for the adult datasets. A 350 

minority of specimens, including several embryos in the Ap270, B9d71, and Bulgy72 datasets as well as a 351 

few adults in the Brain-Face73 dataset, have unknown genotypes (e.g., “-/-;NA” and “+/-;NA” in double  352 

Identifier Description 

Biosample The name of the specimen, which corresponds to the image and label names.  

Strain The background strain of the specimen.  

Strain_MGI_ID The MGI ID for the strain. 

Strain_Type An attribute of strain that describes whether it is inbred or outbred and lab-derived 

or wild-derived. 

Gene The gene symbol as provided by MGI. 

Gene_MGI_ID The MGI ID for the gene. 

Zygosity Whether the specimen is homozygous, heterozygous, wildtype, or otherwise (e.g., 

flox/null) for a given gene mutation. 

Genotype A concatenation of the gene symbol and zygosity symbol. 

Anatomy The region of anatomy that has been scanned and labelled.  

Treatment An environmental effect that the specimen has been treated with. 

Experimental 

Group 

An identifier derived from genotype that denotes whether the specimen is a control 

or mutant. 

Sex The sex of the specimen. 

Stage The age of the specimen in days, either embryonic (E) or postnatal (PN). 

Life_Phase An identifier derived from stage that indicates life phase (e.g., gestation vs. 

adulthood). 

Dataset The published or unpublished study (see Study_Metadata.csv) the sample is 

associated with. 

Availability Whether the images and phenotypic data are available or pending publication of a 

primary research article. 

Table 2. Summary of metadata identifiers. 
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 353 

Figure 4. Summary of metadata. (a) Distribution of sex, strain type, and genotype for the embryo datasets. 

(b) Distribution of sex, strain type, and genotype for the adult dataset. (c) Sample sizes of each 

developmental stage included in the database. All “NA” specimens are mature or middle-aged adults. (d) 

Left: Example landmarks and segmentations of the adult skull and endocast (brain). Middle/Right: 

Morphological analyses, such as PCA and allometry regressions, that one might perform with a dense 

landmark dataset. Each color in the plot represents a different mouse genotype.  
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knockout designs or “NA” and “+/+ or +/-”  in single knockouts) due to genotyping complications in the 354 

past. Specimens homozygous for a single gene mutation predominate the embryo datasets, whereas normal 355 

wildtype variants comprise the bulk of the adult datasets. Fig. 4c shows the developmental stages 356 

represented in MusMorph. Of the 10,056 specimens processed, 40% are embryos and 60% are adults, many 357 

of which have just finished maturing around postnatal day 90. All specimens without a recorded stage 358 

(“NA”) are mature adults. 359 

 It is often desirable to compare mutants to their wildtype counterparts from the same sample 360 

because background strains vary. To preserve sample provenance where possible, specimens that are 361 

wildtype for a given mutation will have the same gene symbol as their heterozygote and homozygote 362 

littermates. For wildtype specimens without litter information, like the IMPC dataset, their genotypes are 363 

equated to background strain. Mouse strain nomenclature follows the MGI guidelines, except when the 364 

strain design is unknown and has no MGI ID (e.g., novel hybrid backcrosses). We also abbreviate genotypes 365 

for complex strain designs using MGI synonyms if available. Furthermore, while most wildtype specimens 366 

fall within the control experimental group, there are cases where they can exhibit mutant-like phenotypes 367 

and be categorized as such. One example in MusMorph is the artificial selection Longshanks dataset74, 368 

which through many generations of artificial selection produced wildtype specimens with extreme tibia and 369 

craniofacial phenotypes75,76. 370 

We selected the above identifiers, because they tend to explain a significant amount of 371 

morphological variation in morphometric analyses. For instance, many structures in the mouse are sexually 372 

dimorphic, including the shape of the brain77 and craniofacial complex78, cortical bone size and strength79, 373 

adipose tissue distribution80, and feto-placental growth81,82, to name a few. It is also known that classical 374 

laboratory strains, such as those in the Strain Comparison dataset83, exhibit naturally occurring craniofacial 375 

