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Abstract 1

In order to migrate over large distances, cells within tissues and organisms rely on sensing 2

local gradient cues. These cues however are multifarious, irregular or conflicting, changing 3

both in time and space. Here we find that single cells utilize a molecular mechanism akin to 4

a working memory, to generate persistent directional migration when signals are disrupted by 5

temporally memorizing their position, while still remaining adaptive to spatial and temporal 6

changes of the signal source. Using dynamical systems theory, we derive that these information 7

processing capabilities are inherent for protein networks whose dynamics is maintained away 8

from steady state through organization at criticality. We demonstrate experimentally using the 9

Epidermal growth factor receptor (EGFR) signaling network, that the memory is maintained 10

in the prolonged receptor’s activity via a slow-escaping remnant, a dynamical ”ghost” of the 11
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attractor of the polarized signaling state, that further results in memory in migration. As this 12

state is metastable, it also enables continuous adaptation of the migration direction when the 13

signals vary in space and time. We therefore show that cells implement real-time computations 14

without stable-states to navigate in changing chemoattractant fields by memorizing position of 15

disrupted signals while maintaining sensitivity to novel chemical cues. 16

Introduction 17

Directed chemotactic behavior relies on generating polarized signaling activity at the plasma 18

membrane of the cell that is translated to an elongated cell shape in the direction of the signal. 19

Cells maintain the acquired orientation longer than the duration of the recently encountered 20

signal in order to avoid immediate switching to random migration when signals are temporarily 21

disrupted or noisy, while simultaneously remaining sensitive and are able to adapt the migration 22

direction based on the changes in the environment (Parent and Devreotes, 1999; Foxman et al., 23

1999; Ridley et al., 2003). Thus, cells as diverse as social amoeba, neutrophils, leukocytes, fi- 24

broblasts and nerve cells, not only respond to dynamic gradients, but also integrate and resolve 25

competing spatial signals or prioritize newly encountering attractants, likely by memorizing 26

their recent environment (Jilkine and Edelstein-Keshet, 2011; Skoge et al., 2014; Albrecht and 27

Petty, 1998). Numerous models of chemotactic responses based on positive feedbacks, inco- 28

herent feed-forward, excitable or Turing-like networks have been proposed, accounting either 29

for sensing non-stationary stimuli or for long-term maintenance of polarized signaling activity, 30

but not both (Levchenko and Iglesias, 2002; Levine et al., 2002; Mori et al., 2008; Goryachev 31

and Pokhilko, 2008; Beta et al., 2008; Xiong et al., 2010; Trong et al., 2014; Halatek and Frey, 32

2018). These models rely on computations with stable states, where switching from the at- 33

tractor of basal- to the attractor of polarized-signaling activity enables noise-robust sensing, 34

or establishing a long-term memory of previous signal localization. However, they are less 35
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suited for real-time computation of signals that vary in time and space, since the stable attrac- 36

tors completely hinder or at least significantly delay the responsiveness to newly encountered 37

signals (Stanoev et al., 2020). Thus, the mechanism that underlies robust cellular navigation in 38

changing chemical fields has remained unknown. 39

Here we set out to identify how cells satisfy these two general, but seemingly opposed 40

demands: maintaining temporal memory in directional migration through a prolonged polarized 41

state beyond the chemotactic signal duration, while still being able to quickly reset and re-adapt 42

upon novel sensory cues. Using a mathematical model of EGFR network signaling dynamics, 43

we predict and demonstrate experimentally in epithelial cells that these competing demands 44

are uniquely fulfilled for network’s organization at criticality. Beyond this specific biological 45

implementation, we present a generic dynamical mechanism that addresses how cells compare 46

and integrate chemical cues over time and space in order to generate robust responses in a 47

history-dependent manner. 48
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Results 49

1 Dynamical basis of navigation in non-stationary environ- 50

ments 51

We conjectured that operating in changing environments likely relies on computations with 52

metastable states rather than stable attractors, to allow both for transient stability of the polar- 53

ized signaling state when signals are disrupted or noisy, as well as its rapid adaptation when 54

the signals vary in space and time. Our hypothesis is that this can be achieved if biochemical 55

systems are maintained away from steady state. We therefore approached the problem using 56

the abstract language of dynamical systems theory, where the characteristics of any process 57

directly follow from the type of dynamical transitions, called bifurcations, through which they 58

emerge (Strogatz, 2018). In our previous work we identified that when a saddle-node bifurca- 59

tion (SN ) and thereby a steady-state is lost in a dynamical transition, i.e. upon signal removal, 60

a remnant or a dynamical ”ghost” of the stable attractor serves as a mechanism for sensing time- 61

varying growth factors in biochemical receptor networks (Stanoev et al., 2018; Stanoev et al., 62

2020). Necessary for manifestation of the ”ghost” state is organization at criticality, which in the 63

networks we previously examined was determined by the concentration of receptors on the cell 64

membrane. Moreover, the ”ghost” state is dynamically metastable and transiently maintains the 65

system in the vicinity of the steady state. Thus, a transient memory of previously present stim- 66

uli is generated, which enables integration of information contained in the temporal signals. 67

Navigation in changing environments through directed migration however, must additionally 68

rely on a polarized representation of the directional signal, requiring a reliable mechanism for 69

signal-induced transition from a non-polarized symmetric to an asymmetric polarized recep- 70

tor signaling state and subsequently polarized cell shape. From a dynamical systems point of 71

view, a pitchfork bifurcation (PB) can satisfy the condition for robust cell polarization, since 72

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.11.468222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468222
http://creativecommons.org/licenses/by/4.0/


by definition a PB characterizes a transition from a homogeneous to an inhomogeneous steady 73

state (Koseska et al., 2013; Strogatz, 2018). We thus hypothesized that organization at criti- 74

cality - in the vicinity of a SNPB through which a sub-critical PB is stabilized (grey shaded 75

area in Figure 1A), the dynamical characteristics of both bifurcations, signal integration through 76

dynamic memory and cell polarization, will be uniquely manifested to render a minimal mech- 77

anism for responsiveness in changing environments. 78

We described this conjecture mathematically for a general reaction-diffusion model repre- 79

senting the signaling activity on the plasma membrane of a cell, ∂U(x,t)
∂t

= F(U)+D∇2U(x, t), 80

with U being the vector of local densities of active signaling components, D - diffusion con- 81

stants and F accounting for all chemical reactions. Our analysis shows that a PB exists if, for a 82

spatial perturbation of the symmetric steady state (Us) of the form U(x, t) = Us + δU(x)eλt, 83

the conditions δU(−x) = −δU(x) and the limit limλ→0 Fλ = det(J) = 0 are simultaneously 84

fulfilled (Supplementary information). This implies that the linearized system has zero-crossing 85

eigenvalues (λ) associated with the odd mode of the perturbation (Paquin-Lefebvre et al., 2020). 86

To probe the sub-critical transition and therefore the necessary organization at criticality, a re- 87

duced description in terms of an asymptotic expansion of the amplitude of the polarized state 88

