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Abstract21

Diverse processes in cancer are mediated by enzymes, which most proximally exert their function22

through their activity. Methods to quantify enzyme activity, rather than just expression, are23

therefore critical to our ability to understand the pathological roles of enzymes in cancer and24

to harness this class of biomolecules as diagnostic and therapeutic targets. Here we present an25

integrated set of methods for measuring specific enzyme activities across the organism, tissue, and26

cellular levels, which we unify into a methodological hierarchy to facilitate biological discovery.27

We focus on proteases for method development and validate our approach through the study28

of tumor progression and treatment response in an autochthonous model of Alk-mutant lung29

cancer. To quantitatively measure activity dynamics over time, we engineered multiplexed,30

peptide-based nanosensors to query protease activity in vivo. Machine learning analysis of sensor31

measurements revealed dramatic protease dysregulation in lung cancer, including significantly32

enhanced proteolytic cleavage of one peptide, S1 (Padj < 0.0001), which returned to healthy33

levels within three days after initiation of targeted therapy. Next, to link these organism-level34

observations to the in situ context, we established a multiplexed assay for on-tissue localization35

of enzyme activity and pinpointed S1 cleavage to endothelial cells and pericytes of the tumor36

vasculature. Lastly, to directly link enzyme activity measurements to cellular phenotype,37

we designed a high-throughput method to isolate and characterize proteolytically active cells,38

uncovering profound upregulation of pro-angiogenic transcriptional programs in S1-positive cells.39

Together, these methods allowed us to discover that protease production by angiogenic vasculature40

responds rapidly to targeted therapy against oncogene-addicted tumor cells, identifying a highly41

dynamic interplay between tumor cells and their microenvironment. This work provides a42

generalizable framework to functionally characterize enzyme activity in cancer.43
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Introduction44

Nearly all processes in malignant progression rely on dynamic changes in the activity, not just45

abundance, of biomolecules. Methods to quantitatively track protein activity within the cellular,46

spatial, and organismic contexts are therefore critical to achieve a systems-level understanding47

of cancer biology and to design next-generation precision cancer medicines. However, while the48

omics revolution has enabled high-throughput assays of the genome, epigenome, transcriptome,49

and proteome [1], it has largely stopped short of queries at the protein activity level–a distinct50

axis of regulation that is often most proximal to actuated biological function. Although single-cell51

transcriptomics has enabled characterization of intratumoral heterogeneity [2, 3, 4], and techniques52

to localize proteins [5, 6] and nucleic acid sequences [7, 8, 9] in situ are starting to enable study53

of tumors in a spatial context [10], analogous techniques for single-cell and spatial profiling of54

protein activity have been largely undeveloped. To achieve a more comprehensive understanding55

of cancer pathophysiology across the organism, tissue, and cellular scales, methods to directly56

quantify tumor-associated protein activity in these contexts are required.57

Recent years have seen a push to develop biosensors that measure biomolecular activity in58

vivo to generate synthetic signals that can be read out noninvasively [11, 12, 13, 14, 15, 16]. For59

example, in vivo sensors of enzyme activity have enabled noninvasive detection of cancer [11,60

12, 17, 18, 19, 20], while active glucose uptake has been used for functional imaging of cancer61

metabolism [21]. However, such in vivo readouts have largely treated the body as a black box,62

sacrificing crucial information on spatial localization within the tumor microenvironment (TME),63

precluding dissection of phenotypic heterogeneity at the single-cell level, and thus reducing64

meaningful biological interpretation. Therefore, there remains a need for methods capable of65

generating and unifying molecular activity measurements across biological scales.66

In this work, we present an integrated set of methods to profile enzyme activity in cancer across67

the organism, tissue, and cellular scales (Fig. 1). As an initial target for method development, we68

focus on proteases, enzymes that are dysregulated in cancer and directly contribute to all cancer69

hallmarks [22]. In the in vivo setting, we leverage multiplexed protease-responsive nanosensors70
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together with machine learning to noninvasively and longitudinally monitor activity dynamics71

within living organisms. To explore tissue-level organization within the TME, we establish a72

multiplexed assay for on-tissue spatial localization of protease activity against target peptide73

substrates. Finally, to link protease activity to other measurement modalities at the cellular scale,74

we design a single-cell method, termed activity-based cell sorting, that uses peptide probes and75

flow cytometry to sort individual cells based on their associated enzymatic activity.76

We unified these methods into a single hierarchical framework to power biological discovery77

(Fig. 1), and applied it to study tumor progression and early drug response in an autochthonous78

mouse model of Alk-mutant non-small-cell lung cancer (NSCLC) [23]. Using this framework,79

we uncovered profound shifts in protease activity that occur after targeted therapy with the ALK80

inhibitor alectinib. Spatial and single-cell profiling linked a treatment-responsive activity signature81

to pericytes and endothelial cells of the angiogenic tumor vasculature. Our results reveal a dynamic82

cross-talk between cancer cells and cells of the TME; demonstrate that protease activity can serve83

as a powerful proxy for specific cancer hallmarks; and validate the utility of multiscale enzyme84

activity profiling for functional characterization of cancer biology.
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Figure 1: Multiscale profiling of enzyme activity in cancer. (a) Methods for profiling enzyme activity across the
organism, tissue, and cellular scales. Noninvasive activity-based nanosensors can be translated into activatable probes
for in situ zymography and activity-based cell sorting. (b) Method readouts enable noninvasive, real-time monitoring
of in vivo enzyme activity over tumor progression and treatment response; high-resolution, spatially-resolved enzyme
activity mapping of the TME; and single-cell isolation and multimodal characterization of enzymatically active cells.
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Results86

Profiling enzyme activity in vivo to noninvasively monitor tumor progression87

We first sought to establish the ability of our activity-based profiling framework to noninvasively88

quantify changes in biological activity as a function of tumor progression and treatment response.89

We utilized an autochthonous mouse model of ALK+ NSCLC as a model system, in which90

intrapulmonary administration of an adenovirus encoding two guide RNAs and Cas9 resulted in91

oncogenic rearrangement of the Eml4 and Alk genes (the “Eml4-Alk” model; Fig. 2a), leading to92

the formation of lung tumors that histologically resembled human lung adenocarcinoma [23]. We93

queried a bulk RNA sequencing (RNA-seq) dataset of Eml4-Alk lungs [24] and identified several94

proteases overexpressed in Eml4-Alk mice (Fig. S1). To noninvasively monitor protease activity95

in the Eml4-Alk model, we engineered a multiplexed panel of activity-based nanosensors that can96

be selectively activated by dysregulated proteases within the TME to release barcoded reporters97

into the urine [19]. Critically, these nanosensors (Table S1) carry peptide substrates that can be98

recognized in vitro by a range of metallo-, serine, and aspartic proteases [19], and require substrate99

cleavage for activation and barcode release. At 3.5 weeks after tumor induction, we intratracheally100

administered the nanosensor panel into Eml4-Alk and healthy control mice, and observed that101

several nanosensors were differentially cleaved by proteases in the pulmonary microenvironment102

(Fig. S2a), enabling robust separation of the two groups (Fig. S2b).103

We then assessed whether activity-based nanosensors could rapidly and quantitatively monitor104

the dynamics of tumor progression and regression. We treated Eml4-Alk mice with the first-line105

clinical ALK inhibitor alectinib [25] and monitored changes in pulmonary protease activity over a106

two-week treatment course that resulted in rapid and robust tumor regression (Fig. 2b, Fig. S3a-b).107

Strikingly, we observed that alectinib treatment dramatically altered pulmonary protease activity108

within just 3 days of treatment initiation, with 12 of 14 reporters exhibiting significantly differential109

enrichment in the urine of vehicle- versus alectinib-treated mice (Fig. S4). Signal trajectories110

for each of the individual sensors revealed several distinct patterns in their dynamics (Fig. 2c).111
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Notably, cleavage of a subset of sensors (e.g., PP01, PP07, PP10) increased over time in112

vehicle-treated mice as tumors progressed but rapidly regressed following alectinib treatment,113

while the cleavage of other sensors (e.g., PP04) transiently increased upon initiation of alectinib114

treatment and then returned towards baseline levels. Collectively, these measurements revealed115

increased divergence in proteolytic activity signatures from vehicle-treated Eml4-Alk mice versus116

healthy controls over the course of tumor progression, while signatures from alectinib-treated117

