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Abstract  
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate 
change will increase their frequency and intensity. Despite progress in understanding 
how plants respond to individual stresses, our knowledge of plant acclimatization to 
combined stresses–typically occurring in nature is still lacking. Here, we used a plant 
with minimal regulatory network redundancy, Marchantia polymorpha, to study how 
seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, 
gene expression, and activity of cellular pathways. We found a high divergence of 
transcriptomic stress responses between Arabidopsis and Marchantia, suggesting that 
the stress-specific gene regulatory networks (GRNs) between bryophytes and 
angiosperms are not strongly conserved. The reconstructed high-confidence GRNs 
demonstrated that the response to specific stresses dominates those of others by 
relying on a large ensemble of transcription factors. We also showed that a regression 
model could accurately predict the gene expression under combined stresses, 
indicating that Marchantia performs arithmetic addition to respond to multiple stresses. 
Finally, we provide two online resources  (https://conekt.plant.tools and 
http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi)  to facilitate the study of gene 
expression in Marchantia exposed to abiotic stresses. 
 
Introduction 
The colonization of land by plants, which occurred around 470 Ma, was essential to 
establish habitable environments on land for all kingdoms of life 1. Bryophytes, which 
include mosses, liverworts, and hornworts, represent the earliest diverging group of 
non-vascular land plants 2–4. Morphology of the earliest land plant fossils, consisting 
primarily of tissue fragments and spores from the Middle Ordovician around 470 Ma, 
showed that early land plants were liverwort-like 5,6. As a liverwort, Marchantia 
polymorpha is a valuable model to better understand the emergence and evolution of 
land plants, as it allows us to compare the biology of aquatic algae and non-vascular 
plants to vascular, seed, and flowering plants. Studying Marchantia can help us better 
understand the successful terrestrialization event, as Marchantia contains traits 
essential for this task along with increased complexity (e.g., hormones auxin, 
jasmonate, salicylic acid, protection mechanisms against desiccation, photooxidative 
damage)7 which is still considerably lower than that of vascular plants 8.  

Besides its interesting evolutionary position among land plants, Marchantia is a 
valuable model for studying basic plant biology. Mainly due to the lack of whole-genome 
duplications in the liverwort lineage, Marchantia shows a simpler, low-redundancy 
regulatory genome 8, which together with the ease of growth and genetic manipulation 9, 
makes Marchantia an excellent model to study general plant biology. The Marchantia 
genome contains necessary components for most land-plant signaling pathways with 
low redundancy, making it easier to dissect the pathways 8. For example, the auxin 
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signaling network in Marchantia is simple yet functional, with all relevant genes existing 
as single orthologs 10. Similarly, cellulose biosynthesis in Marchantia uses the same but 
simplified machinery; while Arabidopsis thaliana contains ten cellulose synthases in 
multimeric complexes, Marchantia has only two 11. Furthermore, since the dominant 
generation of Marchantia is the haploid gametophyte, heterozygosity can be 
circumvented to directly study mutant and transgenic phenotypes. These, and other 
features, make Marchantia an attractive model for dissecting the function of genes and 
biological pathways.  

Extreme environmental conditions can cause a multitude of biotic and abiotic 
stresses that can devastate crops and induce the collapse of entire ecosystems 12,13. 
Plants have evolved sophisticated mechanisms to perceive and respond to the different 
stresses, which induces an acclimation process that allows the plant to survive the 
stress 14, but often at the cost of reduced growth 12,13. Many studies have analyzed the 
effect of stress on plant growth by identifying differentially expressed genes between 
stress-treated and untreated plants (e.g. 15–17), or by identifying single nucleotide 
polymorphisms associated with stress resistance in Arabidopsis and maize 18–20. The 
studies performed on model plants such as Arabidopsis can shed light on fundamental 
processes of stress acclimation, but it is currently unclear whether the acclimation 
mechanisms are conserved and transferable to crops.  

In addition, plants are often exposed to a combination of stresses in the natural 
environment which may require opposing strategies to mitigate adverse effects. For 
example, drought causes plants to close their stomata to minimize water loss 21,22, while 
heat causes the stomata to open to cool down their leaves via transpiration 17,23. Stress 
signaling is mediated by a diverse ensemble of stress-specific sensors/receptors, 
networks of protein kinases/phosphatases, calcium channels/pumps, and transcription 
factors that can be localized to different organelles 24,25. Stress signaling is further 
communicated and modulated by hormones, signaling molecules (e.g., reactive oxygen 
species), and other protein modifications (S-nitrosylation, ubiquitination, myristoylation) 
26,27. While this complexity renders it challenging to elucidate the molecular basis of 
stress responses to single or combined stresses, the key features of the model 
Marchantia provide the means to deepen our understanding of stress acclimation.  