(e) Left: Slice visualization of a non-linear deformation grid. Middle/Right: Morphological analyses, such 

as statistical parametric mapping, that one might perform with a deformation field. The t values show 

significant (p < 0.05) voxel-wise differences in form (i.e., volume shrinkage) in Ghrhr homozygous 

mutants relative to wild type, whereas the variance heatmap shows voxel-wise variances in Ghrhr 

mutants. 
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phenotypes84. Moreover, gene mutations can interact with a background strain via epistasis to produce 376 

different phenotypes85-87, like those in the Spry dataset88. Another key driver of variation is developmental 377 

stage, as differences in age often define a principal axis of allometric variation via correlations with size 378 

and/or shape89-93. Given the ubiquity of allometry, these correlations can be found across most MusMorph 379 

datasets (Fig. 4d). Finally, numerous studies have reported the phenotypic outcomes of single gene 380 

mutations, environmental perturbations, and how zygosity modulates these effects94-96. These identifiers 381 

have corresponding images, landmarks, segmentations, and deformation fields for morphological analyses 382 

(Fig. 4d-e). 383 

Images 384 

We provide the atlases and initialized images for each specimen in the MNI .mnc format. The naming 385 

convention for the atlas volumes is <Source>_<Stage>_<Anatomy>_Atlas.mnc. They are categorized as 386 

“Imaging Data” in the project-wide dataset36 on FaceBase. The naming convention for the initialized 387 

volumes is <Biosample>.mnc, where Biosample is the name of the specimen in the metadata (see the 388 

“Specimen metadata” section). One exception is the naming convention for the subset of thresholded E15.5 389 

images, which is <Biosample>_Thresh.mnc. These volumes are also categorized as “Imaging Data” across 390 

the MusMorph datasets on FaceBase. Each .mnc file has four key attributes: 1) a named dimension (xspace, 391 

yspace, zspace), 2) length (number of voxels on each dimension), step (resolution), and start (origin). MINC 392 

defines a voxel and world coordinate system, so one can move between them with the simple 393 

“voxeltoworld” and “worldtovoxel” MINC commands. If users want to convert between .mnc and different 394 

file formats (e.g., raw data, DICOM, NIfTI, Analyze, ECAT, TIFF, Concorde, VFF), there are a variety of 395 

other Bash commands available (http://bic-mni.github.io/man-pages/). While the raw IMPC images are 396 

freely accessible in the NRRD (.nrrd) format at https://www.mousephenotype.org/data/embryo, the raw 397 

Calgary images are available upon request in the AIM (.aim) or TIFF (.tiff) formats. 398 

Transformations 399 
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For each pairwise registration, we recovered an inverted non-linear and composite (affine and non-linear) 400 

transformation. Given the file sizes of the non-linear deformation fields (~3 GB on average × 10,000 = 30 401 

TB), we make the transformations available upon request. The deformation fields and composite 402 

transformations are in the MNI .mnc and .xfm formats. Each .mnc file shares the same image attributes 403 

described above with an additional named dimension called vector_dimension which describes the non-404 

linear displacement vectors. Each .xfm file contains a header and affine transformation matrix. The naming 405 

convention for the deformation fields is <Biosample>_ANTS_nl_inverse_grid_0.mnc and 406 

<Biosample>_ANTS_nl_inverse.xfm, whereas the composite transformations are called 407 

<Biosample>_origtoANTSnl_grid_0.mnc and <Biosample>_origtoANTSnl.xfm. “ANTS” denotes the 408 

algorithm and “nl” stands for “non-linear”. Much like the images, the transformations for the subset of 409 

thresholded E15.5 volumes have “Thresh” appended to the <Biosample> name. 410 

Non-linear deformation fields describe the displacements of each target image voxel to each 411 

reference image voxel97. By calculating the Jacobian determinant � for every point �(�, �, �) in the 412 

deformation field,  413 

det��(�, �, �) =
�
�
����� ���� �������� ���� �������� ���� �����

�
�
 414 

one can quantify the magnitude of morphological change at each voxel (Fig. 4e). A Jacobian determinant 415 

of 1 indicates no volume change, whereas determinants greater than 1 indicate volume expansion and 416 

determinants between 0 and 1 indicate volume shrinkage. These determinants can also be scaled and 417 

sheared with a composite transformation to examine voxel-wise differences in form. Jacobian determinants 418 

can be analyzed with voxel-wise tests, such as an ANOVA with a false-discovery rate correction, to map 419 

statistics onto the anatomy, a technique otherwise known as statistical parametric mapping (see 420 
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VBM_Example.R). For example, in Fig. 4e, we use the RMINC R package (https://github.com/Mouse-421 