(φ) must yield the Landau equation dφ
dt

= c1φ + c2φ
3 − c3φ

5, guaranteeing the existence of 89

SNPB (see Supplementary information for derivation). 90

These abstract dynamical transitions can be realized in receptor tyrosine kinase signaling 91

networks with different topologies and are best analyzed using computational models, whose 92

predictions are then tested in quantitative experiments on living cells. To exemplify the above 93

mentioned principle, we use the well-characterized Epidermal growth factor receptor (EGFR) 94

sensing network (Reynolds et al., 2003; Baumdick et al., 2015; Stanoev et al., 2018). It con- 95

stitutes of double negative and negative feedback interactions of the receptor, EGFR (Ep) with 96

two enzymes, the phosphatases PTPRG (PRG) and PTPN2 (PN2; Figure 1B, Figure S1A), re- 97
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Figure 1. Organization at criticality enables sensing changing spatial-temporal signals. A,
Dynamical mechanism: critical organization before sub-critical pitchfork bifurcation (PB, grey
shaded area). Stable/unstable steady states (solid/dashed lines): basal (homogeneous, grey) and
polarized (inhomogeneous, magenta) receptor activity; stimulus induced transitions between
states: arrow lines. SNPB: saddle-node bifurcation through which PB is stabilized.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.11.468222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468222
http://creativecommons.org/licenses/by/4.0/


B, Scheme of the EGFR-PTP interaction network. Ligandless EGFR (Ep) interacts with PT-
PRG (PRG) and PTPN2 (PN2). Liganded EGFR (E−Ep) promotes autocatalysis of Ep. Causal
links: solid black lines; curved arrow lines: diffusion. See also Figure S1A. C, Signal-induced
shape-changes during cell polarization. Arrows: local edge velocity direction. Zoom: Vis-
coelastic model of the cell - parallel connection of an elastic and a viscous element. Ptotal:
total pressure; v: local membrane velocity; l: viscoelastic state. Bold letters: vectors. Cell
membrane contour: [0, 2π]. D, Top: In silico evolution of spatial EGF distribution. Bottom:
Kymograph of Ep for organization at criticality from reaction-diffusion simulations of the net-
work in (B). E, Corresponding exemplary cell shapes with color coded Ep, obtained with the
model in (C). F, Top: Temporal profiles Ep (black) and E − Ep (grey). Green shaded area:
EGF gradient presence. Bottom: State-space trajectory of the system with denoted trapping
state-space areas (colored). See also movie S1. Thick/thin line: signal presence/absence. G,
Quantification of in silico cell morphological changes from the example in E. H, Left: same
as in G, only when stimulated with two consecutive dynamic gradients from same direction.
Second gradient within the memory phase of the first. Right: the second gradient (orange)
has opposite localization. Mean±s.d. from n=3. See also Figure S1C,D. Dashed line: curve
from G. Parameters: Supplementary information. In (D-H), green(orange)/red lines: stimulus
presence/absence. See also Figure S1.

spectively. Ep and PRG laterally diffuse on the membrane and inhibit each-other’s activities 98

(see Supplementary information for the molecular details of the network). These molecular 99

interactions can be mathematically described using mass action kinetics (Eqs.(6) in Supple- 100

mentary information), and a weakly nonlinear analysis (Becherer et al., 2009) shows that the 101

EGFR signaling dynamics undergoes a symmetry-breaking transition as outlined above (proof 102

in Supplementary information, Figure S1B). Contrary to a bistable system, where the polarized 103

signaling state would be manifested by two steady states, for e.g. high and low protein phos- 104

phorylation in the front and back of the cell respectively (Beta et al., 2008), the inhomogeneous 105

steady state generated via a PB is a single attractor defined as a combination of the front and 106

back activity states. This profiles PB as a robust mechanism of cell polarization. 107

Polarized EGFR signaling on the other hand, will lead to reorganization of the cortical 108

actomyosin cytoskeleton by regulating members of the Rho GTPase family, thereby induc- 109

ing signal-dependent cell shape changes and subsequent migration (Chiasson-MacKenize and 110
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McClatchey, 2018; Ridley and Hall, 1992). In order to link signaling activity with morpho- 111

dynamics, we modeled the cell as a viscoelastic cortex surrounding a viscous core (Yang 112

et al., 2008) (Supplementary information), where EGFR signaling dynamics affects cell shape 113

changes through the protrusion/retraction stress and the viscoelastic nature of the cell membrane 114

(Figure 1C). 115

We first fixed the total EGFR concentration on the cell membrane to a value that corresponds 116

to organization at criticality, and investigated the response of the in silico cell to gradient stim- 117

ulus. In the absence of stimulus, EGFR phosphorylation is uniformly distributed along the cell 118

membrane rendering a symmetrical cell shape (Figure 1D, E). Introducing dynamic gradient 119

stimulus in the simulation (slope changes from steep to shallow over time, Figure 1D, top) led 120

to rapid polarization of EGFR phosphorylation in the direction of the maximal chemoattrac- 121

tant concentration, generating a cell shape with a clear front and back. The polarized signaling 122

state was maintained for a transient period of time after removal of the gradient, corresponding 123

to manifestation of memory of the localization of the previously encountered signal (Figures 124

1D,E; temporal profile Figure 1F, top). The prolonged polarized state does not result from rem- 125

nant ligand-bound receptors (E − Ep) on the plasma membrane, as they exponentially decline 126

after signal removal (Figure 1F, top). The memory in polarized signaling was also reflected on 127

the level of the cell morphology, as shown by the difference of normalized cell protrusion area 128

in the front and the back of the cell over time (Figure 1G). Plotting the trajectory that describes 129

the change of the state of the system over time (state-space trajectory, Figure 1F bottom, movie 130

S1) shows that the temporal memory in EGFR phosphorylation polarization is established due 131

to transient trapping of the signaling state trajectory in state-space. This is typical for the emer- 132

gence of metastable ”ghost” states (Stanoev et al., 2020; Strogatz, 2018), indicating that the 133

system is maintained away from steady-states. The trapping in the dynamically-metastable 134

memory state does not hinder sensing of and adapting to subsequent signals. The cell polar- 135
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ity is sustained even when the EGF signal is briefly disrupted, and the cell is able to reverse 136

direction of polarization when the signal direction is inverted (Figure 1H, Figures S1C,D). We 137

next chose in the simulations a higher EGFR concentration on the membrane, such that the 138

system moves from criticality to organization in the stable inhomogeneous state regime. In this 139

scenario, even a transient signal induces switching to the polarized state that is permanently 140

maintained, generating a long-term memory of the direction on the initial signal. Thus, the 141

cell is insensitive to subsequent stimuli from the same direction, whereas consecutive gradients 142

from opposite directions generate conflicting information that cannot be resolved (Figure S1E). 143

Organization in the homogeneous, symmetric steady states on the other hand renders cells in- 144

sensitive to the extracellular signals (Figure S1F,G). These response features for organization 145

in the stable steady state regimes resemble the finding of previously published models: such 146

models cannot simultaneously capture memory in polarization along with continuous adapta- 147

tion to novel signals, or require fine-tuning of kinetic parameters to explain the experimentally 148

observed cell behavior (Levchenko and Iglesias, 2002; Levine et al., 2002; Mori et al., 2008; 149