In this study, we set to take advantage of Marchantia's less complex regulatory 
architecture to understand better how plants respond to environmental cues such as 
stress to modulate the expression of genes and biological pathways. To this end, we 
constructed an abiotic stress gene expression atlas of Marchantia comprising seven 
abiotic stresses, i.e.darkness, high light, cold, heat, nitrogen deficiency, salt, and 
mannitol, and their 19 pairwise combinations. For each stress, we identified robustly-
responding transcription factors that are likely important for Marchantia's survival to the 
stress. Comparing these transcription factors to gene expression responses and 
biological function of Arabidopsis thaliana orthologs revealed poor agreement between 
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the two plants, suggesting a large divergence of stress-related gene regulatory 
networks. Interestingly, the analysis of differentially expressed genes and biological 
pathways in the combined stresses revealed that certain stresses (e.g., darkness and 
heat) induce large transcriptomic responses that dominate other stresses (e.g., salt and 
mannitol). The dominant stresses express a larger ensemble of transcription factors that 
change the expression of more genes and pathways than the non-dominant stresses. 
Importantly, we construct a linear regression model that can explain the gene 
expression changes of combined stresses, showing that Marchantia performs an 
arithmetic addition to integrate environmental cues. Finally, to provide bioinformatical 
resources, we provide i) an eFP browser for Marchantia 
(http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi) that allows the visualization 
of gene expression in organs and stress conditions and ii) an updated CoNekT platform 
(https://conekt.plant.tools)28, allowing sophisticated comparative gene expression and 
co-expression analyses. 
 
Material and Methods 
Maintenance of Marchantia polymorpha 
Male Marchantia polymorpha, accession Takaragaike-1 was propagated on half-
strength Gamborg B-5 Basal agar (1% sucrose, pH 5.5, 1.4% agar)(Gamborg et al., 
1968) in deep well plates (SPL Biosciences, SPL 310101) at 24oC under continuous 
LED light at 60 μEm-2s-1.  
 
Experimental setup for stress experiment 
To determine the ideal stress condition for cross-stress experiments, a series of severity 
levels was used for heat, cold, salt, osmotic, light, dark, and nitrogen deficiency 
stresses. For each stress level, three agar plates containing nine gemmae each were 
plated, where two plates were used as material for RNA sequencing, and one plate was 
kept for observation until 21 days after plating (DAP).  

For salt, osmotic, and nitrogen deficiency stress, the gemmae were plated on 
half-strength Gamborg B-5 Basal agar (pH 5.5, 1.4% agar, 12.4 mM KNO3) 
supplemented with 20 - 200 mM NaCl (20 mM steps), 50-400 mM mannitol (50 mM 
steps) and KNO3 concentration ranging from 90 to 0% (22.3 - 0 mM, 2.5 mM steps), 
respectively. The potassium concentration in nitrogen deficiency agar was maintained 
using equimolar concentrations of KCl. Gemmae subjected to heat, cold, light, and dark 
stress were plated on normal half-strength Gamborg B5 agar (pH 5.5, 1.4% agar, 12.4 
mM KNO3, 0.5 mM (NH4)2SO4). 

Plates were grown at 24oC under continuous LED light at 60 μEm-2s-1 from days 
0 to 13. For dark stress, plates were moved to the plant growth chamber (HiPoint M-
313) on days 8, 9, 10, 11, 12, 13, and 14 for growth in darkness at 24oC for 7, 6, 5, 4, 3, 
2 and 1 day(s), respectively. On day 14, all plates were transferred to the plant growth 
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chamber (HiPoint M-313) for 24 hours. Control and plates for salt, osmotic, and nitrogen 
deficiency stresses were maintained at 24oC  under continuous LED light at 60 μEm-2s-1 

in the plant growth chamber. The following modifications used normal growth conditions 
for heat, cold, dark, and light stresses. For heat and cold stress, 27oC to 36oC (3oC 
steps) and 3oC to 12oC (3oC steps) were used, respectively. For light stress, plants were 
subjected to 20% to 100% chamber capacity of light output (115 to 535 μEm-2s-1) at 
steps of 20%, approximating 100 μEm-2s-1 per step. 

On day 15, whole plants were harvested by pooling three plants into 2 mL 
Eppendorf tubes, flash-frozen in liquid nitrogen, and stored at -80oC. This was done in 
triplicates, resulting in 3 (replicates) * 3 (pooled plants) used for each RNA-seq sample. 
Images of the front and back of the observation plates were taken, and the plates were 
returned to normal growth conditions. Pictures of the front and back of the observation 
plates were taken on day 21 without cover. 

Cross stress experiments were carried out similarly with the following parameters 
for the various stress combinations - heat (33oC), cold (3oC), salt (40 mM NaCl), 
osmotic (100 mM mannitol), light (435 μMm-2s-1), darkness (3 days) and nitrogen 
deficiency (0 mM KNO3). 
 