Imaging-Centre/RMINC) to show significant voxel-wise changes (shrinkages) in form between Ghrhr 422 

mutants98 and wildtype specimens, as well as voxel-wise variances in form associated with this mutation. 423 

Landmarks  424 

We labelled each atlas, and thus every registered mouse embryo and adult, with a standardized landmark 425 

configuration (Fig. 2 and 3). The atlas landmark files are named 426 

<Source>_<Stage>_<Anatomy>_Atlas_Landmarks.tag. They are stored as “Imaging Data” alongside the 427 

atlas volumes on FaceBase36. The individual specimen landmark files are named 428 

<Biosample>_<Anatomy>_Landmarks.tag and are similarly categorized as “Imaging Data” across 429 

FaceBase. The MNI .tag file format is an ASCII file which stores the coordinates of each landmark in the 430 

millimetric world space of the volume. Each .tag file has a header above an array of � landmarks (rows) in 431 

� dimensions (columns). These files can be imported into R individually or collectively as a 3-D array using 432 

the tag2array function in the custom morpho.tools.GM package99. Alternatively, the user can employ the 433 

read.csv function in R to import a vectorized .csv file. We provide landmark .csv files for every 434 

developmental stage and anatomical region36, each of which contains a matrix of � specimens (rows) and 435 

� × � landmark coordinate dimensions (columns). Importantly, there are dense semi-landmarks and sparse 436 

fixed landmarks for local and global geometric morphometric analyses of craniofacial, endocast (brain), 437 

and mandible morphology. In Fig. 4d, for instance, we show craniofacial shape morphs along the first 438 

principal component (PC) in an adult subsample, as well as allometry regressions which relate craniofacial 439 

shape to size. 440 

The embryo landmarks are homologous across stages. Table S2 describes the sparse embryo 441 

landmarks and their biological definitions. Table S3 lists the embryo semi-landmark patches and their 442 

density, both of which are based on the sparse landmarks. The stage-specific semi-landmark patch files can 443 

also be found as tab-separated value (TSV) files on GitHub 444 
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(https://github.com/jaydevine/MusMorph/tree/main/Postprocessing). Each embryo has 22 sparse 445 

homologous landmarks within their larger dense configuration. To perform a sparse landmark shape 446 

analysis, users may subset the first 22 rows of each 3-D array. Since there are three additional sparse 447 

landmarks for the E15.5 and E18.5 specimens, rows 23 to 25 may be included for stage-specific analyses 448 

or excluded for ontogenetic analyses.  449 

The adult landmarks are simply homologous within stage. Tables S4, S5, and S6 describe the sparse 450 

adult craniofacial, endocast, and mandible landmarks, respectively, as well as their biological definitions. 451 

While the adult curve semi-landmarks and surface semi-landmarks are not patch based, they can be slid and 452 

resampled using the R scripts on GitHub (see Calgary_Adult_Cranium_Sliding_Semis.R, 453 

Calgary_Adult_Mandible_Sliding_Semis.R, and Calgary_Adult_Endocast_Sliding_Semis.R) to mimic 454 

patches or any other structure. Much like the embryos, the sparse landmarks are the first 93, 12, and 19 455 

rows of the cranium, endocast, and mandible 3-D arrays, respectively, and can be partitioned for a sparse 456 

shape analysis. If users want to generate new landmarks, such as internal landmarks or whole-body 457 

landmarks, they can use a script (see Label_Propagation.py), the inverted composite transformations (see 458 

the “Transformations” section), and a local or remote compute cluster to propagate the landmarks to an 459 

initialized image. To promote standardization, we encourage users to add new landmark subsets to the pre-460 

existing configurations.  461 

Segmentations 462 

We provide segmentation labels for the E15.5 and adult atlases and specimens to support alternative 463 

morphological analyses, such as 3-D visualizations, voxel-based morphometry, volumetric size 464 

comparisons, and surface-based image processing pipelines. Other stages do not have segmentation labels 465 

due to the scope of this work. The segmentations follow the same naming conventions described above: 466 