Eml4-Alk mice exhibited greater similarity to those of healthy controls as a function of treatment118

(Fig. 2d). Finally, a random forest classifier trained on urinary reporter signatures from a subset of119

Eml4-Alk mice achieved highly accurate classification of therapeutic response to ALK inhibition120

(Fig. 2e). These results validate a method that quantitatively measures enzyme activity in living121

organisms and thus enables noninvasive, real-time monitoring of cancer progression.122
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Figure 2: Activity-based nanosensors measure in vivo enzyme activity dynamics over tumor progression and
treatment response. (a) Disease was induced in the Eml4-Alk model via CRISPR-Cas9 mediated rearrangement of
the Eml4 and Alk loci. (b) Schematic of approach. (i) Activity-based nanosensors were administered to Eml4-Alk
and healthy mice by intratracheal instillation. (ii) Tumor-bearing Eml4-Alk mice were treated with either alectinib
or vehicle and subject to in vivo protease activity profiling (ABN test) over the course of disease progression. (c)
Healthy control-normalized urinary reporter signal for each of the 14 activity-based nanosensors. Transparent lines
show trajectories of each mouse over time; opaque lines are averages over all mice per group. Red lines represent
Eml4-Alk mice treated with vehicle (EA + Vehicle; n = 20, 19, 13, and 14 for 5, 5.5, 6, and 7 weeks, respectively), and
blue lines represent Eml4-Alk mice treated with alectinib (EA + Alectinib; n = 20, 19, 12, and 14 for 5, 5.5, 6, and 7
weeks, respectively), with n = 20 at 3.5 weeks (mean ± s.d; multiple t-tests with Holm-Sidak correction; *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. (d) Principal component analysis of mean scaled urinary reporter
concentrations of healthy (Healthy), vehicle-treated Eml4-Alk (EA + Vehicle), and alectinib-treated Eml4-Alk (EA
+ Alectinib) mice at 3, 7, and 14 days post treatment induction. (e) Receiver operating characteristic (ROC) curve
performance of a random forest classifier, trained on urinary reporters from Eml4-Alk mice, in discriminating an
independent test cohort at the designated post-treatment time points (n = 10 independent trials).
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Multiplexed spatial localization of enzyme activity123

We next sought to establish a method to mechanistically explore the biological drivers of activity124

signatures identified by our in vivo platform. To this end, we reasoned that tissue-level spatial125

localization of enzyme activity against target substrates could facilitate biological interpretation.126

Because our in vivo nanosensors use peptide cleavage as their measurement mechanism, we127

directly translated their substrates into in situ activatable zymography probes (AZPs) that also rely128

on substrate-specific proteolytic cleavage for activation [26]. Within an AZP, a protease-cleavable129

substrate links a fluorophore-tagged, positively-charged domain (polyR) with a negatively-charged130

domain; this structure remains complexed in the absence of proteolytic activation. When AZPs are131

applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining,132

substrate cleavage by tissue-resident enzymes liberates the tagged polyR to electrostatically133

interact with and bind the tissue, enabling localization of protease activity by microscopy.134

We thus leveraged AZPs for on-tissue spatial localization of protease activity against target135

peptide substrates of interest, i.e., those nominated from our in vivo activity screen. We selected136

three nanosensors whose signal tracked with tumor progression and responded to alectinib137

treatment (PP01, PP07, PP10; Fig. 2c), and incorporated them into individual AZPs with138

orthogonal fluorophores (Z1, Z7, Z10, respectively; Fig. 3a). We reasoned that a multiplexed139

solution of these AZPs would allow for simultaneous profiling and localization of proteolytic140

cleavage of each of these three substrates. We applied the three-plex AZP solution to fresh-frozen141

lung tissue sections from Eml4-Alk mice at 7 weeks post tumor induction (Fig. 3b) and detected142

fluorescence signal from each probe within Eml4-Alk tumors (Fig. 3c-d). Strikingly, this143

multiplexed in situ labeling revealed a differing pattern of spatial localization for Z1 relative to144

Z7 and Z10 (Fig. 3d). Qualitatively, while Z7 and Z10 exhibited broad, diffuse staining throughout145

Eml4-Alk tumor tissue, Z1 exhibited a prominent spindle-like pattern, suggesting that cleavage146

of each of those probes could correspond to distinct proteases and biological processes (Fig. 3d).147

Tissue labeling by each of the three probes was significantly abrogated by addition of a cocktail of148

protease inhibitors, indicating successful multiplexing of multiple AZPs (P < 0.0001; Fig. 3e-g).149

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.11.11.468288doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468288


a
In vivo

activity-based
nanosensor

In situ activatable
zymography probe

Tissue-resident
enzyme activity

b Eml4-Alk lungs

c

d

Z1 Z10Z7 Merge

D
A

P
I

Z10
Z1

Z7

Eml4-Alk

Eml4-Alk
+ INH

Multiplex Multiplex 
+ INH

D
A

P
I

Z10
Z1

Z7
D

A
P

I
Z10

Z1
Z7

D
A

P
I

Z10
Z1

Z7

e Z1

****

Unin
hib

ite
d

Inh
ibi

ted
0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
si

gn
al

 (Z
1/

po
ly

R
)

f Z7

****

Unin
hib

ite
d

Inh
ibi

ted
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
si

gn
al

 (S
Z1

4/
po

ly
R

)

g Z10
****

Unin
hib

ite
d

Inh
ibi

ted
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
si

gn
al

 (P
Z4

/p
ol

yR
)

Figure 3: Multiplexed spatial localization of protease activity with AZPs. (a) Substrates nominated from in
vivo profiling were translated into in situ AZPs to measure and spatially localize tissue-resident enzyme activity in
frozen tissue sections. (b) AZPs were applied to fresh-frozen lung tissue sections from Eml4-Alk tumor-bearing
mice. Haematoxylin and eosin (H&E) stains of representative Eml4-Alk tumors. Scale bars = 500 µm (left), 100
µm (right). (c) Application of a multiplexed AZP cocktail of Z1 (red), Z7 (yellow), and Z10 (green), with or without
broad-spectrum protease inhibitors, to Eml4-Alk lung tissue sections (Eml4-Alk, Eml4-Alk + INH, respectively).
Scale bars = 100 µm. (d) Higher magnification images of boxed regions from (c) showing localization patterns from
multiplexed AZP labeling. Scale bars = 25 µm. (e-g) Quantification of relative Z1 (e), Z7 (f), and Z10 (g) intensity,
normalized to polyR binding control signal on a per-cell basis across Eml4-Alk tumors, either in the absence of
protease inhibitors (Uninhibited; n = 22 tumors) or in the presence of a broad-spectrum cocktail of protease inhibitors
(Inhibited; n = 23 tumors) (mean ± s.d.; two-tailed unpaired t-test, ****P < 0.0001).
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Delineating enzyme class- and cell type-specific activity with AZPs150

Having demonstrated that orthogonal AZPs could be simultaneously multiplexed, we next151

endeavored to show that they could be used to identify protease families and cell compartments152

contributing to their cleavage. Due to its prominent in situ localization pattern and the significant153

in vivo correlation of PP01 with tumor progression, we nominated Z1 for further investigation and154

sought to understand the biological processes driving cleavage of this peptide (“S1” for cleavage155

motif; Table S2). Critically, the specific localization pattern identified from multiplexed AZP156

staining was conserved with application of Z1 alone to Eml4-Alk lung tissues and was absent in157

healthy lungs (Fig. 4a). While a free polyR binding control stained Eml4-Alk tumors uniformly, Z1158

signal exhibited its prominent spindle-like morphology, indicating that this pattern was not due to159

heterogeneous charge distribution within the tissue (Fig. 4a). To verify that this localization pattern160

truly reflected specific protease expression by the labeled cells, rather than nonspecific labeling161