Size measurement of Marchantia polymorpha 
To measure the size of the plants grown under the different stresses, the images of the 
observation plates were scaled and measured in Adobe Illustrator. The length and 
breadth of the thallus were taken in relation to the central axis (Figure 1B shows the 
plants with the central axis in a horizontal position). The thallus's approximate area was 
derived from the product of the length and breadth of the thallus. Abnormally small 
plants (outliers) were excluded from further analysis. 
 

RNA extraction and sequencing 
Using a mortar and pestle, plants from each Eppendorf tube were ground into fine 
powder in liquid nitrogen. Total RNA was extracted using the SpectrumTM Plant Total 
RNA Kit (Sigma, STRN-250) using Protocol A (750 μL Binding Solution) according to 
manufacturer's instruction with on-column DNase digestion using 60 μL of DNase 
mixture (15 μL RQ1 RNase-Free DNase (Promega, M6101), 6 μL RQ1 DNase 10X 
Reaction Buffer and 19 μL nuclease-free water) per column. 

Preliminary quality control of the extracted RNA (triplicates for each condition) 
was done using Nanodrop before further quality control checks by Novogene 
(Singapore) for sample quantitation, integrity, and purity using Nanodrop agarose gel 
electrophoresis and Agilent 2100 Bioanalyzer. Library construction from total RNA, 
including eukaryotic mRNA enrichment by oligo(dT) beads, library size selection, and 
PCR enrichment, was performed by Novogene using NEBNext® Ultra™ II Directional 
RNA Library Prep Kit for Illumina®. The libraries were then sequenced with Illumina 
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Novaseq-6000, paired-end sequencing at 150 base pairs, and sequencing depths of 
~20 million reads per sample.  
 
Expression quantification  
RNA sequencing data were mapped against the Marchantia polymorpha CDS (v5.1 
revision 1, MarpolBase), quantified, and TPM-normalised (transcript per million) using 
Kallisto v 0.46.129.   
 
Identification of differentially expressed genes 
Non-normalized counts from Kallisto were used to analyze differentially expressed 
genes (DEGs) using R package DESeq2 30, where various stress conditions were 
compared against their respective controls. 

For our M. polymorpha dataset, only genes that were found to be differentially 
expressed against controls from two different batches were considered for further 
analysis. For downstream analysis, only genes with a Benjamini-Hochberg31 adjusted p-
value < 0.05 and a −1> log2-fold >1 were considered as differentially expressed. 

 
Identification of transcription factors and differentially expressed pathways 
The biological function and pathway membership of genes of Marchantia polymorpha 
were annotated using Mercator 4 v2.0 32. The annotation of M. polymorpha transcription 
factors was retrieved from PlantTFDB v5.0 33. 

Significantly differentially expressed pathways were determined through a 
permutation analysis, where the observed number of DEGs in a pathway was compared 
to the permuted number of DEGs. The p-values were adjusted for multiple testing using 
Benjamini Hochberg correction (p-value < 0.05) 31. 
 

Construction of stress-specific gene regulatory networks 

To reconstruct the gene regulatory network (GRN), we selected DEGs expressed in 
more than five experiments to ensure sufficient variability in our dataset needed for 
statistical modeling (Figure S8A). Apart from using all the experiments, we also 
reconstructed stress-specific networks by employing a subset of experiments that 
included the respective stresses (Figure S8B). For example, the heat-specific network is 
based only on data from experiments where heat stress was involved (i.e., Heat, Heat-
Mannitol, Heat-Salt, Heat-Dark, and Heat-Nitrogen deficiency).  

The GRN was reconstructed using linear regression with elastic net regularization 34, 
which provided a good compromise between model sparsity (i.e., feature selection 
corresponding to the inclusion of transcription factors in the model) and model 
explanatory power. Three- and five-fold cross-validation was used for the stress-specific 
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data and all data, respectively, to determine the optimal λ and α for each model. We 
filtered for good quality models with R2 > 0.8 (FigS9A).  

 

Evaluating the accuracy of the GRNs 

We evaluated our GRN network against the known curated gene regulatory networks in 
Arabidopsis retrieved from AGRIS 35. Orthogroups of Arabidopsis and Marchantia genes 
were identified using Orthofinder v2.3.1 36 and used as the basis for comparing the 
Arabidopsis and Marchantia GRNs. We used the Jaccard index to quantify the similarity 
between the GRNs, where TF-target edges were converted into orthogroup-orthogroup 
tuples that were used in the set comparisons. The union of the stress-specific networks 
produced the highest Jaccard index score between our networks and the AGRIS 
network (Fig S9B). To test the significance of the similarity between our GRN and the 
AGRIS network, we calculated empirical p-values by shuffling the TF and gene pair in 
the AGRIS network 1000 times and calculated the resulting Jaccard index for each 
shuffling. The empirical p-value was calculated by comparing the 1000 shuffled Jaccard 
index values to the observed Jaccard index value. 