<Source>_<Stage>_Atlas_Segs.mnc and <Biosample>_Segs.mnc. The atlas segmentations are available 467 

as “Imaging Data” on FaceBase36, as are the individual segmentation files across various MusMorph 468 
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datasets. The published E15.5 atlas contains 48 whole body segmentations 469 

(http://www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html)48, while the adult 470 

atlas comes with cranium, endocast, and mandible segmentations. Each label file is a .mnc volume of 471 

integers that matches the dimensionality of the image. To visualize the adult segmentations, for example, 472 

the user may load the atlas and label files together and input an integer of 1 to render the endocast, 2 for the 473 

cranium, and 3 for the mandible. As with new landmarks, there is the potential to resample new atlas 474 

segmentation labels into the initialized space of any image using the composite transformations (see the 475 

“Transformations” section) and a local or remote compute cluster (see Label_Propagation.py). 476 

Technical Validation 477 

Cross-correlation and root mean squared error 478 

We computed intensity-based, pairwise registrations between each target image (�) and a reference atlas 479 

(�) by optimizing a normalized cross-correlation (NCC) similarity metric: 480 

���(�, �) =  ∑ �(�)�(�)�∈��∑ �(�)��∈� ∑ �(�)��∈�
 . 481 

Normalized cross-correlation is calculated for all voxel positions � over a discrete domain (� ∈ �). If the 482 

domain is the entire 3-D volume and ���(�, �) = 1, the deformed target image and reference image are 483 

perfectly aligned. To assess the quality of each registration, we recorded the normalized cross-correlation 484 

between each deformed target image and the atlas using code in the labelling scripts (see 485 

Label_Propagation.py). Unfortunately, it is difficult to know whether the final registration correlations are 486 

“good” or “bad” without relating them to the quality of the labels collected. We investigated the relationship 487 

between landmark root mean squared error and cross-correlation in the adult crania training set above to 488 

build a quality assessment model. Letting !"(#) and !"$(#)
 denote the observed (manual) and predicted 489 
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(automated) Euclidean vectors at landmark ℓ for a target image �, the root mean squared error for � 490 

landmarks is defined as 491 

&'() = �∑ *+�ℓ,* ∑ -!"(#) − !"$(#)/�+#,* . 492 

After computing the root mean squared error for each specimen, we regressed these values on their 493 

corresponding cross-correlation values with linear, squared, and cubic cross-correlation terms (Fig. 5a). We 494 

found a statistically significant non-linear relationship (R2 = 0.3, p < 0.001), such that cross-correlation 495 

values below 0.90 resulted in exponentially higher landmark errors. The average root mean squared error 496 

was 0.23 mm (95% CI  ± 0.002 mm). This mean error is comparable to manual landmark intra-observer 497 

detection errors across the skull, which tend to be 0.25 mm or less44,50. To verify registration quality across 498 

the rest of the database, we calculated cross-correlations for all specimens and stages. The mean cross-499 

correlation values and their standard deviations for E10.5, E11.5, E15.5, E18.5, and adulthood were 0.94 ± 500 

0.07, 0.96 ± 0.04, 0.93 ± 0.02, 0.93 ± 0.12, and 0.95 ± 0.02, respectively (Fig. 5a). These values are on par 501 

or higher than those reported in previous mouse registration studies100 and speak to the reproducibility of 502 

this approach for analyzing variable morphology. 503 

Covariance patterns and the mean shape 504 

We quantified differences in covariance structure and the sample mean shape between our baseline 505 

automated landmarks, the optimized neural network landmarks, and the manual landmarks. To analyze 506 

covariance similarity, we projected the automated configurations into the manual PC space and correlated 507 

the uncentered PC scores. Fig. 5b shows automated and manual correlations for the first 10 PCs (65.1% of 508 

the total variance). The average correlation within PCs for the baseline automated configurations was r = 509 