(i.e., due to non-uniform distribution of charge), we precleaved Z1 in vitro with recombinant162

fibroblast activation protein (FAP; Fig. S5) and compared its tissue labeling to that of intact Z1163

activated by tissue-resident enzymes (Fig. S6a-b). While intact Z1 maintained its spindle-like164

spatial pattern, precleaved Z1 exhibited diffuse, uniform labeling that mirrored that of a free polyR,165

verifying that probe localization depended on local in situ activation (Fig. S6a-b).166

To determine class-specific contributions to its cleavage, we applied Z1, whose substrate167

can be recognized by both matrix metalloproteinases (MMPs) and serine proteases [13, 27, 19],168

to Eml4-Alk lung tissue sections in the absence of protease inhibitors, with a broad-spectrum169

cocktail of protease inhibitors, with the MMP inhibitor marimastat, or with the serine protease170

inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF; Fig. 4b). As expected,171

incubation with broad-spectrum protease inhibitors significantly abrogated Z1 labeling (P <172

0.0001; Fig. 4c). Qualitatively, Z1 signal was largely preserved in sections incubated with173

marimastat (Fig. 4b). While marimastat did reduce Z1 signal, it remained significantly increased174

relative to the broad-spectrum inhibitor condition (P < 0.0001; Fig. 4c). In contrast, incubation175

with AEBSF completely abrogated Z1 tissue labeling to the level of broad-spectrum inhibition176
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(P < 0.0001 uninhibited vs. AEBSF, P = 0.7127 broad-spectrum inhibition vs. AEBSF; Fig. 4c),177

suggesting that serine proteases in Eml4-Alk tumors are primarily responsible for cleaving Z1.178

Though Eml4-Alk tumors are adenocarcinomas and thus consist primarily of epithelial179

cells, the distinct spindle-like labeling pattern of Z1 suggested that Z1 might be cleaved by180

membrane-bound or secreted proteases expressed by non-epithelial cells of the TME. To this end,181

we applied Z1 to Eml4-Alk lung tissue sections and co-stained for E-cadherin, an epithelial cell182

marker, and vimentin, the intermediate filament of non-epithelial, mesenchymal cells (Fig. 4d-e,183

Fig. S7a-c). We observed strong overlap between Z1 and vimentin (Fig. 4e), with vimentin-positive184

spindle-like cells exhibiting significantly higher Z1 staining than E-cadherin-positive cells or185

vimentin-positive rounded cells (likely tumor-associated macrophages) (Fig. 4f; see Methods186

for details). These results suggest that vimentin-positive, spindle-like cells are responsible for187

producing the serine proteases that cleave Z1 and, more broadly, demonstrate that AZPs can188

delineate class-specific and cell type-associated activity patterns.189
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Figure 4: AZPs identify mechanistic class- and cell type-specific protease activity. (a) Staining of lung tissue
sections from healthy control and Eml4-Alk mice with Z1 (red), polyR (cyan), and DAPI counterstain (blue). Higher
magnification images show staining in a representative Eml4-Alk tumor region. Scale bars = 200 µm, 50 µm (lower
and higher magnification, respectively). (b) Application of Z1 to Eml4-Alk lung tissue sections, either alone (Z1) or in
the presence of inhibitors: a broad-spectrum cocktail of protease inhibitors (Z1 + INH), the MMP inhibitor marimastat
(Z1 + MAR), or the serine protease inhibitor AEBSF (Z1 + AEBSF). Sections were stained with a polyR binding
control (cyan) and counterstained with DAPI (blue). Scale bars = 200 µm (top), 50 µm (bottom). (c) Quantification of
relative Z1 intensity, normalized to polyR signal, from Eml4-Alk tumors, either in the absence of protease inhibitors
(Uninhibited), or in the presence of INH, MAR, or AEBSF (n = 11 tumors; mean ± s.d.; two-tailed unpaired t-test,
****P < 0.0001, nsP = 0.7127). (d) Application of Z1 (red) to Eml4-Alk lung tissues sections with co-staining for
vimentin (green) and E-cadherin (white). Scale bar = 200 µm. (e) Higher-magnification images of a second tumor
region, independent of that shown in (d), showing Z1 and vimentin stains. Scale bar = 50 µm. (f) Quantification of Z1
staining intensity for per-tumor cell populations, across an entire lung lobe (n = 19 tumors, with intensities averaged
across all cells in a tumor; mean ± s.d.; two-tailed paired t-test, ****P < 0.0001).
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Multimodal spatial profiling to functionally query the TME190

Next, we explored how enzyme activity profiles measured by our in vivo and in situ tools correlated191

with functional and compositional changes within the TME. The distinct spatial pattern of Z1192

staining led us to hypothesize that this probe could be labeling cells of the tumor vasculature,193

rather than cells of immune or other mesenchymal compartments. To this end, we applied Z1 to194

Eml4-Alk and healthy lungs and co-stained for the endothelial cell marker CD31 (PECAM-1;195

Fig. S8a). Qualitatively, although both Eml4-Alk and healthy lungs exhibited an abundance196

of endothelial cells as evidenced by CD31-positivity, Z1 labeling was enriched in Eml4-Alk197

tumors relative to healthy lungs and tended to colocalize with CD31-positive cells (Fig. 5a).198

Cell-by-cell quantification of Z1 and CD31 staining intensities across entire lung tissue sections199

identified a strong positive correlation in Eml4-Alk tissue (R2 = 0.67; Fig. S8b). Indeed,200

Z1 staining was significantly increased in CD31-high cells in Eml4-Alk lung tissue sections201

relative to CD31-high cells in healthy lungs, as well as to CD31-low cells in both Eml4-Alk and202

healthy tissue (P < 0.0001; Fig. 5b), suggesting specific activity associated with the Eml4-Alk203

tumor endothelium. Furthermore, immunostaining for VE-cadherin, a strictly endothelial-specific204

adhesion molecule [28], revealed a spindle-like pattern of expression within Eml4-Alk tumors that205

mimicked Z1 staining (Fig. S9).206

In addition to endothelial cells, the vasculature also contains contractile vascular smooth207

muscle cells that line the vessel walls. Capillaries and microvessels, such as those within the208

lungs, contain a mural, periendothelial mesenchymal cell population known as pericytes (Fig. 5c),209

which help regulate vascular function and can be actively recruited into the vasculature during210

angiogenesis [29, 30, 31]. Eml4-Alk tumors stained positively for α-smooth muscle actin (αSMA;211

Fig. S10a), a canonical vascular smooth muscle cell marker that can be expressed by tumor212

pericytes but is often absent in quiescent pericytes in normal tissues [29, 30]. Indeed, normal213

adjacent tissue (NAT) showed reduced αSMA expression (Fig. S10a). To further corroborate the214

likely presence of pericytes within the tumor vasculature, we stained Eml4-Alk lungs for CD31215

and a second pericyte marker, the muscular intermediate filament desmin [29], and observed216
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desmin-positive cells surrounding CD31-positive endothelial cells within Eml4-Alk tumors but217

not in NAT (Fig. S10b). Finally, we stained Eml4-Alk lung tissue sections for the pericyte-specific218

marker PDGFRβ. The PDGF-B/PDGFRβ signaling pathway is a key axis of interaction between219

endothelial cells and pericytes, wherein PDGF-B released from angiogenic endothelial cells binds220

to PDGFRβ on the surface of pericytes, facilitating their recruitment [32, 29]. Eml4-Alk tumors221

stained positively for both CD31 and PDGFRβ, while NAT from Eml4-Alk lungs did not express222

PDGFRβ despite abundant CD31 expression (Fig. 5d, Fig. S10c). Within the tumor vasculature223

specifically, PDGFRβ-positive cells wrapped around CD31-positive cells, consistent with the224

expected localization and function of pericytes (Fig. 5d, Fig. S10c).225

To assess its localization with respect to cells of the tumor vasculature, we applied Z1226

to Eml4-Alk lung tissue sections with concurrent staining for both the endothelial marker227

