Abstract
Dimorphic residues at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen specific T cell receptors (TCR) discriminated groups C1 and C2 HLA-C, due to effects on peptide presentation and TCR affinity. Structural and functional experiments combined with immunopeptidomics analysis revealed that C1-HLA-C favors smaller amino acids at the peptide C-terminus minus-1 position (pΩ-1), and that larger pΩ-1 residues diminished TCR recognition of C1-HLA-C. After controlling for peptide presentation, TCRs exhibited weaker affinities for C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism impacts peptide presentation and HLA-C restricted T cell responses, with implications in multiple disease contexts including adoptive T cell therapy targeting KRAS-G12D-induced cancers.
Competing Interest Statement
The authors have declared no competing interest.