0.6. This measure is biased downwards by lower order automated PCs, which tend to capture residual 510 

covariance of the first manual PC. The average correlation within PCs for the optimized automated 511 

configurations was r = 0.8, suggesting a restoration of signal among the major PCs. 512 
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 513 

Figure 5. Validation of adult crania test set. (a) Left: Regression of automated-manual Euclidean distances 

(error) on cross-correlation, a measure of the final target-reference image similarity. Right: Boxplots 

showing the distribution of cross-correlation values within each developmental stage. (b) Correlation of 

automated and manual PC scores. Left: Baseline automated PC correlations. Right: Optimized automated 

PC correlations. (c) Mean shape deviations between the automated and manual datasets. Red arrows 

indicate error prone areas. 
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To analyze mean shape deviations, we computed the grand mean shape for the manual landmarks 514 

and deformed it to the automated mean shapes via thin-plate spline. We then used the Morpho package101 515 

in R to generate a deformation heatmap of Procrustes distances at every vertex of the deformed mesh (Fig. 516 

5c). Procrustes distance is equivalent to the root mean squared error between two configurations in shape 517 

space. The total distance between the baseline automated mean and manual mean was 0.05, whereas the 518 

distance between the optimized automated mean and manual mean was 0.01. Visually, the baseline 519 

automated mean shape is largely indistinguishable from the manual mean shape, apart from several known 520 

problematic areas42. First, the anterior extent of the frontonasal prominence is underestimated. Second, the 521 

shape of the foramen magnum is altered. Third, the lateral extent of the frontal bone is underestimated, 522 

likely because there are no sparse landmarks to interpolate there; however, this area is well-covered by the 523 

dense landmark configurations. Optimization successfully corrected errors at these problematic locations. 524 

Outliers and stage-specific shape distributions 525 

For each stage, we calculated the Procrustes distance between the mean shape and every configuration to 526 

obtain shape distributions and identify outliers (Fig. S1). We defined outlier shapes as those with a 527 

Procrustes distance above 01 + 1.5 × �0&, where 01 is the third quartile and �0& is the interquartile range. 528 

Next, we displayed a minimum threshold isosurface of each outlier image alongside its landmarks to assess 529 

the errors. Landmark (.tag) files with clear head registration errors were removed. We observed most errant 530 

outlier landmark configurations in the E15.5 and E18.5 embryos, which underwent whole-body 531 

registrations. Since the orientation of the head relative to the body cannot be standardized in embryos, the 532 

whole-body registrations and inherent constraints of spatial normalization resulted in local registrations 533 

errors if their orientation was markedly different from the atlas. 534 

 Eliminating problematic outliers with distance distributions is a global solution but not always a 535 

local one. For example, if a landmark configuration hardly deviates from the mean on average, yet still has 536 

several landmarks with high detection errors, its distance to the mean could be small but its shape distinct. 537 
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We performed a Principal Component Analysis on each stage-specific landmark dataset (Fig. S2 and S3) 538 

to identify such localized errors, assuming the first PC would capture distinctly problematic shapes. Fig. 6 539 

shows the resulting shape distributions along PC1 for each stage. Here, we morphed a surface of the mean 540 

shape to each extreme via thin-plate spline and visualized the outputs. If the deformed surface was unusual, 541 

we displayed the image and landmarks as above, removed the errant landmark (.tag) file if necessary, and 542 

repeated this process until the prediction was correct. 543 

Figure 6. Principal Component Analysis of stage-specific shape data. The mean shape (center) was 

deformed to the minimum (left) and maximum (right) extremes of PC1. Every morph is shown with 

anterior and lateral views. Each row represents a different developmental stage, ranging from E10.5 to 

adulthood. 
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Discussion 544 

Why MusMorph? 545 

The goal of MusMorph was to create a database of standardized mouse morphology data using an 546 

automated, high-throughput, and open-source phenotyping pipeline. By combining developmental atlases 547 

with a registration and deep learning framework, we constructed common coordinate systems into which 548 

various phenotypic data can be integrated. We primarily focused on acquiring morphological data, 549 

including anatomical landmarks, segmentations, and deformation fields, for the craniofacial complex and 550 

brain. However, we also generated whole body data for other integrative analyses of late-gestation embryos. 551 