VE-cadherin and the pericyte marker desmin. We observed robust Z1 labeling together with228

VE-cadherin and desmin expression within Eml4-Alk tumors (Fig. 5e). However, NAT displayed229

decreased Z1 and desmin staining despite maintaining VE-cadherin positivity. Qualitatively, closer230

inspection of Z1 labeling within Eml4-Alk tumor regions revealed a close association between all231

three stains (Fig. 5f). Colocalization analysis demonstrated a correlation between desmin and232

VE-cadherin staining, consistent with the close proximity of both cell types within capillaries,233

and additionally showed that both desmin and VE-cadherin correlated with Z1 labeling (Fig. 5g).234

Together, these results indicate greater abundance of pericytes within the tumor vasculature;235

suggest that cells of the Eml4-Alk tumor vasculature produce serine proteases that cleave S1; and236

thus demonstrate that AZPs can be coupled with spatial proteomic approaches to query functional237

and compositional dysregulation directly within the TME.238
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Figure 5: Spatial activity profiling with AZPs enables functional characterization of the tumor
microenvironment. (a) Application of Z1 (red) to Eml4-Alk and healthy lung tissue sections with co-staining for
CD31 (green). Scale bars = 100 µm, 50 µm (lower and higher magnification, respectively). (b) Quantification of
Z1 staining intensity in CD31-low (CD31lo) and CD31-high (CD31hi) cells (n = 8 regions per condition; mean ±
s.d.; one-way ANOVA with Tukey correction for multiple comparisons, ∗∗∗∗P < 0.0001). (c) Capillary vessels are
lined by endothelial cells (EC); pericytes support and wrap around endothelial cells. (d) Staining for endothelial cells
(CD31; green) and pericytes (PDGFRβ; red) in formalin-fixed, paraffin-embedded Eml4-Alk lung tissue sections,
with images from representative tumor (left, middle) and normal adjacent tissue (NAT; right) regions shown. Scale
bar = 100 µm, 20 µm (lower and higher magnification, respectively). (e) Application of Z1 (red) to Eml4-Alk lung
tissues with co-staining for VE-cadherin (VE-cad; yellow) and desmin (Des; green). Scale bars = 100 µm. (f) Higher
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Relating enzyme activity measurements to single-cell transcriptomics for guided239

biological discovery240

After identifying the tumor-specific cellular compartments associated with S1 cleavage, we241

endeavored to further characterize the phenotypes of the identified vasculature-associated cell242

populations in order to understand potential mechanisms for their dysregulation. To complement243

our in vivo and in situ activity measurements, we performed single-cell RNA sequencing244

(scRNA-seq) to obtain an unbiased view of the cellular and transcriptomic landscape of Eml4-Alk245

lungs (Fig. 6a). Graph-based clustering of uniform manifold approximation and projection246

(UMAP) captured the transcriptomic landscape of Eml4-Alk lungs, where we annotated 8247

significant groups of cell types based on expression of previously reported marker genes [33, 34]248

(Fig. 6b). Given that S1 cleavage in situ localized to cells of the tumor vasculature, we defined249

marker gene modules for both endothelial and pericyte populations and computed their expression250

scores across all cells in Eml4-Alk lungs (Fig. 6c). The identified population of endothelial cells251

exhibited robust expression of a module of 28 genes canonically associated with angiogenesis252

(Fig. S11a-b, Fig. S12). Marker gene analysis additionally revealed a small population of pericytes253

within the larger stromal cluster (Fig. 6c, Fig. S13a-b).254

Spatial profiling had indicated the presence of cells positive for each of αSMA, desmin, and255

PDGFRβ within Eml4-Alk tumors but not within NAT (Fig. S10, Fig. 5c), raising the question of256

whether pericytes were specifically recruited into the TME. To determine whether pericytes were257

present in completely normal lungs, we queried scRNA-seq data from healthy mouse lungs for the258

pericyte marker gene module and identified a small population of cells exhibiting this signature259

(Fig. S13c-d), in line with pericyte identification reported in previous lung cell atlas studies in260

human [34] and mouse [33]. Irrespective of the presence of pericytes in completely healthy lungs,261

PDGF signaling has been shown to facilitate recruitment of pericytes into the tumor vasculature as262

a means to stabilize vessels and promote the establishment of an angiogenic, reactive TME [35, 36].263

We therefore queried expression of both PDGF ligands (Pdgfa, Pdgfb) and receptors (Pdgfra,264

Pdgfrb) in the Eml4-Alk scRNA-seq dataset and found that expression of Pdgfra and Pdgfrb was265
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exclusive to the stromal cluster (Fig. 6d). This analysis also revealed robust and specific expression266

of Pdgfb in endothelial cell populations (Fig. 6d). Visualization via UMAP corroborated that267

expression levels of Pdgfb and Pdgfrb matched the distributions of endothelial cell and pericyte268

populations, respectively (Fig. 6e).269

These results raised the possibility of paracrine PDGF signaling between endothelial cells270

and PDGFR-positive stromal cells in Eml4-Alk tumors. To investigate whether this axis was271

transcriptionally dysregulated, we conducted an integrative analysis of scRNA-seq data from272

Eml4-Alk and healthy lungs (Fig. S14a-b). Differential gene expression analysis across this273

integrated dataset showed that Pdgfb was significantly overexpressed in cells from both capillary274

endothelial cell compartments in the TME relative to healthy lungs (Padj < 0.0001; Fig. 6f,275

Table S3). However, expression of the PDGF receptors Pdgfra and Pdgfrb remained consistent276

between the total stromal populations from both conditions (Fig. 6f, Table S3).277

These observations motivated the hypothesis that altered ligand expression by endothelial cells278

in the Eml4-Alk TME could be implicated in the association of pericytes to the tumor vasculature.279

In addition to Pdgfb, the chemokine Cxcl12, shown to play functional roles in angiogenesis280

and vascular recruitment of stromal cells [37], was robustly expressed in endothelial cells from281

Eml4-Alk lungs (Fig. 6g). Endothelial cells from Eml4-Alk and healthy lungs exhibited differential282

transcriptional landscapes (Fig. 6h), with Cxcl12 expression significantly increased in endothelial283

cells from Eml4-Alk lungs relative to those from healthy controls (log2 FC = 1.453, Padj < 0.0001;284

Fig. 6i, Table S3). Intriguingly, previous reports have shown that overexpression of PDGF-B can285

increase tumor pericyte content via induction of CXCL12 expression by endothelial cells within286

the TME [37]. Taken together with our findings from spatial profiling (Fig. 5, Fig. S10), these287

results raise the possibility that aberrant PDGF and CXCL12 paracrine signaling could potentially288

help promote increased pericyte coverage of the Eml4-Alk tumor vasculature.289
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Figure 6: Single-cell transcriptomics for targeted exploration of hypotheses generated by activity profiling.
(a) Schematic of workflow. (b) UMAP of scRNA-seq dataset from Eml4-Alk lungs (pooled sample from n = 3
mice). Cell types were inferred based on expression of canonical marker genes. AT1, alveolar type 1; AT2, alveolar
type 2; SMC, smooth muscle cell. (c) Feature plots of gene expression module scores for endothelial cell (EC)
and pericyte marker genes mapped onto the UMAP of cells from Eml4-Alk lungs. (d) Relative expression levels
of PDGF and PDGFR genes across cell types in Eml4-Alk lungs. Individual dots represent mean expression values
across all cells in a cluster, are colored by expression level, and are sized by the percentage of cells in the cluster
expressing that gene. (e) Expression levels of Pdgfb and Pdgfrb against the UMAP of cells from Eml4-Alk lungs.
(f) Relative expression levels of PDGF and PDGFR genes in cells from Eml4-Alk (EA) and healthy (WT) lungs
withinin each of the capillary endothelium (general), stromal, capillary endothelium (aerocyte), and ciliated epithelium
populations (Wilcoxon rank-sum test with Benjamini-Hochberg correction, ∗∗∗∗Padj < 0.0001). (g) Expression levels
of Cxcl12 against the UMAP of cells from Eml4-Alk lungs. (h) UMAP of integrated dataset of cells from capillary
endothelium (general) populations in Eml4-Alk and healthy lungs (pooled samples of n = 3 mice per condition).
(i) Cxcl12 expression in capillary endothelial cells from Eml4-Alk and healthy lungs (Wilcoxon rank-sum test with
Benjamini-Hochberg correction, log2 FC = 1.453,∗∗∗∗ Padj < 0.0001).
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Activity-based cell sorting for multimodal phenotypic characterization of cancer290