Construction of the unified stress GRN 

For each gene, we identified the transcription factor with the highest absolute coefficient 
(Fig. 3A) in the merged network. In the merged network, the coefficients in different 
stress-specific networks are used to determine whether the transcription factor is an 
activator (all coefficients are positive), repressor (all coefficients are negative) or if the 
regulation is ambiguous (mixture of positive and negative coefficients). For example, if 
TF X regulates gene Y in 4 different stress-specific networks with a positive coefficient, 
the TF is considered an activator. 

Revealing transcription factors regulating biological pathways 

To understand how specifically regulated transcription factors might be affecting certain 
biological processes, we took transcription factors and second-level Mapman bins that 
were specifically regulated in a stress group. A stress group is defined as a group of 
experiments sharing common stress, for example, the heat stress group contains the 
experiments Heat, Heat-Mannitol, Heat-Salt, Heat-Dark, and Heat-Nitrogen deficiency. 

Robustly-responding transcription factors were identified based on the ratio of 
occurrences where it is differentially regulated in a stress group against the number of 
experiments in the stress group. A transcription factor is considered to be specifically 
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expressed in the stress group if the ratio > 0.7. Stress group-specific MapMan bins were 
defined in the same manner.  

Robustly-responding MapMan bins (Figure S13) were considered to be regulated by 
robustly responding TFs if at least 5% of the genes (Figure S14) in the MapMan bin 
were found to be associated with the TF (Figure 4B and S15).  

 

Inference of TF-TF GRN 

We chose the highest absolute co-efficient for each TF-TF pair to indicate the putative 
regulatory relationships between TFs. Next, we defined the transcription factors to be 
up-regulated, downregulated, or ambiguous (up- and down-regulated in more than 1 
stress group) based on their specific expression across stress groups. We then defined 
the edges as expected if:  1) TFA (up-/down-regulated, activator) regulates TFB (up-
/down-regulated), 2) TFA (down-/up-regulated, repressor) regulates TFB (up-/down-
regulated). All other edges were defined as unexpected, e.g.,  TFA (up-regulated, 
activator) regulates TFB (downregulated). Finally, we applied an absolute coefficient cut-
off that produced the highest ratio of expected / total edges (Figure S11), arriving at a 
cut-off value of 0.22. 

Functional analysis of Arabidopsis TF orthologs 

The biological function of Arabidopsis TF orthologs was inferred from gene ontology 
terms with experimental evidence and literature searches. The expression responses 
were inferred through observation of gene expression changes on the Arabidopsis eFP 
browser using the "Abiotic stress" dataset from 37. 

. 

Data availability 
The RNA-seq data capturing the expression of controls, single and double stresses are 
available from https://www.ebi.ac.uk/ena as E-MTAB-11141. 
 
Script availability 
Python and bash scripts used to generate the figures in the paper are available from: 
https://github.com/tqiaowen/marchantia-stress 

 
Results 
Response of Marchantia polymorpha to combined abiotic stresses 
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To capture gene expression changes caused by a single or combination of stresses, we 
first established the type and magnitude of stresses to use. We defined two types of 
stresses: i) the environmental stresses comprised heat, cold, excess light, and 
prolonged darkness, while ii) media stresses comprised nitrogen deficiency, excess salt 
(representing ionic and osmotic stress), and excess mannitol (representing 
osmotic/drought stress). Next, the magnitude of the stresses was modulated to identify 
near-lethal stress conditions, growth decrease by ~50% (inferred from the approximate 
thallus area), or stresses displaying signs of necrosis. To this end, gemmae grown on 
sealed, sterile agar plates under constant light were subjected to varying degrees of 
stress, and their phenotypes were observed on days 15 and 21. For media stresses, the 
gemmae were subjected to the stress from day 0, while for the environmental stresses, 
the stress was applied on day 14 for 24 hours (Figure 1A). Prolonged darkness was an 
exception to this design, as plates were subjected to darkness on days 8, 9, 10, 11, 12, 
13, and 14 to expose the plants to 7, 6, 5, 4, 3, 2, and 1 day(s) of darkness at day 15, 
respectively (Figure 1A).  
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 Figure 1. Influence of different abiotic stresses on the growth of Marchantia polymorpha. A) Overview of the 
experimental setup for stress experiments. Black lines below the timeline indicate the duration where plants were 
exposed to stress. Plants were sampled on day 15. Observation plates were returned to normal growth conditions on 
day 15, and photographs of the plates were taken on days 15 and 21. B) Phenotype of plants on day 21 for heat, 
cold, osmotic, salt, light, dark, and nitrogen deficiency stresses. Conditions with underline represent the stress 
intensities used for combined stress. Controls F and L are representatives from the batches at the start and end of 
independent stresses in panel B. C) Phenotypes of plants on day 21 for combined stresses. Controls O and R are 
representatives from the start and end of combined stresses in panel C. D and E) Thallus size of gemmalings on Day 
15 and 21 of growth (error bars are represented by standard deviation and Student's two-tailed t-test, p-value < 0.05. 
Asterisk (*) represents a significant difference to control, caret (^) represents a significant difference to the first single 
stress control, and plus sign (+) indicates a significant difference to the second single stress control.  
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Single stresses showed varying degrees of effect on plant growth on day 15 (day 
of harvest, Figure S1 shows growth measurements, Supplemental Data 1 shows agar 
plates) and day 21 (6 days post-stress for environmental stresses, Figure 1B). One day 
of cold stress did not affect the growth at the temperature range tested (3-12°C), and we 
selected 3°C for further analysis. The heat stress experiment showed that the plants 
abruptly died when the heat treatment temperature was increased from 33°C (no 
phenotype) to 36°C (death), and we selected 33°C for further study. For light stress, we 
selected 435 µEm-2s-1 as we observed necrosis at the next higher light intensity (535 
µEm-2s-1, Supplemental Data 1). For osmotic (100 mM selected) and salt stress (40mM 
selected), we observed an expected negative growth gradient when the concentration of 
the two compounds was increased. For nitrogen deficiency, at 0 mM KNO3, we 
observed a decrease in growth and an accumulation of a red pigment, which likely 
represents auronidin, a flavonoid shown to accumulate during phosphate deficiency 38. 
Finally, for darkness, we observed that the growth of plants decreased proportionately 
with the duration of days without light, and we selected plants grown in three days of 
darkness, as they showed a growth decrease of 50% (Figure S1). On day 21 (i.e., six 
days of normal growth condition), all dark-grown plants showed increased size, 
indicating that the seven days of darkness are not lethal.  