To enable novel morphometric analyses of genotype-phenotype maps, we utilized mouse models with 552 

substantial developmental and genetic variation. Paired alongside other key metadata, such as strain and 553 

sex, MusMorph provides the community with a unique opportunity to disentangle the mechanistic basis for 554 

morphological variation. 555 

While sparse landmarks are invaluable for geometric morphometrics, there are scenarios where 556 

local shape change can be poorly represented. More ambiguous anatomy, such as curves and surfaces, 557 

cannot be sufficiently captured with fixed anatomical landmarks, and semi-landmarking each specimen can 558 

be tedious and error-prone. Our standardized sparse and dense landmark datasets can enable global and 559 

local shape analyses102,103, an area in geometric morphometrics historically overlooked. Homologous dense 560 

landmark patches across the embryo datasets will also permit joint superimposition of multiple stages into 561 

a common shape space for increased statistical power as well as analyses of ontogeny (Fig. S4). In addition 562 

to landmarks, we make the corresponding deformation fields available on an ad hoc basis to support voxel-563 

based meta-analyses of morphology. Despite its ubiquitous application in neuroimaging, voxel-based 564 

morphometry is rarely seen in fields that study hard tissue, such as evolutionary developmental biology, 565 

anthropology, and paleontology. These deformation fields will let one examine internal and external tissue 566 

interactions within anatomical context. Finally, we include anatomical segmentations for several stages, 567 
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which can be used to restrict the dimensionality of a voxel-wise analysis, calculate the size (e.g., volume or 568 

surface area) of a structure, or perform a surface-based morphometry analysis. If users are dissatisfied with 569 

the coverage of existing landmarks and segmentations, they can modify the atlases and use the image 570 

transformations to generate new labels. 571 

We have made the data and scripts freely available at FaceBase (www.facebase.org, 572 

doi.org/10.25550/3-HXMC)35 and GitHub (https://github.com/jaydevine/MusMorph) to promote 573 

transparency, reproducibility, and future data aggregation. Completely open-source efforts like MusMorph 574 

are critical for standardizing phenotypic datasets. Unlike the field of genomics, which has been 575 

revolutionized through standardized sequencing and data crowdsourcing, phenomics continues to be limited 576 

by one-off, self-contained studies that cannot be related to one another. Standardized morphological 577 

datasets will allow research groups to, for instance, investigate the effects of a gene mutation alongside 578 

other mutants or wildtype strains in a common morphospace. The same can be said for other significant 579 

morphological factors and covariates, such as sex and age. Common morphospaces will further encourage 580 

multimodal data integration across the phenomic hierarchy, ranging from cellular and developmental 581 

phenotyping with light sheet microscopy104 to tissue phenotyping with magnetic resonance imaging and 582 

contrast-enhanced computed tomography38. Large phenotypic datasets will ultimately give us the statistical 583 

power needed to interrogate mechanisms that bias and generate morphological variation.  584 

Sources of error and potential limitations 585 

Staining artifacts are a drawback of contrast-enhanced computed tomography. Among the largest sources 586 

of registration error were poor contrast and background noise, particularly in the E15.5 dataset. Variable 587 

strain penetrance and inadequate contrast can underrepresent anatomy, whereas background noise can 588 

masquerade as anatomy and deceive the registration, even if the alignment is constrained with a mask. We 589 

mitigated labelling errors by registering thresholded images and by employing other preprocessing 590 

techniques, such as intensity bias correction and normalization. However, in some cases, the intensities of 591 
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the scanning tube could not be distinguished from the specimen, leading to surface landmark errors. Another 592 

spatial alignment problem that was difficult to reconcile was variation in articulated anatomical positions. 593 