Together, these results show that spatial activity profiling can be used to identify the tissue291

compartment (i.e., the tumor vasculature) associated with a cleavage signature of interest (i.e.,292

of S1), and that complementary omics approaches such as scRNA-seq can be leveraged to follow293

up on generated hypotheses (i.e., recruitment of pericytes into the tumor vasculature). However,294

the methods remain decoupled, and thus enzyme activity measurements cannot be directly linked295

to other measurement modalities at the cellular level. We therefore sought to establish a method296

to isolate individual cells purely on the basis of an enzymatic activity signature. We hypothesized297

that AZPs containing fluorophore-quencher pairs could function as enzyme-activatable cellular298

tags in vivo to label cells with membrane-bound or proximal protease activity, such that tagged299

cells could be subsequently sorted via flow cytometry (Fig. 7a). In this design, following systemic300

administration, degradation of the protease-cleavable linker activates fluorescence and liberates301

the fluorophore-tagged polyR such that it can bind and tag nearby cells, functioning analogously302

to a cell penetrating peptide [38, 26]. Thus, we reasoned that probe labeling after proteolytic303

activation (e.g., by cell-surface or proximal proteases) would facilitate isolation of tagged cells304

via fluorescence-activated cell sorting (FACS) and enable subsequent downstream phenotypic305

characterization (Fig. 7a).306

We applied this activity-based cell sorting assay to directly isolate and then phenotypically307

characterize the Eml4-Alk cell compartment associated with S1 cleavage (Fig. 7a). We designed a308

fluorescent quenched probe, QZ1, that incorporated S1 as a protease-cleavable linker. Cy5-labeled309

QZ1 was PEGylated to improve stability and drive tissue accumulation [38, 26], and administered310

intravenously into age-matched Eml4-Alk and healthy mice. Eml4-Alk mice were assessed at311

12 weeks post tumor induction, at which point lungs contain multiple lung adenocarcinoma312

lesions [23]. Two hours post injection, significantly increased Cy5 fluorescence was found in313

explanted Eml4-Alk lungs relative to healthy lungs (P < 0.0001; Fig. 7b-c), enabling perfect314

discrimination of Eml4-Alk and healthy mice (AUC = 1.000; Fig. 7d).315

Following imaging, single-cell suspensions were prepared from dissociated Eml4-Alk lungs,316
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and flow cytometry was used to sort all live, non-hematopoetic nucleated cells by QZ1317

signal, validating the feasibility of the activity-based cell sorting method (Fig. 7a, Fig. S15).318

Immunostaining concurrent to the activity-based sort revealed significantly increased QZ1 signal319

in cells positive for the endothelial cell marker endoglin (CD105; P = 0.00285; Fig. 7e).320

Increased Cy5 signal was also observed in cells positive for CD44 (P = 0.0120; Fig. S16a),321

which can help regulate division and angiogenesis in endothelial cells [39], and for Ly-6A/E322

(P = 0.000374; Fig. S16b), a marker of hematopoietic cells [40] that can also be expressed by323

pulmonary endothelium [41].324

Bulk RNA-seq on sorted QZ1-positive (QZ1+) and QZ1-negative (QZ1-) populations was used325

to characterize gene expression differences between the two compartments (Fig. 7f, Fig. S17).326

Several canonical markers of endothelial cells (Cdh5, Eng, Vwf, Pecam1), pericytes (Cd248,327

Pdgfrb, Des), as well as vascularization and angiogenesis were among the most upregulated genes328

in the QZ1+ population (Fig. 7g). Gene set enrichment analysis corroborated that the dominant329

cell types associated with QZ1 positivity were endothelial and mesenchymal cell types, including330

pericytes, while gene sets associated with epithelial cells were significantly downregulated331

(Fig. S18a). Critically, Cxcl12 and Pdgfrb were overexpressed in the QZ1+ compartment, as332

were markers of additional angiogenesis signaling axes, including the VEGF (Flt1/4), Notch333

(Notch1/4, Dll1/4), and Tie (Tek, Angpt1/2) pathways (Fig. 7g). Indeed, the QZ1+ compartment334

was significantly enriched for functional modules associated with vasculogenesis, vascular335

development, endothelial cell migration, and mesenchymal recruitment (Fig. 7h, Fig. S18b). More336

generally, these results validate an activity-based cell sorting assay that can be directly coupled337

with protein- and transcript-level measurements for multimodal phenotypic characterization.338
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Figure 7: Activity-based cell sorting enables multimodal phenotypic characterization of cancer. (a) The quenched
probe QZ1-(PEG2K), consisting of a Cy5-tagged polyR (gray star + blue rectangle) and quencher-tagged polyE
(orange hexagon + red rectangle), was administered intravenously into age-matched healthy and Eml4-Alk mice.
Lungs were excised, imaged, and dissociated into single cell suspension. Cells were sorted on Cy5 fluorescence
and then characterized via immunostaining and bulk RNA-seq. (b) Images of representative lungs from healthy and
Eml4-Alk mice 2 hours after QZ1-(PEG2K) administration. (c) Quantification of epifluorescence radiant efficiency
from experiment in (b) (n = 5 mice per group; mean ± s.d.; two-tailed unpaired t-test, ****P < 0.0001). (d) ROC
curve showing performance of QZ1-(PEG2K) signal in discriminating healthy from Eml4-Alk lung explants (AUC
= 1.000, 95% confidence interval 1.000–1.000; P = 0.0090 from random classifier shown in dashed line). (e) Flow
cytometry plot (left) and quantification (right) of QZ1 fluorescence intensity in CD45-, CD11b- cells from Eml4-Alk
lungs, gated by endoglin expression (CD105; n = 3 biological replicates; mean ± s.d.; two-tailed paired t-test,
**P = 0.00285). (f) Differential expression analysis of RNA-seq data from sorted QZ1+ and QZ1- cells. Each point
represents one gene and is colored according to the significance level for that gene. (g) Identification of vasculature
marker genes significantly overexpressed (Padj < 0.05) in the QZ1+ population. (h) Enrichment distributions for
gene ontology modules up- and downregulated in the QZ1+ population relative to the QZ1- population.
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Discussion339

Summary340

Our results establish a paradigm for profiling enzyme activity across multiple scales–at the341

organism, tissue, and cellular levels–and demonstrate the utility of our methods for noninvasive342

monitoring and functional characterization of cancer (Fig. 1). We first demonstrated that343

multiplexed panels of protease-responsive nanosensors can quantitatively track disease dynamics344

in vivo to yield activity-based biomarkers of tumor progression and targeted therapy response.345

Next, we turned to the spatial setting and directly translated substrates nominated from in vivo346

profiling into in situ protease activity probes (AZPs). These methods enabled identification of347

a tumor-specific serine protease activity signal that increased with tumor progression, rapidly348

decayed after therapy, and localized specifically to the pericyte-invested tumor vasculature.349

We complemented our activity measurements with single-cell transcriptomic analysis, which350

identified overexpression of paracrine signaling factors in endothelial cells from tumor-bearing351

lungs and suggested a possible mechanism for endothelial cell-pericyte crosstalk within the TME.352

Finally, we designed a high-throughput method to isolate cells based on their protease activity353

and leveraged it to discover a population of proteolytically active, vasculature-associated cells354

harboring pro-angiogenic transcriptional programs. Together, these methods revealed that the355

functionally aberrant tumor vasculature rapidly responds to tumor cell-targeted inhibition of356

oncogenic signaling and demonstrated that protease activity serves as an informative proxy for357

this process. By designing our methods to uniformly rely on a single measurement mechanism358