Next, we determined how Marchantia responds to a combination of two stresses. 
To this end, we tested all 19 feasible pairs of stresses (cold+heat and dark+light 
combinations are mutually exclusive and excluded) using the same experimental outline 
as for single stresses (Figure 1A). We did not observe any unexpected phenotypes 
when combining the stresses (Figure 1D), as typically, a combination of stresses 
resulted in an expected combination of phenotypes (e.g., nitrogen: small, pigmented, 
mannitol: small, nitrogen+mannitol: even smaller, and pigmented) except for salt-
nitrogen (SN), which is significantly larger than its salt counterpart but not different from 
its nitrogen counterpart (Figure 1E). While plants subjected to a combination of sub-
lethal heat (33°C) and high-light (435 µEm-2s-1) died (Figure 1D), this was most likely 
due to a greenhouse effect caused by high irradiation and sealed plates, as the 
temperature of agar climbed to 38°C (i.e., lethal temperature, Figure 1C). Interestingly, 
we observed yellowing of the thalli for high light and cold, indicating that lowering the 
temperature makes the plants more sensitive to high light (Figure 1C). 

The resulting panel of 7 single stresses, 18 combinations of two stresses, and 2 
untreated controls were sent for RNA sequencing (Table S1 contains sample labels, 
and Tables S2 and S3 contain Transcript Per Million (TPM) values and raw counts, 
respectively). Overall, we observed a good agreement between the sample replicates, 
as samples showed expected clustering (Figure S2), and the correlation between 
expression profiles of replicates was >0.97 (Table S4).  
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Figure 2. Analysis of differentially expressed genes and biological pathways. A) The number of significantly
(adjusted p-value < 0.05) up-regulated (red) and downregulated (blue) differentially expressed genes. The stresses
are (C)old, (D)arkness, (H)eat, (L)ight, (M)annitol, (N)itrogen deficiency, and (S)alt. B) The number of DEGs (x-axis)
versus the size (y-axis) of Marchantia plants on day 15 (blue) and day 21 (orange). The R2 and p-values are shown in
the legend. Illustration and equation of metrics used to measure A) similarity between two stresses, B) suppression of
one stress when two stresses are combined, and C) novel genes that are differentially regulated when stresses are
combined. Interaction between independent and cross stresses for D) up-regulated genes and E) downregulated
genes. In each stress combination, the first ('A') and second ('B') stress is the first and second letter of the combined
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('AB') stress, respectively. For the suppression measure, a darker shade of red and blue indicates that more genes 
from the first ('A') and second ('B') stress are not represented in the combined stress, respectively. H) Biological 
processes that are significantly differentially expressed (adjusted p-value < 0.05). For brevity, we only show Mapman 
bins that are differentially expressed in at least three stress perturbations. The groups of stresses are color-coded. 
Abbreviations used to describe the categories of regulation are upregulation ('U', red), up and downregulation ('UD', 
purple), downregulation ('D', blue), and no change ('N', gray).  