Goryachev and Pokhilko, 2008; Beta et al., 2008; Xiong et al., 2010; Trong et al., 2014). This 150

demonstrates that organization at criticality, in a vicinity of a SNPB, is a unique mechanism for 151

processing changing signals. 152

2 Cells display temporal memory in polarized receptor phos- 153

phorylation resulting from a dynamical ”ghost” 154

To test experimentally whether cells maintain memory of the direction of previously encoun- 155

tered signals and what is the duration of this effect, epithelial breast cancer-derived MCF7 156

cells were subjected for 1h to a stable gradient of fluorescently tagged EGF-Alexa647 (EGF647) 157

with a maximal amplitude of 10ng/ml applied from the top of the chamber in a computer- 158

programmable microfluidic device (Figures 2A,B). EGFR phosphorylation at the plasma mem- 159
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brane was quantified during and for 3h after gradient wash-out by determining the rapid translo- 160

cation of mCherry-tagged phosphotyrosine-binding domain (PTBmCherry) to phosphorylated 161

tyrosines 1086/1148 of ectopically expressed EGFR-mCitrine (EGFRmCitrine) using ratiomet- 162

ric imaging (Offterdinger et al., 2004)(Methods). Due to the low endogenous EGFR levels in 163

MCF7 cells, the expression range of EGFRmCitrine was set to mimic the endogenous receptor 164

range in the related MCF10A cell line, such that both cell lines have equivalent signaling prop- 165

erties of downstream effector molecules (Stanoev et al., 2018), and were therefore used in a 166

complementary way in this study. 167

Kymograph analysis of EGFRmCitrine phosphorylation at the plasma membrane of sin- 168

gle cells showed polarization in gradient of EGF647 (Figure 2C, Figures. S2A-D), as shal- 169

low as 10% between front and back of the cell. Only few cells manifested basal or sym- 170

metric EGFRmCitrine phosphorylation distribution upon gradient stimulation (Figures S2A- 171

B,E). Quantifying the fraction of plasma membrane area with polarized EGFRmCitrine phos- 172

phorylation revealed that the polarization persisted ∼ 40min on average after gradient re- 173

moval ([4 − 159min] Figures 2D,E; Figure S2F). In order to identify whether the experi- 174

mentally observed memory results from a dynamically metastable (transiently stable) signal- 175

ing state, we next reconstructed the state-space trajectory from the measured single-cell tem- 176

poral EGFRmCitrine posphorylation profile using Takens’s delay embedding theorem (Takens, 177

1980)(Methods). Trajectory trapping in a state-space area different than that of the polar- 178

ized and basal steady states characterized the memory phase, corroborating that the memory 179

in EGFRmCitrine phosphorylation polarization emerges from a SNPB ”ghost” that maintains 180

the system away from the steady-states (compare Figure 2F to 1F, movie S2). Although the 181

memory doesn’t result from a stable state, it enables to maintain memory of the polarized cell 182

morphology even after gradient removal. This is reflected through the exemplary temporal 183

evolution of the cell protrusion area in direction of the gradient (Figure 2G, memory duration 184
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Figure 2. Single-cell molecular memory in polarized EGFRmCitrine phosphorylation from
dynamical state-space trapping. A, Scheme of microfluidic EGF647-gradient experiment;
Zoom: single-cell measurables. Cell membrane contour [0, 2π] (20 segments). PTB - phos-
photyrosine binding domain, FP /star symbol - fluorescent protein, EGFRp- phosphorylated
EGFRmCitrine. Remaining symbols as in Figure 1B. B, Quantification of EGF647 gradient
profile (at 60min, green) and after gradient wash-out (at 65min, red). Mean±s.d., N=4. C,
Exemplary quantification of, Top: single-cell EGFRp kymograph. Data was acquired at 1min
intervals in live MCF7-EGFRmCitrine cells subjected for 60min to an EGF647 gradient. Other
examples in Figure S2D. Bottom: respective spatial projection of EGFRp. Average using a
moving window of 7 bins is shown. Mean±s.d. from n=20, N=7 in Figure S2C. D, Aver-
age fraction of polarized plasma membrane area (mean±s.d.). In D, E and H, n=20, N=7. E,
Quantification of memory duration in single cells (median±C.I.). F, Top: Temporal profiles of
phosphorylated EGFRmCitrine (black) and EGF 647 −EGFRmCitrine (grey) corresponding to
C. Bottom: Corresponding reconstructed state-space trajectory (movie S2) with denoted trap-
ping state-space areas (colored). Thick/thin line: signal presence/absence. d - embedding time
delay.
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G, Exemplary quantification of morphological changes, directed cell protrusion area, for the
cell in C. Memory duration: 43min. H, Averaged single-cell morphological changes (Solidity,
mean±s.d.). Average memory duration: 40min. Top insets: representative cell masks at distinct
time points. In D, F-H, green shaded area: EGF647 gradient duration; green/red lines: stimulus
presence/absence. Blue arrow: end of memory. See also Figure S2.

∼ 43min). On average, single epithelial cells maintained the polarized cell shape ∼ 40min 185

after signal removal (Figure 2H, Methods). The average duration of memory in the polarized 186

cell morphology therefore directly corresponds to the average memory duration in signaling, 187

suggesting that it will be also reflected as memory in directed cell migration. 188

3 Transient memory in cell polarization is translated to tran- 189

sient memory in directional migration 190

To test the phenotypic implications of the transient memory in cell polarization, we analyzed 191

the motility features of the engineered MCF7-EGFRmCitrine, as well as of MCF10A cells at 192

physiological EGF concentrations. Cells were subjected to a 5h dynamic EGF647 gradient that 193

was linearly distributed within the chamber, with EGF647 ranging between 25−0ng/ml, allowing 194

for optimal cell migration (Figure S3A). The gradient steepness was progressively decreased 195

in a controlled manner, rendering an evolution towards a ∼ 50% shallower gradient over time 196

(Figure S3B). Automated tracking of single-cell’s motility trajectories was performed for 14h in 197

total. MCF7-EGFRmCitrine, as well as MCF10A cells migrated in a directional manner towards 198

the EGF647 source (Figure 3A- and Figure S3C,D - left, green trajectory parts). This directed 199

migration persisted for transient period of time after the gradient wash-out (Figure 3A- and 200

Figure S3C,D - left, red trajectory parts, movie S3), indicating that cells maintain memory of 201

the location of previously encountered source. After the memory phase, the cells transitioned 202

to a migration pattern equivalent to that in the absence of a stimulus (Figure 3A right, Figures 203

S3C,D middle). Uniform stimulation with 20ng/ml EGF647 did not induce directed migration 204
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in either of the cell lines, although the overall migration distance was increased (Brueggemann 205

et al., 2021) (Figures S3C,D, right). Quantification of the directionality of single cells’ motion, 206

that is defined as the displacement over travelled distance, showed that for MCF10A cells it 207

was significantly higher during the gradient stimulation (5h) as compared to no- or uniform- 208

stimulation case (Figure 3B). Moreover, the directionality estimated in the 9h time-frame after 209

the gradient removal was greater than the one in continuous stimulus absence, corroborating 210

that cells transiently maintain memory of the previous direction of migration. 211

This was also reflected in the projection of the cell’s relative turning angles (cos θ) esti- 212

mated along the gradient direction (π) at each time point (Figure S4A), representing the angular 213

alignment of the cells to the source direction. The cellular migration trajectories aligned with 214

the source direction (cos θ approached 1) during, and maintained this temporally after gradient 215

removal, before returning to a migration pattern characteristic for stimulus absence or during 216

uniform stimulation (cos θ ≈ 0, Figure 3C top, Figure S4B). Calculating the similarity between 217

the Kernel Density distribution Estimate (KDE) of the angular alignment distributions at each 218

point in the gradient series with that in continuous stimulus absence, showed that the distri- 219

butions approach each other only ∼ 50min after the gradient removal (Figure 3C, bottom). 220