(i.e., proteolytic cleavage of a peptide substrate), we establish methodology for enzyme activity359

profiling across biological scales, with both temporal and spatial resolution.360

Next-generation methods for profiling enzyme activity in cancer361

Our work establishes the first multiplexed in situ activity assay that enables direct on-tissue362

comparison of spatial localization patterns of distinct proteases. Further expansions of363

AZP multiplexing capacity, either through epitope tagging or DNA barcoding, could enable364
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high-throughput screens on murine or human tissue to discover enzyme activity sensors with365

desired properties, such as colocalization with specific cell types. We also demonstrate that366

AZPs can be used to delineate protease class-specific activity signatures through targeted inhibitor367

ablations in situ. Given that our results indicate that serine proteases cleave S1 in the Eml4-Alk368

model (Fig. 4c), additional molecular profiling will be necessary to identify which protease(s)369

are responsible. The angiogenesis-associated proteases Plat (tPA) and Dpp4 (DPP4), as well370

as the membrane serine protease Fap (FAP or seprase), which can be selectively expressed by371

tumor pericytes [42, 43], were amongst the serine proteases overexpressed in the QZ1+ population372

(Fig. S17). In vitro screening, targeted small molecule inhibition, or specific knockout of individual373

enzyme targets could help identify the serine protease(s) that cleave S1 in the Eml4-Alk model.374

Parallel functional studies may help determine the specific contributions of candidate serine375

proteases to vascular remodeling and angiogenesis in ALK+ lung cancer.376

Perhaps most importantly, we establish AZPs as an activity-based cellular tag for sorting377

individual cells based on endogenous enzyme activity. Administration of AZPs in vivo, followed378

by tissue dissociation and FACS, enabled isolation of cells exhibiting a specific pattern of379

protease activity. By coupling this assay to immunostaining and RNA-seq, we demonstrate that380

activity-based cell sorting can enable multimodal characterization of cancer across the activity,381

protein, and gene expression levels. Probes similar in concept to AZPs could extend activity-based382

cell sorting to other classes of enzymes. In addition, integrating activity-based cell sorting with383

large-scale omics measurements and machine learning could inspire a new class of single-cell384

multiomics that ends at the level of actuated biological function. We envision that the ability to385

sort cells by enzymatic activity could yield transformative insights into enzymatic dysregulation in386

disease; enable multimodal approaches to comprehensively characterize biological systems; and387

inform new diagnostic and therapeutic interventions.388
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Multimodal profiling to explore cancer biology389

Our results demonstrate that protein activity directly complements measurements of protein390

and transcript abundance, and that this multimodal profiling enables discovery-based functional391

characterization of the TME. By applying our activity-based profiling methods to the Eml4-Alk392

model of NSCLC, we discover aberrant serine protease activity that is specific to the tumor393

vasculature and rapidly responds to inhibition of an adjacent cancer-cell specific pathway. Through394

a combination of spatial profiling and scRNA-seq analysis, we found evidence suggestive of395

increased pericyte coverage within the Eml4-Alk tumor vasculature, potentially mediated by396

altered paracrine signaling via PDGF and CXCL12. Though mechanistic experiments will be397

necessary to ascertain whether pericytes are actively recruited into the TME, our findings raise the398

possibility that S1 cleavage, which is elevated within Eml4-Alk tumors and localizes specifically399

to the vasculature, could be due to the coordinated action of intratumoral pericytes and endothelial400

cells associated with neoangiogenic vessels. Our finding that the functionally aberrant tumor401

vasculature rapidly responds to targeted therapy motivates exploration of whether anti-angiogenic402

drugs, which have been clinically approved in combination with cytotoxic chemotherapy or403

immunotherapy [44, 45, 46], could have additive benefits when combined with molecularly404

targeted therapeutics like alectinib. Our study in the Eml4-Alk model serves as an example for405

how our activity profiling methods can be leveraged to advance understanding of the complex406

crosstalk between cancer and non-cancer cells. We envision that integrating these activity profiling407

techniques with other data modalities will enable a more complete understanding of tumor biology.408

Opportunities and applications in precision cancer medicine409

Finally, the activity-based profiling methods presented here could have significant utility in410

precision medicine applications. Precision cancer medicine requires granular information that411

cannot be accessed by traditional noninvasive imaging approaches, necessitating serial biopsies412

that carry significant risks and sample only a small fraction of the disease site. The ability to gain413

high-dimensional biological insight into a disease state with a completely noninvasive test would414
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present a paradigm shift towards functional precision medicine [47]. Here, we establish the ability415

of noninvasive, multiplexed protease activity nanosensors to query the function and activity of416

specific intratumoral cell subsets over the course of tumor progression and in response to therapy.417

Given the modularity of this approach, high-throughput screening [48, 49, 50] and generative418

machine learning [51] methods could optimize sensors to target orthogonal axes of cancer biology.419

For instance, sensors that detect angiogenesis could be administered in combination with probe420

sets that read out immune invasion or metastasis risk. As a complement to this noninvasive421

test, a targeted panel of in situ AZPs could be used to molecularly profile individual patient422

biopsies for indication of signaling pathways or processes active in a patient’s specific tumor. This423

information would empower patients and physicians with real-time, high-quality information to424

personalize treatment decisions, such as rapid prediction of immunotherapy efficacy, surveillance425

for recurrence after targeted therapy, or discrimination of aggressive versus indolent disease.426

Conclusion427

In summary, we have developed a integrated suite of enzyme activity-profiling methods that428

form a direct link between noninvasive enzyme sensors, high-resolution spatial profiling, and429

high-throughput, single-cell analytical methods like flow cytometry and RNA-seq. The modular430

methods described here can be readily generalized to other cancer types and hold promise for both431

fundamental biological investigation and translational research. We envision that these methods432

for profiling enzyme activity will enable a more comprehensive assessment of tumor biology and433

facilitate functional characterization of cancer for medical and discovery applications alike.434
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Materials and Methods435

Eml4-Alk mouse model of non-small-cell lung cancer436

All animal studies were approved by the Massachusetts Institute of Technology (MIT) committee437

on animal care (protocol 0420-023-23) and were conducted in compliance with institutional438

and national policies. Reporting was in compliance with Animal Research: Reporting In Vivo439

Experiments (ARRIVE) guidelines. Tumors were initiated in female C57BL/6 mice between440

6 and 10 weeks old by intratracheal administration of 50 µL adenovirus expressing the Ad-EA441

vector (Viraquest, 1.5 ∗ 108 PFU in Opti-MEM with 10 mM CaCl2), as described previously [23].442

Healthy control cohorts consisted of age- and sex-matched mice that did not undergo intratracheal443

administration of Ad-EA adenovirus.444

Alectinib treatment445

Eml4-Alk mice were randomized to receive either control vehicle or alectinib (MedChemExpress),446

at 20 mg/kg prepared directly in drug vehicle, daily by oral gavage for 14 consecutive days. Drug447

vehicle consisted of: 10% (v/v) dimethylsulfoxide (DMSO; Sigma Aldrich), 10% (v/v) Cremophor448

EL (Sigma Aldrich), 15% (v/v) poly(ethylene glycol)-400 (PEG400; Sigma Aldrich), 15% (w/v)449

(2-Hydroxypropyl)-β-cyclodextrin; Sigma Aldrich). Mice were monitored daily for weight loss450

and clinical signs. Investigators were not blind with respect to treatment.451

In vivo characterization of activity-based nanosensors452

All activity-based nanosensor experiments were performed in accordance with institutional453

guidelines. Tumor-bearing mice and age-matched controls were administered activity-based454

nanosensor constructs via intratracheal intubation at 3.5, 5, 5.5, 6, and 7 weeks after tumor455

induction, with treatment of vehicle control or alectinib beginning at 5 weeks after tumor456

induction in Eml4-Alk mice and continuing for 2 weeks. Nanosensors for urinary experiments457

were synthesized by CPC Scientific. The urinary reporter glutamate-fibrinopeptide B (Glu-Fib)458

was mass barcoded for detection by mass spectrometry. Sequences are provided in Table S1.459
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Nanosensors were dosed (50 µL total volume, 20 µM each nanosensor) in mannitol buffer (0.28 M460

mannitol, 5 mM sodium phosphate monobasic, 15 mM sodium phosphate dibasic, pH 7.0-7.5)461

by intratracheal intubation. Anesthesia was induced by isoflurane inhalation, and mice were462

monitored during recovery. For intratracheal instillation, a volume of 50 µL was administered463

by passive inhalation following intratracheal intubation with a 22G flexible plastic catheter (Exel).464