Combinatorial differential gene expression analysis reveals a hierarchy of stress 
responses  
Plants perceive and respond simultaneously to multiple stresses when growing in 
nature. To better understand how Marchantia responds to a single of combination of two 
stresses, we first identified differentially expressed genes in the single stresses and the 
18 combinations of two stresses. For more robust inferences, we used two controls 
taken at the beginning and the middle of the experiment and set the requirement for a 
gene to show conserved differential expression in both controls to be deemed a DEG 
(Table S5 and S6). Overall, we observed a good agreement between the two controls, 
as both volcano plots (Figure S3) and set comparisons (Figure S4) indicated a similar 
set of DEGs. We compared the number of up- and down-regulated genes with the 
single stresses and observed that the combination of stresses typically contains a 
similar or higher number of DEGs when compared to single stresses (Figure 2A).  

Next, to investigate whether a severe growth phenotype results in a large number 
of differentially expressed genes, we plotted the plant size (x-axis) and the number of 
differentially expressed genes (y-axis, Figure 2B). We observed no significant 
correlation between these two variables for plants on days 15 and 21 (p-value > 0.05, 
Figure 2B). We concluded that there is no correlation between the severity of growth 
phenotype and the transcriptomic response to stress. For instance, the smallest plants 
(salt+mannitol, SM) also had the fewest number of differentially expressed genes.  

The different single and combined stresses are likely to elicit similar and unique 
gene expression responses, resulting in the stresses having similar sets of DEGs. We 
used the UpSet plot to elucidate these similarities, which shows the intersection of 
multiple sets for up-regulated (Figure S5A) and down-regulated (Figure S5B) genes. 
Interestingly, the largest set of up- and down-regulated genes was unique to 
heat+darkness combined stress (HD), suggesting that HD elicits the most unique and 
dramatic transcriptional response among the tested stresses. Other unique stress 
responses comprised upregulated cold+darkness (CD), cold+high light (CL), 
cold+nitrogen deficiency (CN) and heat+nitrogen deficiency (HN, Figure 4C); and 
downregulated cold+darkness (CD), cold+nitrogen deficiency (CN), cold (C) and 
cold+high light (CL). Darkness alone (D) and in combination with other stresses (e.g., 
ND, CD, MD, SD, HD) also contained a high number of up-regulated (connected dots in 
columns 4, 5, Figure S5A) and down-regulated (columns 2, 4,  Figure S5B) genes, 
suggesting a conserved, core darkness response. Similarly, we observed core 
responses to heat (e.g., 6th column, Figure S3A) and cold (10th column, Figure S5A). 
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Interestingly, we also observed a high number of DEGs across heat and darkness 
experiments (Figure S5A & B), suggesting that these two stresses elicit a similar 
response to a degree. 

To better understand how Marchantia responds to a combination of two stresses, 
we compared the combined response (AB) to the response to individual stresses (A and 
B), with three different metrics measuring the shared response, the dominance of 
stress, and novel responses induced by combined stress. We first produced Venn 
diagrams for up-regulated (Figure S6) and downregulated (Figure S7) gene sets. The 
first metric measures the similarity between A and B (Figure 2C, green area, Jaccard 
Index) and ranges from 0 (A, B do not have any DEGs in common) to 1 (A, B elicit 
identical DEGs). The second metric measures whether one stress suppresses the other 
(Figure 2D, the difference between red and blue area) and ranges from -1 (AB is similar 
to A but not to B, i.e., A suppresses B) to 1 (AB is similar to B but not A, i.e., B 
suppresses A). The third metric measures whether a combination of two stresses elicits 
a  unique response when compared to those of the two individual stresses (Figure 2E, 
purple area specific to AB) and ranges from 0 (all DEGs are found in A and B, i.e., no 
novel response) to 1 (all DEGs in AB are unique, i.e., the combination of AB elicited a 
unique response).  

Stresses showing the highest similarity in terms of DEG responses comprise salt 
and mannitol for up- and down-regulated genes (Figure 2F-G, dark area for SM), salt 
and nitrogen deficiency for up-regulated genes (Figure 2F), and heat and darkness for 
downregulated genes (dark area for HD, Figure 2F). The suppression analysis showed 
that darkness is a strong suppressor for many stresses (red boxes in CD, MD, ND, SD), 
except HD, indicating that heat stress and darkness are comparably dominant (Figure 
2F-G). To support this observation, heat stress could suppress other stresses (blue 
boxes in HS, HN, HM, Figure 2F-G). Finally, the uniqueness analysis revealed that the 
salt+mannitol combination elicited DEGs that were not found in the individual stresses 
(dark blue boxes for SM, Figure 2F-G), suggesting that the two stresses can activate 
altogether different responses when combined.  