Additionally, the calculated similarity between the KDE distributions during the gradient (5h) 221

and the 50min memory period further corroborated this finding (Figure S4C). The average 222

memory phase in directional motility thus corresponds to the time-frame in which the memory 223

in polarized EGFRmCitrine phosphorylation and cell shape is maintained (Figures 2C-H), indi- 224

cating that the metastable signaling state is translated to a stable prolonged migration response 225

after gradient removal. 226

To investigate whether the motility patterns during the gradient and the memory phase have 227

equivalent characteristics, we fitted the motility data using a modified Ornstein-Uhlenbeck pro- 228

cess (Uhlenbeck and Ornstein, 1930; Svensson et al., 2017) and used the extracted migration 229
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Figure 3. Cells display memory of recently encountered signals. A, Left: representative
MCF10A single-cell trajectories. Green - 5h during and red line - 9h after dynamic EGF647

gradient (shaded). Exemplary cell in movie S3. Right: Same as in A, only 14h in continuous
EGF647 absence. Black dots: end of tracks.
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B, Directionality (displacement/distance) in MCF10A single-cell migration during 14h absence
(0ng/ml; n=249, N=3) or uniform 20ng/ml EGF647 stimulation (n=299, N=3); 5h dynamic
EGF647 gradient (green) and 9h during wash-out (red; n=23, N=5). p-values: ∗∗∗ p≤0.001, two-
sided Welch’s t-test. Error bars: median±95%C.I. C, Top: Projection of the cells’ relative turn-
ing angles (mean±sd; n=23, N=5) during (green shaded) and after 5h dynamic EGF647 gradient.
Green/red lines: stimulus presence/absence. Bottom: Kolmogorov-Smirnov (KS) test p-values
depicting end of memory in directional migration (arrow, t = 350min). KS-test estimated using
5 time points window. For A-C, data sets in Figures S3D, S4A-C. D, Representative in silico
single-cell trajectories (Methods). Left: PB(t)RW: Persistent biased random walk, bias is a func-
tion of time (green/blue trajectory part - bias on). Right: RW: random walk. E,Corresponding
directionality estimates from n=50, data in Figure S4D. PRW: persistent random walk. p-values:
∗ ∗ ∗ p≤0.001, two-sided Welch’s t-test. Error bars: median±95%C.I. F, Same as in C, only
from the synthetic PB(t)RW trajectories. G, Top: Exemplary profiles of EGFRp (black) and
EGF −EGFR (grey) in live MCF7-EGFRmCitrine cell subjected to 1h EGF647 gradient (green
shading), and 4h after wash-out with 1 µM Lapatinib. Mean±s.d. from n=9, N=2 in Figure S4H.
Bottom: Corresponding reconstructed state-space trajectory with state-space trapping (colored)
(Methods. movie S4). H, Average solidity in MCF7-EGFRmCitrine cells subjected to experi-
mental conditions as in G. Mean±s.d. from n=9, N=2 cells. I, MCF10A single-cell trajectories
quantified 5h during (green) and 9h after (orange) dynamic EGF647 gradient (shading) wash-out
with 3 µM Lapatinib. n=12, N=5. See also movie S5. J, Directionality in single-cell MCF10A
migration after gradient wash-out with (brown, n=12, N=5) and without Lapatinib (red, n=23,
N=5). p-values: ∗∗ p≤0.01, KS-test. Error bars: median±95%C.I. See also Figures S3 and S4.

parameters to generate synthetic single-cell trajectories (Methods). In absence of stimulus, the 230

cellular motion resembled a random walk process (RW: Figure 3D right, Figures S4D,E mid- 231

dle), persistent random walk (PRW) was characteristic for the uniform stimulation case (Figure 232

S4D, E right), whereas biased PRW described the migration in gradient presence (PBRW, Fig- 233

ure 3D- and Figure S4D, left, green trajectory part). Extending the bias duration during the 234

interval of the experimentally observed memory phase (PB(t)RW) was necessary to reproduce 235

the transient persistent motion after gradient removal (Figure 3D- and Figure S4D, left, blue 236

trajectory part; Figures 3E,F; Figure S4F). Altogether, these results demonstrate that epithelial 237

cells transiently maintain a memory of previous signal location and thereby display directed 238

motility equivalent to that in the presence of a gradient, before reverting to a random walk 239

migration pattern. 240
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To corroborate the link between memory in polarized receptor activity and memory in di- 241

rectional migration, we quantified EGFRmCitrine phosphorylation polarization in the MCF7- 242

EGFRmCitrine, as well as directional migration of MCF10A cells, when cells were subjected 243

to an ATP analog EGFR inhibitor Lapatinib (Bjorkelund et al., 2012) during gradient wash- 244

out. The exemplary single-cell kymograph and EGFRmCitrine phosphorylation temporal profile 245

demonstrate that the phosphorylation response exponentially decays upon Lapatinib addition, 246

resulting in a clear absence of transient memory in EGFRmCitrine phosphorylation polarization 247

(Figure 3G top, Figures S4G,H). This is further reflected in the reconstructed state-space tra- 248

jectory that smoothly transits from the polarized to the basal activity state, without the transient 249

state-space trapping that was characteristic for the memory state emerging from the dynamical 250

”ghost” (compare Figure 3G bottom to 2F, movie S4). The absence of memory in EGFRmCitrine
251

phosphorylation was also reflected in absence of transient memory in morphological changes 252

after stimulus removal (Figure 3H). In the MCF10A migration assay, cells directly switched 253

to RW migration pattern upon gradient wash-out with Lapatinib, as shown through the direc- 254

tionality quantification after gradient removal (Figures 3I,J; movie S5). Equivalent single-cell 255

motility trajectories could be mimicked with the PB(t)RW simulation, where the bias dura- 256

tion corresponded to the duration of the gradient (Figures S4I,E). This shows that the transient 257

memory arising from a metastable ”ghost” signaling state is a core dynamical feature under- 258

lying transient memory in directional motility, and cannot be explained with slow relaxation 259

kinetics in receptor dephosphorylation. 260

4 Molecular working memory enables cells to navigate in dy- 261

namic chemoattractant fields 262

To test whether the identified memory enables cellular navigation in environments where sig- 263

nals are disrupted but also change over time and space, we subjected cells in the simulations 264
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Figure 4. History-dependent single-cell migration in changing chemoattractant field. A,
Scheme of dynamic spatial-temporal growth factor field implemented in the simulations and
experiments. Green(orange)/red: gradient presence/absence. B, In silico cellular response to the
sequence of gradients as depicted in A, showing changes in EGFR activity, cellular morphology
and respective motility trajectory over time. Trajectory color coding corresponding to that in
(A), cell contour color coding with respective Ep values as in Figure 1E. Cell size is magnified
for better visibility. See also movie S6. C, Representative MCF10A single-cell trajectory and
cellular morphologies at distinct time-points, when subjected to dynamic EGF647 gradient field
as in A. Trajectory color coding corresponding to that in A. See also movie S8. D, Projection of
cells’ relative turning angles (cos θ) depicting their orientation towards the respective localized
signals. Mean±s.d. from n=12, N=5 is shown. Data in Figure S5E. E, Corresponding kernel
density estimates (intervals and color coding in legend). p-values: ∗ ∗ ∗, p≤0.001, ns: not
significant, KS-test. See also Figure S5.
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and experiments to a changing growth factor field. The field was generated by a sequence of 265

signals, starting with a dynamic gradient whose steepness changed over time, that was tem- 266

porary disrupted for a time interval shorter than the interval of memory in cell polarization, 267

followed by a second static gradient in the same direction, that after an equivalent disruption 268

period was followed by a third dynamic gradient in the opposite direction (Figure 4A). The 269

in silico migration simulations showed that the cell can sense the initial dynamic gradient and 270

polarizes in the direction of maximal attractant concentration, resulting in directed migration 271