For example, head orientation relative to the body varied widely among the E15.5 and E18.5 datasets, and 594 

mandible orientation relative to the skull differed across the adult dataset. We chose to register the entire 595 

scan instead of separate segmentations, masks or cropped volumes, because a) a single registration field is 596 

computationally more feasible to generate, store, and use downstream and b) a single atlas with a detailed 597 

set of labels is better for data standardization. 598 

 Non-linear alignment and labelling errors may occur around extreme anatomical points with high 599 

variability. To demonstrate how automated landmark error can be reduced, we implemented a neural 600 

network that minimized automated and manual craniofacial shape differences. Since the endocast, 601 

mandible, and embryo datasets do not have manual landmark training data, they cannot be optimized. 602 

However, if other investigators have training data, a network could be built to correct sparse phenotyping 603 

errors in areas of high morphological variability. Lastly, it is important to consider the computational time 604 

and memory needed for volumetric registration. To integrate new data, we strongly encourage users to 605 

parallelize their work on compute clusters. 606 

Future development 607 

The majority of MusMorph is composed of head data, because we had reservations about registering whole 608 

body data. Now that we have observed no significant differences in registration quality among the datasets, 609 

we plan to experiment with more whole-body data for embryos and adults. Another area we intend to 610 

improve is our developmental coverage. Despite sampling across most of development, we recognize that 611 

additional embryo timepoints (e.g., E9.5 and E12.5-14.5) are needed, as are higher sample sizes throughout 612 

mid-gestation and early adulthood. The developing mouse craniofacial complex, for example, undergoes 613 

immense growth during the first 30 days after birth105. Early postnatal datasets will be critical for asking 614 

questions about size and ontogenetic allometry. Finally, to complement our large sample of homozygous 615 
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embryo mutants, we hope to introduce more wildtype and heterozygous embryos for analyses of normal 616 

variation. Heterozygotes have not been a focus of the IMPC, so there is ample opportunity to reveal 617 

previously unrecognized embryo phenotypes with standardized MusMorph comparisons. The adult dataset, 618 

by contrast, needs to be balanced with more homozygous mutants to better understand how mutations of 619 

large effect influence morphological variance and other related phenomena, such as integration and 620 

modularity. 621 

Usage Notes 622 

MusMorph is categorized as a “Project” on FaceBase. Projects can be found in the “Data Browser: Projects” 623 

tab at the top of the home page. Project data are organized hierarchically. The levels of the hierarchy in 624 

ascending order of data specificity are “Project”, “Dataset”, “Experiment”, and “Biosample”. A project 625 

contains datasets, which are sets of similar studies. Each dataset is annotated with study abstracts, 626 

experimental designs, and metadata identifiers. Datasets are composed of experiments. An experiment 627 

represents a set of similar specimens, so mice with the same genetic background, age, treatment, and 628 

mutation would constitute one experiment. Experiments contain biosamples. A biosample is an individual 629 

specimen.  630 

After creating a free account and logging in the MusMorph data and metadata can be downloaded 631 

at any level in the project hierarchy using the “Export: BDBag” tool at the top-right of the browser. This 632 

export function uses DERIVA106, the software platform that powers FaceBase, to generate a BDBag (Big 633 

Data Bag)107 ZIP file. Users then need to download the file and process it via BDBag client tools, either via 634 

the command line or GUI application. Specific details about the DERIVA Client installation and the step-635 

by-step export instructions are available here: www.facebase.org/help/exporting. 636 

Code Availability 637 
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Our code is freely available at https://github.com/jaydevine/MusMorph. The scripts describe every stage of 638 

the MusMorph data acquisition and analysis, including image preprocessing (e.g., file conversion, image 639 

resampling and intensity correction), processing (e.g., atlas generation, non-linear registration, label 640 

propagation), and postprocessing (e.g., shape optimization, morphometric analysis). We developed and 641 

implemented the code with Bash 4.4.20, R 3.6.1, Python 3.6, and Julia 1.2.0 on Ubuntu. All code is 642 

distributed under the GNU General Public License v3.0. 643 
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