To better understand the hierarchies of the stresses and how these stresses 
affect the activity of biological processes, we identified which processes contain 
significantly more up-regulated or downregulated DEGs than expected by chance for 
each stress combination (Figure 2H). The clustering of the rows (biological processes) 
and columns (stresses) revealed that darkness-containing stresses form a clear group 
of similar responses (six stress combinations comprising D, HD, CD, MD, SD, and ND), 
confirming the previous observation of the darkness suppressing other stresses. 
Interestingly, the darkness caused a strong decrease in gene expression of numerous 
pathways (Figure 2H, ~58% blue squares). The second largest group contained nearly 
all heat stress combinations (four stresses: H, HD, HS, HN) and a similar but less 
dramatic downregulation of transcripts in many biological processes. Interestingly, 
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despite the dramatic downregulation of biological processes in most dark and heat 
stresses, a subset of stresses (H, HS, HD, MD) was significantly up-regulated for 
uncharacterized genes (bin not annotated), suggesting that these responses employ 
poorly understood genes. The other groups comprised high-light (four stresses L, NL, 
LS, ML), nitrogen deficiency (three stresses N, MN, and SN), and cold (three stresses 
C, CM, and CS). In contrast, salt- and mannitol-containing stresses did not form any 
groups, suggesting that despite dramatic phenotypic changes, these stresses are 
suppressed by other stresses (Figure 2H, M, and S are not grouped with other 
stresses). Interestingly, salt+mannitol, cold+high light, and cold+low nitrogen were also 
not grouped, indicating that these combinations result in novel transcriptomic 
responses.  

Based on these findings, we can rank the strength of dominance of abiotic 
stresses starting from darkness (six stress combinations), heat and light (four each), 
nitrogen deficiency and cold (three each), and finally, salt and mannitol (none).  

Identification of high-confidence transcription factors involved in stress response 

Our results indicate that certain stresses (e.g., heat and darkness) result in a high 
number of DEGs (Figure 2). These DEGs are likely a result of the action of a gene 
regulatory network (GRN) comprising transcription factors (TFs) that are themselves 
differentially expressed.  

To infer the stress-responsive GRN (Figure S8B), we used ElasticNet, for each of 
the 6257 differentially expressed genes and all 95 differentially expressed TFs that were 
responsive in more than five experiments employed as response and predictor variables 
(Figure S8A). In addition to constructing the GRNs from the whole dataset (i.e., all 81 
RNA-seq experiments), we also constructed stress-specific GRNs by using the data 
from those experiments that included the respective stress. For instance,  the darkness-
specific GRN was inferred from D, DH, DS, DM, and DN expression data. Altogether, 
we constructed 50,056 ElasticNet models (i.e., 6275 DEGs for eight stress datasets) 
containing up to 95 differentially expressed transcription factors as predictors. 
Interestingly, the performance of the GRNs for the individual stresses was higher than 
for the GRN based on the whole dataset (performance measured by R2, Figure S9A), 
suggesting that there is significant variability between the datasets that can be used for 
linear modeling at the stress group level but not when all data sets are jointly examined. 
As a result, the GRNs based on the individual stress groups showed higher similarity 
based on the Jaccard index to experimentally-derived GRN from Arabidopsis than the 
GRN based on all data sets (Figure S9B). Furthermore, by taking the union of the 
stress-specific networks, we obtained a GRN with the highest similarity to the 
Arabidopsis GRN (p-value < 0.05, Figure S9B). Thus, we settled on the union of the 
seven stress-specific GRN, with R2>0.8 performance. Next, to obtain a high-confidence 
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GRN, we selected the transcription factor with the highest absolute coefficient for each
gene (Figure 3A). Based on the value of the selected coefficients, the majority of TFs
are activators (75 TFs, 3355 positive coefficients, green edges), followed by repressors
(19 TFs, 1338 negative coefficients, red edges) and ambiguous (1 TF, 1185 mixture of
positive and negative coefficients, gray). 

 

Figure 3. Identification of robustly-responding transcriptional activators and repressors. A) Gene regulatory
network constructed from the union of the seven stress-specific networks. For each of the 6257 differentially
expressed genes, we kept models with R2 > 0.8 and selected one transcription factor with the highest absolute
coefficient. Orange and gray nodes represent transcription factors and genes, respectively, while green and red
edges represent positive and negative coefficients, respectively. B) Differential expression patterns of transcription
factors across stress groups. Red, blue, and gray indicate significantly up-, down-regulated, and unchanged
expression, respectively. C) Identification of 75 robustly-responding transcription factors across the stresses. For
clarity, cells with specificity scores < 0.7 are masked. Red and blue cells indicate the degree of up- and down-
regulation, respectively. 

To identify which transcription factors are robustly responding to a given stress,
we visualized the significantly up- and down-regulated transcription factors across all
available combinations of stresses (Figure 3B). Interestingly, certain transcription
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factors show consistent expression patterns across most combinations of a given stress 
group (e.g., Mp2g00890.1 is down-regulated in 5 out of 6 cold stress combinations, 
Figure 3B and S10, bottom row). In total, we identified 75 transcription factors that 
showed a consistent, robust response across >70% of combinations within a stress 
group (termed robustly-responding TFs). The number of robustly-responding TFs in a 
stress group corresponds to the number of differentially expressed genes. For example, 
a large number of robustly-responding TFs are found for stresses with a higher number 
of DEGs (Figure 3C, darkness, heat), while stresses with few DEGs had fewer robustly-
responding TFs (salt, nitrogen deficiency).  