(Figure 4B, Figure S5A, movie S6). The simulations also predicted that the memory of the pre- 272

viously encountered signal localization enables maintaining robust directional migration even 273

when the signal was disrupted, while still remaining sensitive to the newly emerging signal 274

from the opposite direction. In the simulation, the in silico cell rapidly adapted the orientation 275

when encountering the third signal with opposite localization, demonstrating that the proposed 276

mechanism can also account for prioritizing newly encountered signals. Such a dynamic mem- 277

ory which enables information of previous signals to be temporally maintained while retaining 278

responsiveness to upcoming signals and thereby manipulate the stored information, in neuronal 279

networks is described as a working memory (Atkinson and Shiffrin, 1968). On the other hand, 280

the simulations also showed that the long-term memory resulting from organization in the stable 281

inhomogeneous steady state regime, hindered cellular adaptation to a changing gradient field. 282

The initial dynamic gradient shifted the system to the stable polarization steady state where it 283

was maintained in a long-term, such that sensitivity to upcoming signals from the same direc- 284

tion was hindered. Even more, in the simulations, the cell could not resolve the conflicting 285

information from a subsequent gradient from the opposite direction as the signals induced high 286

receptor activity on the opposed cell sides, resulting in ending the migration (Figures S5B,C, 287

movie S7). 288

We next tested these predictions experimentally, by establishing an equivalent dynamic 289
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EGF647 spatial-temporal field in a controlled manner in the microfluidic chamber, and quanti- 290

fied the migratory profile of MCF10A cells (Figure S5D). The MCF10A cells sensed the initial 291

dynamic gradient field and migrated in the direction of the largest chemoattractant concentra- 292

tion, maintaining the directionality even when the signal was temporary disrupted. Despite the 293

memory in cell polarization, cells remained responsive and adapted the duration of directional 294

migration when presented with a second static gradient from the same direction, and subse- 295

quently prioritized the third, newly encountered signal with opposed orientation (exemplary 296

trajectory in Figure 4C, movie S8, Figure S5E). The temporal memory in directional migration 297

as well as the continuous adaptation of MCF10A cells to novel cues was also reflected in the 298

projection of the cell’s relative turning angles (Figure 4D), whereas the respective KDE dis- 299

tributions derived from the subsequent time-intervals of gradient presence/absence corroborate 300

that cells maintain the same migration characteristics within the memory intervals as during the 301

gradient phase (Figure 4E). These results demonstrate that cells navigate in changing gradient 302

fields by utilizing a molecular mechanism of working memory that is an intrinsic feature of 303

receptor tyrosine kinase networks. 304

Discussion 305

Our data establishes that mammalian cells use a mechanism of working memory to navigate in 306

complex environments where the chemical signals are disrupted or vary over time and space. 307

Even though persistent migration of eukaryotic cells in absence of signals was previously ob- 308

served (Skoge et al., 2014; Albrecht and Petty, 1998; Prentice-Mott et al., 2016), its underlying 309

mechanism and the implications for navigation in changing environments have not been elu- 310

cidated. The mechanism of transient memory we report here is realized on a molecular level, 311

by storing information about direction of previously encountered signals through maintaining 312

a prolonged polarized phosphorylation state of receptor tyrosine kinases. Dynamically, the 313
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prolonged polarized state emerges for organization of receptor networks at criticality, where a 314

slow-escaping remnant from the attractor state or a dynamical ”ghost” is generated. The ”ghost” 315

maintains the system away from steady state, suggesting that in migrating cells, the information 316

about previously encountered signals can be encoded in the transient state-space trajectories 317

rather than the steady-states of the protein interaction network. Our simulations and migration 318

experiments show that this encoding via transient states is necessary to ensure the ability of cells 319

to adapt to changes in the external environment, while maintaining memory of previous signals. 320

Our work furthermore suggest that this general mechanism of a system poised at criticality can 321

explain a wide range of biologically relevant scenarios, from the integration of temporally and 322

spatially varying signals, to how extracellular information is transformed into guidance cues for 323

memory-directed migration. Memory-guided navigation is advantageous when migration must 324

be realized over long and complex trajectories through dense tissues where the chemical cues 325

are disrupted or only locally organized. 326

For neuronal networks, short-term memory is a main requirement to integrate temporal 327

dependencies from changing signals (Hochreiter and Schmidhuber, 1997; Maass et al., 2000). 328

We have demonstrated here that the transient memory in cell polarization and therefore the 329

capabilities of cells to navigate in a complex environment are an emergent feature of receptor 330

networks organized at criticality, and cannot be explained using computations with stable states. 331

It would be of interest to study whether receptor networks are self-organized at criticality, or 332

these features arose through evolution as a means for optimizing the computational capabilities 333

of cells. The identification of a molecular working memory also opens avenues of research 334

in the single-cell migration and tissue homeostasis to study whether cells can integrate and 335

interpret even sub-threshold environmental signals, leading to release of cells from a tissue and 336

long-distance single cell migration, as during cancer metastasis. 337
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5 Materials and Methods 358

5.1 Cell Culture 359

MCF7 cells (sex: female, ECACC, Cat. No. 86012803) were grown at 37◦C and 5% CO2 360

in Dulbecco’s Eagle’s medium (DMEM) (PAN-Biotech, Germany), supplemented with 10% 361

inactivated Fetal Calf Serum (FCS) (Sigma-Aldrich), 100 ngml−1 L-Glutamine, 0.5mgml−1 362

non-essential amino acids, 100 µgml−1 penicillin and 100 µgml−1 streptomycin (PAN-Biotech, 363

Germany). Serum starvation was performed by culturing the cells in DMEM supplemented with 364

0.5% FCS, 100 µgml−1 penicillin and 100 µgml−1 streptomycin (PAN-Biotech, Germany). 365

MCF10A cells (sex: female, ATCC-CRL 10317) were grown at 37◦C and 5%CO2 in Mammary 366

Epithelial Cell Growth Basal medium (MEBM from Lonza Pharma & Biotech), supplemented 367

with 5% Horse Serum (HS) (Invitrogen), 20 ngmL−1 EGF (Sigma-Aldrich), 0.5mgmL−1 hy- 368

drocortisone (Sigma-Aldrich), 100 ngml−1 cholera toxin (Sigma-Aldrich), 10 µgmL−1 insulin 369

(Sigma-Aldrich), 100 µgmL−1 penicillin and 100 µgmL−1 streptomycin. Serum starvation was 370

performed by culturing the cells in the DMEM supplemented with 0.5% HS, 0.5mgmL−1 hy- 371

drocortisone (Sigma-Aldrich), 100 ngml−1, cholera toxin (Sigma-Aldrich) 100 µgmL−1 peni- 372

cillin and 100 µgmL−1 streptomycin. MCF7 and MCF10A cells were authenticated by Short 373

Tandem Repeat (STR) analysis and did not contain DNA sequences from mouse, rat and ham- 374

ster (Leibniz-Institut DSMZ). Cells were regularly tested for mycoplasma contamination using 375