Intratracheal instillation was immediately followed by a subcutaneous injection of PBS (200 µL)465

to increase urine production. Bladders were voided 60 minutes after nanosensor administration,466

and all urine produced 60-120 min after administration was collected using custom tubes in which467

the animals rest upon 96-well plates that capture urine. Urine was pooled and frozen at -80°C until468

analysis by LC-MS/MS.469

LC-MS/MS reporter quantification470

LC-MS/MS was performed by Syneos Health using a Sciex 6500 triple quadrupole471

instrument. Briefly, urine samples were treated with ultraviolet irradiation to photocleave the472

3-Amino-3-(2-nitro-phenyl)propionic Acid (ANP) linker and liberate the Glu-Fib reporter from473

residual peptide fragments. Samples were extracted by solid-phase extraction and analyzed474

by multiple reaction monitoring by LC-MSMS to quantify concentration of each Glu-Fib mass475

variant. Analyte quantities were normalized to a spiked-in internal standard and concentrations476

were calculated from a standard curve using peak area ratio (PAR) to the internal standard. Mean477

scaling was performed on PAR values to account for mouse-to-mouse differences in activity-based478

nanosensor inhalation efficiency and urine concentration.479

Statistical and machine learning analysis of urinary reporter data480

For all urine experiments, PAR values were normalized to nanosensor stock concentrations and481

then mean scaled across all reporters in a given urine sample prior to further statistical analysis.482

To identify differential urinary reporters, reporters were subjected to unpaired two tailed t-test483

followed by correction for multiple hypotheses using the Holm-Sidak method in GraphPad Prism484

9.0. Padj < 0.05 was considered significant. PCA was performed on mean scaled PAR values485
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and implemented in MATLAB R2019b (Mathworks). For treatment response classification based486

on urinary activity-based nanosensor signatures, randomly assigned sets of paired data samples487

consisting of features (the mean scaled PAR values) and labels (for example, EA, Alectinib) were488

used to train random forest (36) classifiers implemented with the TreeBagger class in MATLAB489

R2019b. Estimates of out-of-bag error were used for cross-validation, and trained classifiers were490

tested on randomly assigned, held-out, independent test cohorts. Ten independent train-test trials491

were run for each classification problem, and classification performance was evaluated with ROC492

statistics calculated in MATLAB. Classifier performance was reported as the mean accuracy and493

AUC across the ten independent trials.494

AZP peptide synthesis and sequences495

All AZPs were synthesized by CPC Scientific (Sunnyvale, CA) and reconstituted in496

dimethylformamide (DMF) unless otherwise specified. AZP sequences are provided in Table S2.497

In situ zymography with activatable zymography probes498

Mice were euthanized by isoflurane overdose. Lungs were then filled with undiluted499

optimal-cutting-temperature (OCT) compound through catheterization of the trachea; the trachea500

was subsequently clamped; and lungs were extracted. Individual lobes were dissected and then501

immediately embedded and frozen in optimal-cutting-temperature (OCT) compound (Sakura).502

Cryosectioning was performed at the Koch Institute Histology Core. Prior to staining, slides503

were air dried, fixed in ice-cold acetone for 10 minutes, and then air dried. After hydration504

in PBS (3x5 minutes), tissue sections were blocked in protease assay buffer (50 mM Tris, 300505

mM NaCl, 10 mM CaCl2, 2 mM ZnCl2, 0.02% (v/v) Brij-35, 1% (w/v) BSA, pH 7.5) for 30506

minutes at room temperature. Blocking buffer was aspirated, and solution containing fluorescently507

labeled AZPs (1 µM each AZP) and a free poly-arginine control (polyR, 0.1 µM) diluted in508

the protease assay buffer was applied. Slides were incubated in a humidified chamber at 37°509

C for 4 hours. For inhibited controls, 400 µM AEBSF (Sigma Aldrich), 1 mM marimastat510

(Sigma Aldrich), or protease inhibitor cocktail (P8340, Sigma Aldrich) spiked with AEBSF and511
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marimastat was added to the buffer at both the blocking and cleavage assay steps. For uninhibited512

conditions, dimethyl sulfoxide (DMSO) was added to the assay buffer to a final concentration of513

3% (v/v). For co-staining experiments, primary antibodies (E-cadherin, AF748, R&D Systems,514

4 µg/mL; vimentin, ab92547, Abcam, 0.5 µg/mL; CD31, AF3628, R&D Systems, 10 µg/mL;515

desmin, ab227651, Abcam, 1.32 µg/mL) were included in the AZP solution. Following AZP516

incubation, slides were washed in PBS (3x5 minutes), stained with Hoechst (5 µg/mL, Invitrogen)517

and the appropriate secondary antibody if relevant (Invitrogen), washed in PBS (3x5 minutes),518

and mounted with ProLong Diamond Antifade Mountant (Invitrogen). Slides were scanned on a519

Pannoramic 250 Flash III whole slide scanner (3DHistech).520

AZP precleavage characterization521

The Z1 AZP (10 µmol/L) was incubated with recombinant fibroblast activation protein (FAP) in522

FAP assay buffer (50 mM Tris, 1 M NaCl, pH 7.5) overnight at 37° C to run the cleavage reaction523

to completion. After precleavage with recombinant FAP, the AZP solution was diluted to a final524

peptide concentration of 0.1 µM in protease assay buffer. Cognate intact Z1 AZP (1 µmol/L)525

and precleaved Z1 AZP, each with a free polyR control (0.1 µM), were applied to fresh-frozen526

Eml4-Alk lung tissue sections (slide preparation described above) and incubated at 37° C for 4527

hours. After AZP incubation, slides were washed, stained with Hoechst, mounted, and scanned.528

Immunohistochemistry and immunofluorescence staining529

Lungs were excised and either embedded in OCT, as previously described, or fixed in 10% (v/v)530

formalin and embedded in paraffin. Prior to staining, slides with formalin-fixed, paraffin-embedded531

sections were subject to deparaffinization and antigen retrieval. Prior to staining, slides with532

fresh-frozen sections were air dried, fixed in ice-cold acetone for 10 minutes, air dried, and533

re-hydrated in PBS. Sections were stained with IgG isotype controls (ThermoFisher) and primary534

antibodies against vimentin (ab92547, Abcam, 1.0 µg/mL), E-cadherin (AF748, R&D Systems,535

4.0 µg/mL), α-SMA (ab124964, Abcam, 1.5 µg/mL), CD31 (AF3628, R&D Systems, 10 µg/mL),536

VE-cadherin (36-1900, Invitrogen, 10 µg/mL), PDGFRβ (3169, Cell Signaling, 1 : 100), and537
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desmin (ab227651, Abcam, 1.32 µg/mL), as appropriate. For immunohistochemistry, slides were538

incubated with the appropriate secondary antibody conjugated to horseradish peroxidase (HRP).539

For immunofluorescence, slides were washed in PBS, incubated with the appropriate secondary540

antibody and Hoechst, and washed in PBS. Slides were scanned as previously described.541