MycoAlert Mycoplasma detection kit (Lonza). 376

5.2 Transfection and cell seeding 377

For EGFRmCitrine polarization experiments, 2.5× 105 MCF7 cells were seeded per well in a 6- 378

well Lab-Tek chamber (Nunc) until 80% confluence was reached. After 9-10 h of seeding, tran- 379

sient transfection was performed with a total of 1 µg of plasmids (EGFRmCitrine, PTBmCherry
380

and cCblBFP at ratio 4:3:4 by mass) using FUGENE6 (Roche Diagnostics) transfection reagent 381
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and Opti-MEM (Gibco - Thermo Fisher Scientific) according to manufacturer’s procedure. All 382

plasmids were generously provided by Prof. P. Bastiaens, MPI of Molecular Physiology, Dort- 383

mund. Cells were incubated for 7-8 h to allow the expression of the transfected proteins prior 384

to experiments. To detach the cells, the growth media was discarded and cells were washed 385

once with DPBS (PAN Biotech) before adding 100 µL Accutase (Sigma-Aldrich). After 10min 386

incubation period at 37◦C and 5 % CO2, fresh growth media was added, and the cell density and 387

viability was measured using cell counter (Vi-CELL XR Cell Viability Analyzer System). After 388

spinning down, the cells were diluted to 10× 106 cells/ml. The M04-G02 microfluidic gradient 389

plates (Merck Chemicals) were primed for usage by flowing cell culture growth media through 390

the cell chamber for 5min and cells were subsequently seeded according to manufacturer’s 391

instructions. 392

For migration experiments with uniform EGF 647 stimulation, 6-well Lab-Tek plates were 393

coated with Collagen (Sigma-Aldrich) in 0.1 M Acetic acid (Sigma-Aldrich) for MCF7 394

(100 µg cm−2), and Fibronectin (Sigma-Aldrich) in Phosphate-Buffered Saline (DPBS) (PAN- 395

Biotech) for MCF10A cells (2 µgmL−1), and stored in incubator at 37◦C overnight for evapo- 396

ration. Excessive media was removed and the wells were washed with DPBS before seeding 397

cells. MCF7 cells were seeded and transfected as described above. In the case of MCF10A 398

cells, 1 × 105 cells per well were used for seeding. For migration experiments with gradient 399

EGF647 stimulation, MCF7 cells were transferred to the coated M04-G02 microfluidic gradient 400

plates as described above. Before seeding, MCF10A cells were detached from 6 well Lab-Teks 401

by discarding the growth media and washing once with DPBS (PAN Biotech) before adding 402

100 µL Accutase (Sigma-Aldrich). After 20− 30min incubation period at 37◦C and 5 % CO2, 403

fresh cell growth media was added, and the cell density and viability were measured using a 404

cell counter (Vi-CELL XR Cell Viability Analyzer System). After spinning down, the cells 405

were diluted to 2× 106 cells/ml, and subsequently seeded in the microfluidic plates according 406
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to manufacturer’s instructions. 407

5.3 Reagents 408

For gradient quantification, Fluorescein (Sigma Aldrich) was dissolved in Dulbecco’s modified 409

Eagle’s medium (with 25mM HEPES, without Phenol Red) (PAN Biotech). Imaging media: 410

DMEM without Phenol Red was mixed with 25mM HEPES. For nuclear staining, 20mM 411

Hoechst 33342 (Thermo Fisher Scientific) was mixed with DPBS and diluted to 2 µM working 412

concentration. EGFR inhibitor Lapatinib (Cayman Chemical, Ann Arbor, MI) was solubilized 413

in DMSO (Thermo Fisher Scientific) to a stock concentration of 5mM and stored at -20◦C. 414

5.4 Confocal and wide-field microscopy 415

Confocal images were recorded using a Leica TCS SP8i confocal microscope (Leica Microsys- 416

tems) with an environment-controlled chamber (Life Imaging Services) maintained at 37◦C 417

and HC PL APO 63x/1.2 N.A / motCORR CS2 water objective (Leica Microsystems) or a 418

HC PL FLUOTAR 10x/0.3 N.A. dry objective (Leica Microsystems). mCitrine, mCherry and 419

Alexa647 were excited with a 470 nm-670 nm pulsed white light laser (Kit WLL2, NKT Pho- 420

tonics) at 514 nm, 561 nm and 633 nm, respectively. BFP and Hoechst 33342 (Thermo Fisher 421

Scientific) were excited with a 405 nm diode laser. The detection of fluorescence emission 422

was restricted with an Acousto-Optical Beam Splitter (AOBS): BFP (425 nm-448 nm), Hoechst 423

33342 (425 nm-500 nm), mCitrine (525 nm-551 nm), mCherry (580 nm-620 nm) and Alexa647 424

(655 nm-720 nm). Transmission images were recorded at a 150-200% gain. To suppress laser 425

reflection, Notch filter 488/561/633 was used whenever applicable. When using the dry ob- 426

jective for migration experiments, the pinhole was set to 3.14 airy units and 12-bit images of 427

512x512 pixels were acquired in frame sequential mode with 1x frame averaging. When using 428

the water objective for polarization experiments, the pinhole was fixed (1.7 airy units) for all 429

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.11.468222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468222
http://creativecommons.org/licenses/by/4.0/


channels. The Leica Application Suite X (LAS X) software was used. 430

Wide field images were acquired using an Olympus IX81 inverted microscope (Olympus 431

Life Science) equipped with a MT20 illumination system and a temperature controlled CO2 in- 432

cubation chamber at 37◦C and 5% CO2. Fluorescence and transmission images were collected 433

via a 10x/0.16 NA air objective and an Orca CCD camera (Hamamatsu Photonics). Hoechst 434

33342 fluorescence emission was detected between 420 nm-460 nm via DAPI filter, mCitrine 435

fluorescence emission between 495 nm-540 nm via YFP filter and Alexa647 fluorescence emis- 436

sion between 705 nm-745 nm via Cy5 filter. The xCellence (Olympus) software was used. 437

5.5 Gradient establishment for polarization and migration experiments 438

The CellAsic Onix Microfluidic Platform (EMD Millipore) was used for gradient cell migration 439

and EGFRmCitrine phosphorylation polarization experiments. For EGFRmCitrine phosphoryla- 440

tion polarization experiments, 1 h gradient stimulation was established using CellASIC ONIX2 441

software as follows. (i) Pre-stimulus: Imaging media was flowed from well groups 3 and 4 (Cel- 442

lAsic Onix Manual - www.merckmillipore.com/) at low pressure (2.5 kPa) for 5min. (ii) Gra- 443

dient establishment: After closing well group 3, pre-loaded EGF647 (10 ngmL−1) was flowed 444

through well group 2 and imaging media from well group 4 at high pressure (15 kPa) for 15min 445

(iii) Gradient maintenance: The pressure was reduced to 10 kPa for 45min. (iv) Washout: Af- 446

ter closing well groups 2 and 4, imaging media was flowed from well groups 3 and 5 at high 447

pressure (15 kPa) for 15min and maintained at low pressure (7 kPa) for 165min. For single 448

gradient migration experiments, this protocol was modified as follows: in step (iii), gradient 449

maintenance was done for 285min. In step (iv), maintenance was at low pressure for 585min. 450