Quantification of AZP and immunofluorescence staining542

AZP and immunofluorescence staining was quantified in QuPath 0.2.3[52] and in ImageJ. To543

perform cell-by-cell analysis, cell segmentation was performed using automated cell detection on544

the DAPI (nuclear) channel. For quantification of activity inhibition, AZP staining was calculated545

as a fold change of the mean nuclear AZP signal over the mean nuclear polyR signal. All546

nuclei within an individual tumor were averaged across that given tumor. Nuclei with a polyR547

intensity of less than 3 were excluded from analysis. For quantification of AZP intensity based548

on cell morphology and marker expression, cells were annotated as “vimentin-positive, spindle”549

if they were spindle-shaped and expressed vimentin; “E-cadherin-positive, cuboidal” if they were550

cuboidal-shaped and expressed E-cadherin; “vimentin-positive, round” if they were rounded and551

expressed vimentin. A random forest classifier was trained on all annotated cells (at least 20552

cells per class) using multiple cellular features, including nuclear area and eccentricity, and mean553

cellular fluorescence intensity across all channels. The trained classifier was then applied to all554

cells across all tumors in the tissue section, and mean cellular fluorescence intensity was quantified.555

To assess relationship between Z1 and CD31, cell segmentation was performed as described above556

and correlation was assessed between mean cellular Cy5 (Z1) intensity and mean cellular FITC557

(CD31) intensity. Density plots were generated using the dscatter function in MATLAB R2019b.558

For quantification of co-localization, JACoP (Just Another Co-localization Plug-in) [53] was used559

to determine pixel intensity-based correlations. Tumors were selected as regions of interest, and560

thresholds were chosen automatically using the Costes’ method. Co-localization was assessed via561

the pairwise correlation of pixel intensities within each tumor region of interest.562
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In vivo administration of QZ1563

QZ1 (Table S2) was reconstituted to 1 mg/mL in water, then reacted with mPEG-Maleimide, MW564

2000 g/mol (Laysan Bio), for PEG coupling via maleimide-thiol chemistry. After completion of the565

reaction, the final compound was purified using HPLC. All reactions were monitored using HPLC566

connected with mass spectrometry. Characterization of the final compound, QZ1-(PEG2K), using567

HPLC and MALDI-MS indicated that products were obtained with more than 90% purity and at the568

expected molecular weight. Eml4-Alk mice (11–12 weeks post tumor induction) and age-matched569

C57BL/6 healthy controls (Jackson Labs; 18–22 weeks) were anesthetized using isoflurane570

inhalation (Zoetis). QZ1-(PEG2K) (4.5 nmoles in 0.9% NaCl) was administered intravenously571

via tail vein injection. Two hours after probe injection, mice were imaged on an in vivo imaging572

system (IVIS, PerkinElmer) by exciting Cy5 at 640 nm and measuring emission at 680 nm. Mice573

were subsequently euthanized by isoflurane overdose followed by cervical dislocation. Lungs were574

dissected and explanted for imaging via IVIS. Fluorescence signal intensity was quantified using575

the Living Image software (PerkinElmer).576

Preparation of single-cell suspensions577

Eml4-Alk mice (10–12 weeks post tumor induction) and age-matched C57BL/6 healthy controls578

(Jackson Labs; 18–22 weeks) were euthanized by isoflurane overdose, and lungs were excised and579

separated into lobes. For tumor-bearing lungs, tumors were separated from healthy tissue using580

a dissecting microscope. Tissue was minced, treated with digestion buffer (Hank’s Balanced Salt581

Solution + 2% heat-inactivated FBS, supplemented with DNase and collagenase), and incubated582

at 37C for 30 minutes with rotation. Samples were filtered using a 70 µm filter and diluted with583

RPMI-1640 + 2% heat-inactivated FBS. Cell suspension was centrifuged at 1800 rpm for 5 minutes584

and the pellet was resuspended in ACK lysis buffer for 2 minutes, followed by quenching with585

FACS buffer (PBS + 2% heat-inactivated FBS). Cell suspension was centrifuged and supernatant586

was discarded. For single cell RNA-Seq, CD45 cell depletion and viability enrichment was587

performed according to manufacturer’s instructions (StemCell Technologies).588
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Activity-based cell sorting589

Single cell lung suspensions from Eml4-Alk mice administered QZ1 were stained with the590

following antibodies (clone, fluorophore, dilution): CD44 (IM7, BV605, 1:200), CD105 (MJ7/18,591

BV786, 1:200), Ly6-A/E (D7, PE, 1:200), CD11b (M1/70, APC-Cy7, 1:200), CD45 (30-F11,592

AF488, 1:400), and EpCAM (G8.8, PE-Cy7, 1:200). Cells were stained for 20 minutes, and DAPI593

(1:10,000) was added immediately prior to sort. FACS sorting was performed on a FACSAria II594

(BD). Flow cytometry data was analyzed by the FlowJo software (Treestar). The sort strategy is595

shown in Fig. S15. At least 100,000 cells from each of the QZ1+ and QZ1- compartments were596

collected into RPMI-1640 + 2% heat-inactivated FBS and pelleted via centrifugation at 1800 rpm597

for 5 minutes. Cell pellets were lysed in Trizol (ThermoFisher), and RNA was extracted using598

RNEasy Mini Kits (Qiagen). Bulk RNA sequencing was performed by the MIT BioMicro Center.599

Libraries were prepared using the Clontech SMARTer Stranded Total RNAseq Kit (Clontech),600

precleaned, and sequenced using an Illumina NextSeq500 on an Illumina NextSeq flow cell.601

Feature counting was performed on BAM files using the Rsubread package. Differential expression602

analysis on QZ1+ vs QZ1- cells was performed using the DESeq2 package in R. GSEA was603

performed using GenePattern [54], and results were visualized using the clusterProfiler R package.604

Analysis of Eml4-Alk bulk RNA-seq dataset605

Differential expression analysis over the entire transcriptome was performed on a bulk RNA-seq606

dataset from the Eml4-Alk mouse model of NSCLC, reported by Li et al. [24], using the DESeq2607

package in R. The gene list was subsequently filtered to protease genes for visualization.608

Single cell RNA sequencing (scRNA-seq)609

Single cells were processed using the 10X Genomics Single Cell 3’ platform using the Chromium610

Single Cell 3’ Library & Gel Bead Kit V2 kit (10X Genomics), per manufacturer’s protocol.611

Briefly, approximately 10,000 cells were loaded onto each channel and partitioned into Gel Beads612

in Emulsion (GEMs) in the 10x Chromium instrument. Following lysis of the captured cells, the613
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released RNA was barcoded through reverse transcription in individual GEMs, and complementary614

DNA was generated and amplified. Libraries were constructed using a Single Cell 3’ Library and615

Gel Bead kit. The libraries were sequenced using an Illumina NovaSeq6000 sequencer on an616

Illumina NovaSeq SP flow cell. scRNA-seq was performed by the MIT BioMicro Center.617

Single cell RNA-seq data analysis618

Raw gene expression matrices were generated for each sample by the Cell Ranger (v.3.0.2) Pipeline619

coupled with mouse reference version GRCm38. The output filtered gene expression matrices were620

analyzed by Python software (v.3.9.0) with the scanpy package (v.1.7.2) [55]. Genes expressed in621

at least three cells in the data and cells with> 200 genes detected were selected for further analyses.622

Low quality cells were removed based on number of total counts and percentage of mitochondrial623

genes expressed. After removal of low quality cells, gene expression matrices were normalized.624

The dataset was additionally filtered to remove cells expressing Ptprc (CD45). Features with high625

cell-to-cell variation were calculated. To reduce dimensionality, principal component analysis was626

conducted with default parameters on normalized and scaled data. Following uniform manifold627

approximation and projection (UMAP) for dimensionality reduction, cells were clustered in the628

UMAP embedding space using the Louvain algorithm with resolution 0.25, and cell types were629

annotated based on expression of known lung cell type marker genes curated from the literature.630

All analyses and visualizations were implemented in Python with support from scanpy [55].631

Statistical analysis632

Differential gene expression analysis for bulk RNA-seq data was performed in R. PCA and633

machine learning classification of activity-based nanosensor data was performed in MATLAB634

R2019B. scRNA-seq data analysis was performed in Python (v.3.9.0) using the scanpy (v.1.7.2)635

package. All remaining statistical analyses were conducted in Prism 9.0 (GraphPad). Sample636

sizes, statistical tests, and p-values are specified in figure legends.637
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