30 ngmL−1 EGF647 was used. For polarization experiments with inhibitor, the same protocol 451

as for polarization experiments was used, except well group 3 and 5 were filled with 1 µM La- 452

patinib solution and in step (i) well group 3 was kept closed. For single cell gradient migration 453
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experiment with inhibitor, 3 µM Lapatinib was used. 454

For migration experiments under subsequent gradient stimuli / gradient quantification, the 455

following changes in the steps were used : (ii) well group 2 with 30 ngmL−1 EGF647/ 2.5 µM 456

Fluorescein was used. (iii) The gradient maintenance was done for 225min. (iv) Washout: 457

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15min and 458

maintained at low pressure (7 kPa) for 15min. (v) Second gradient establishment: After closing 459

well group 3, EGF647(30 ngmL−1) / 2.5 µM Fluorescein was flowed from well group 2 and 460

imaging media from well group 4 at high pressure (15 kPa) for 15min. (vi) The second gradient 461

thus formed was maintained by reducing the pressure to 10 kPa for 45min. (vii) Washout: 462

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15min 463

and maintained at low pressure (7 kPa) for 15min. (viii) Third gradient establishment: After 464

closing well group 4, EGF647 (30 ngmL−1) / 2.5 µM Fluorescein was flowed from well group 465

5 and imaging media from well group 3 at high pressure (15 kPa) for 15min. (ix) The third 466

reversed gradient was maintained by reducing the pressure to 10 kPa for 225min. (x) Washout: 467

imaging media was flowed from well groups 3 and 4 at high pressure (15 kPa) for 15min and 468

maintained at low pressure (7 kPa) for 285min. 469

5.6 Imaging EGFRmCitrine phosphorylation polarization and single cell 470

migration 471

Transfected MCF7-EGFRmCitrine cells transferred to M04G-02 gradient plates as described 472

above were incubated for at least 3 h, followed by serum starvation for at least 6 h before imag- 473

ing. Existing cell media was substituted right before imaging with imaging media. Confocal 474

imaging for multiple positions at 1min time interval using adaptive auto-focus system and the 475

water objective was performed concurrently during the duration of the experiment using the 476

Leica TCS SP8i. 477
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For migration experiments under uniform EGF647 stimulation, confocal laser scanning mi- 478

croscopy / transmission imaging of live MCF7-EGFRmCitrine / MCF10A cells was done on 479

a Leica TCS SP8i or Olympus IX81 for multiple positions at 3min and 2min time interval 480

respectively, using the 10x dry objective for 14 hours. 481

5.7 EGF647 / Fluorescein gradient quantification 482

hEGF647 was generated in the lab of Prof. P. Bastiaens, MPI of molecular Physiology, Dort- 483

mund, using the His-CBD-Intein-(Cys)-hEGF-(Cys) plasmid (Sonntag et al., 2014), kindly pro- 484

vided by Prof. Luc Brunsveld, University of Technology, Eindhoven. Human EGF was purified 485

from E. coli BL21 (DE3), N-terminally labeled with Alexa647-maleimide as described previ- 486

ously (Sonntag et al., 2014) and stored in PBS at -20◦C. To quantify the spatial extent of the 487

EGF647 / Fluorescein gradient, gradients were generated following the protocol described in 488

sub-section 5.5 in plates without cells or matrix coating. Confocal images of Alexa647 / GFP 489

channel were acquired at 1min interval. A rectangular region of interest (including the perfu- 490

sion channels and the culture chamber) was used to obtain an averaged pixel intensity profile 491

using FIJI at each time point. This spatial profile was averaged across multiple experiments and 492

then scaled with the mean intensity value in the perfusion channel, which corresponds to the 493

applied EGF647 / Fluorescein concentration. 494

5.8 Quantifying EGFRmCitrine phosphorylation in single cells 495

To quantify plasma membrane EGFRmCitrine phosphorylation in live MCF7-EGFRmCitrine cells, 496

single cell masks were obtained from the EGFRmCitrine channel at each time-point using FIJI 497

(https://imagej.net/Fiji). All pixels within the obtained boundary were radially divided into 2 498

segments of equal areas (Stanoev et al., 2018), and the outer segment was taken to represent 499

the plasma membrane. For the kymograph analysis, at each time point, the plasma membrane 500
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segment was divided into 4 quadrants in anti-clockwise direction, and each was divided into 501

5 spatial bins (Figure 2A). The fraction of phosphorylated EGFRmCitrine in each bin, i was 502

estimated as: 503

EGFRi
p(t) =

PTBi
PM(t)/(PTBT (t)− PTBendo(t))

EGFRi
PM(t)/EGFRT (t)

(1)

where PTBi
PM(t) and EGFRi

PM(t) are respectively the PTBmCherry and EGFRmCitrine
504

fluorescence at ith plasma membrane bin, PTBT (t) and EGFRT (t) - respective total fluores- 505

cence in the whole cell, PTBendo(t) – the PTBmCherry fluorescence on vesicular structures in 506

the cytoplasm. Endosomal structures were identified from the cytosol by intensity thresholding 507

(1.5 s.d. percentile) and PTBmCherry fluorescence from these structures was subtracted from the 508

PTBT (t), to correct for the PTBmCherry fraction bound to the phosphorylated EGFRmCitrine on 509

endosomes. 510

Temporal profile of the fraction of phosphorylated EGFRmCitrine on the plasma membrane 511

was obtained using: 512

EGFRp(t) =

∑20
i=1 PTB

i
PM (t)

(PTBT (t)−PTBendo(t))∑20
i=1 EGFR

i
PM (t)

(EGFRT (t))

(2)

and then normalized as: 513

EGFRp(t) =
EGFRp(t)− < EGFRp >t∈[0,5min]

maxt(EGFRp(t))− < EGFRp >t∈[0,5min]
(3)

with <> being the temporal average in the pre-stimulation interval t ∈ [0, 5min]. The 514

fraction of liganded receptor was calculated using: 515

EGF − EGFR(t) = EGFPM
EGFRPM

(t) (4)
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To classify single cells into non-activated, activated (polarized EGFRmCitrine phosphory- 516

lation) and pre-activated (uniformly distributed EGFRmCitrine phosphorylation) upon gradi- 517

ent EGF647 stimulation (Figure S2A, B), the following method was applied. To identify pre- 518

activated cells, a Gaussian Mixture Model (GMM) was fitted to the histogram of (EGFRi
p)t∈[0,5min]519

values from all the analysed cells, and the intersection point between the two normal distribu- 520

tions was identified. If more than 30% of the (EGFRi
p)t∈[0,5min] pixel intensity values for any 521

cell lie above the intersection point, the cell is classified as pre-activated. To distinguish between 522

the non-activated and activated cells in the remaining population, average EGFRmCitrine phos- 523

phorylation value (EGFRp) per cell was estimated during the pre-stimulation (t ∈ [0, 5min]) 524

and the stimulation period (t ∈ [5min, 65min]) (< EGFRp >t∈[0,65]) from the temporal 525

EGFRmCitrine phosphorylation profiles. Histogram of the respective EGFRp values was again 526

fitted with a GMM model. All cells with an average < EGFRp >t∈[0,65] value lying below the 527

intersection point were considered to be non-activated, whereas those above - activated. 528

The average of the spatial projection of the fraction of phosphorylated EGFRmCitrine from 529

single-cell kymographs (Figure S2C) was generated from the 20 (from total of 21 cells) that 530

were polarized in the direction of the EGF647 gradient. For each cell, a temporal average of 531

EGFRp per bin was calculated for the duration of the gradient (t ∈ [5min, 65min]) and the 532

bin with the maximal EGFRp value was translated to π. The profiles were then smoothened 533

using a rolling average with a window of 7 bins. The resulting profiles were then averaged over 534

all cells and mean±s.d. is shown. 535

5.9 Estimating memory duration in EGFRmCitrine phosphorylation polar- 536

ization 537

The duration of memory in EGFRmCitrine phosphorylation polarization in single cells was esti- 538

mated from the temporal profile of the fraction of plasma membrane area with high EGFRmCitrine
539
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phosphorylation during and after gradient removal (Figures 2D,E). For this, the single-cell ky- 540

mographs were normalized to a maximal value of 1 using 541

EGFRi
p(t) =

EGFRi
p(t)− < EGFRp >t∈[0,5min]

maxt(EGFRp(t))− < EGFRp >t∈[0,5min]
(5)

yielding the value of phosphorylated EGFRmCitrine per bin i per time point t. Using the mean of 542

EGFRp + s.d. over the whole experiment duration as a threshold, all EGFRi
p(t) lying above 543

the threshold were taken to constitute the area of polarized EGFRmCitrine phosphorylation. To 544

account for different bin sizes, at each timepoint, the area of all bins with EGFRp above the 545

threshold was summed and divided by the respective total cell area, yielding the temporal evo- 546

lution of the fraction of polarized cell area (FPA) (Figure 2D). The end of the memory duration 547

per cell was identified as the time point at which FPAper−cell < (FPAaverage − s.d.) in 3 548

consecutive time points. 549

5.10 Quantifying morphological changes in response to EGF647 in exper- 550

iments and simulations 551

Morphological changes of polarized cells were quantified using the solidity (Figure 2H) of each 552

cell at each time point and the directed protrusive area towards and away from the gradient 553

(Figure 1 G,H; 2G). The solidity σ is the ratio between the cell’s area Acell and the area of the 554

convex hull Aconvex (σ = Acell
Aconvex

). The memory duration in cell morphology was calculated 555

from the single-cell solidity profiles, and corresponds to the time-point at which the solidity is 556

below mean-s.d. estimated during gradient presence. The directed cell protrusion area was esti- 557

mated by comparing single cell masks at two consecutive time points. To reduce noise effects, 558

the masks were first subjected to a 2D Gaussian filtering using the filters.gaussian function 559

from the scipy python package. Protrusions were considered if the area change was greater 560

than 10 pixels or 1.2µm2 per time point. The front and the back of the cells were determined by 561
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identifying an axis that runs perpendicular to the gradient and through the cell nucleus of the ini- 562

tial time point. The directed cell protrusion area was then obtained using Aprot,front
Afront

− Aprot,back
Aback

. 563

The final profiles of directed protrusive area were smoothed using 1D Gaussian filtering with 564

the filters.gaussian filter1d function from the scipy python package. For the equivalent 565

quantification from the simulations, the same procedures were applied without an area thresh- 566

old. The memory duration was estimated as the time point at which the directed protrusive area 567

crosses zero after the gradient removal. 568

5.11 Quantification of single-cell migration and duration of memory in 569

migration 570

Single cell migration trajectories were extracted using Trackmate (Tinevez et al., 2017) in 571

Fiji (Schindelin et al., 2012) using Hoechst 33342 / transmission channel. From the positional 572

information (x and y coordinates) of individual cell tracks, quantities such as Motility, Direc- 573

tionality and cos θ were extracted using custom made Python code (Python Software Founda- 574

tion, versions 3.7.3, https://www.python.org/). Directionality was calculated as displacement 575

over total distance and statistical significance was tested using two-sided Welch’s t-test. To 576

quantify the memory duration in directed single-cell migration, the Kernel Density Estimate 577

(KDE) from cos θ quantification in the continuous absence of EGF647 (uniform case, between 578

250min-300min) was compared with windowed KDE (5 time points moving window) from 579

the gradient migration profile, using two sided Kolmogorov-Smirnov test. 580

To quantify the motility patterns of MCF10A cells in absence, uniform or gradient EGF 647
581

stimulation, we fitted the experimentally obtained single cell migration trajectories using modi- 582

fied Ornstein-Uhlenbeck process (mOU) (Uhlenbeck and Ornstein, 1930) that is defined by the 583

Langevin equation for the velocity vector ν: 584
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dν(t)

dt
= − 1

τ
· ν(t) +

√
2D

τ
· (ξ(t) + b(t)) (6)

where ξ(t) represents a white noise component, D is a diffusion coefficient characteristic 585

of a Brownian motion, τ is the persistence time and b(t) models the contribution of the time- 586

dependent bias. The experimental data was fitted to obtain values of D and τ . In order to 587

estimate D, Mean Square Displacement (MSD) was calculated from the single cell tracks using 588

MSD(t) =<|xi(t) − xi(0)|2>, where xi(t) is the tracked position of i-th cell in the 2D 589

plane, <> is the average across all single cell tracks, and |.| is the Euclidean distance (D. et al., 590

2005). To estimate D, the obtained MSD profile was fitted with a linear function (= 4Dt). 591

Goodness of Fit for the different experimental conditions: 0ng/ml EGF647, R2 = 0.975; for 592

uniform 20ng/ml EGF647 stimulation, R2 = 0.995. In order to estimate τ , Velocity Auto- 593

Correlation Function V ACF (t) = <νi(t) · νi(0)>, where νi(t) is the measured velocity 594

of i-th cell at time t, was fitted with a mono exponential function (= φ0 · e
−t
τ ). Goodness of 595

Fit : for 0ng/ml EGF647 case - Standard Error Of Estimate SEOE = 0.0261; for uniform 596

20ng/ml EGF647 stimulation case, SEOE = 0.0570. Fitted values: for 0ng/ml EGF647 case, 597

τ = 11.105,D = 0.425; for uniform 20ng/ml EGF647 stimulation case, τ = 38.143,D = 2.207; 598

bias b(t) = 0.134. 599

5.12 Reconstructing state-space trajectories from temporal EGFRmCitrine
600

phosphorylation profiles 601

The state-space reconstruction in Figures 2F and 3G was performed using the method of time- 602

delay. For a time series of a scalar variable, a vector x(ti), i = 1, ..N in state-space in time ti 603

can be constructed as following 604
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X(ti) = [x(ti), x(ti + τ), .., x(ti + (m− 1)τ)] (7)

where i = 1 to N− (m−1)τ , τ is the embedding delay, m - is a dimension of reconstructed 605

space (embedding dimension). Following the embedding theorems by Takens (Takens, 1980) 606

and Sauer et al. (Sauer et al., 1991), if the sequence X(ti) consists of scalar measurements of 607

the state of a dynamical system, then under certain genericity assumptions, the time delay em- 608

bedding provides a one-to-one image of the original set, provided m is large enough. The em- 609

bedding delay was identified using the timeLag function (based on autocorrelation), the embed- 610

ding dimension using the estimateEmbeddingDims function (based on the nearest-neighbours 611

method), and the state-space reconstruction using the buildTakens function, all from the nonlin- 612

earTseries package in R (https://cran.r-project.org/web/packages/nonlinearTseries/index.html). 613

Before state-space reconstructions, time series were smoothened using the Savitzky-Golay filter 614

function in Python. For Figure 2F, τ = 26, de = 3; for Figure 3G, τ = 50, de = 3. 615
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