We expect that the observed down-regulation of biological processes in darkness 
should be caused by upregulation of repressors, downregulation of activators, or both. 
Interestingly, in darkness, the down-regulated TFs comprise mainly of activators 
(leftmost column, green cells, Figure 3C). In contrast, the up-regulated TFs contained 
many repressors (red cells), suggesting that the large downregulation of most biological 
processes is due to the combined action of repressed activators and expressed 
repressors. Finally, most transcription factors showed specific expression in at most one 
stress with few exceptions, such as Mp8g11560 (robustly downregulated in all stresses) 
and Mp4g17430 (up-regulated in 5 out of 7 stresses).  

 

Construction of stress-responsive gene regulatory network 

To gain a robust, genome-wide view of the Marchantia stress-responsive GRN, we set a 
global coefficient threshold of the Elastic Net Regression that best explained the 
observed DEG patterns. To achieve this, we differentiated 'expected' from 'unexpected' 
gene regulatory patterns (see methods). For example, an up-regulated transcriptional 
activator is expected to up-regulate its target, and conversely, an up-regulated 
repressor is expected to downregulate its target (Figure 4A). We then set to identify the 
coefficient that produced the highest ratio of expected / total regulatory edges ranging 
from 0 (no expected edges are observed) to 1 (all edges are expected). The analysis 
revealed that at a coefficient cut-off of 0.22, the ratio is highest (48.4% of edges can be 
explained, Figure S11A), while at the same time, most (89 out of 95) TFs are still 
connected to other TFs in the GRN (Figure S11B).  

 The resulting GRN revealed intricate regulatory relationships between the 89 
TFs. TFs with the highest number of regulatory targets (dark node color) are heat- and 
dark-related (indicated by H, D in the node name) (Figure S12). At the same time, these 
TFs also regulate the highest number of other transcription factors (larger nodes 
indicate TFs controlling a higher number of other TFs). Interestingly, TFs with the 
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highest number of regulatory targets are typically downregulated (dark nodes with blue
borders).  

 

 

Figure 4. Analysis of stress-specific GRN. A) GRN comprising of TFs differentially regulated in at least five
experiments. Labels below the gene name indicate robustly-responding TFs in  (C)old, (D)arkness, (H)eat, (L)ight,
(M)annitol, (N)itrogen deficiency, and (S)alt. Darker node colors indicate a higher number of genes a TF is regulating,
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while the node sizes indicate the number of transcription factors the node is regulating. Node border width indicates 
the number of incoming regulatory signals of the transcription factor. Red, blue, and yellow node border colors 
indicate TFs that are robustly up-regulated, down-regulated, or both. Thicker edges indicate higher absolute 
coefficients, where green and red edges represent positive and negative coefficients, respectively. Solid and dashed 

edges represent expected and unexpected regulations, respectively. D) The number of expected, unexpected, and 

ambiguous gene regulatory relationships between TFs and MapMan bins. Only edges between TFs controlling ≥5% 

of genes in a MapMan bin are used. C) Identification of TFs that regulate biological processes during heat stress. 

Red and blue nodes indicate robustly up- and down-regulated second-level MapMan bins, respectively. Edge 
thickness represents the percentage of genes controlled by a TF, in a given MapMan bin, with thicker edges 
indicating a higher percentage. Green and red edges indicate that a TF is up- or down-regulating a given process. D) 
Darkness-specific TF-ManMan bin network. 

Next, we set out to investigate which biological processes the TFs regulate in the 
different stresses. We first investigated which biological processes are robustly 
differentially expressed by finding MapMan bins that show consistent expression pattern 
changes across the stress combinations (Figure S13). Next, we calculated the 
percentage of target genes in each MapMan bin that a given TF regulates, based on the 
above GRN. The number can range from 0 (a TF regulates 0% of genes in a bin) to 1 (a 
TF regulates 100% of the genes). We set a threshold of 5% target genes in the 
MapMan bin based on the distribution of the percentages across the network (Figure 
S14), as at this threshold, the majority of regulatory relationships are expected (e.g., up-
regulated activator results in an up-regulated bin, Figure 4B), and most TF-MapMan bin 
edges are removed (Figure S14), resulting in a sparse network. We observed that 
multiple transcription factors typically regulate each biological process (Figure S15). For 
example, the expression of cell wall proteins is decreased in heat (blue node 'Cell wall 
organisation.cell wall proteins', Figure 4C), and this biological process is controlled by 
two down-regulated TFs: Mp5g01530 and Mp3g07510 (blue downregulated nodes). At 
the same time, a TF can regulate multiple biological processes, as exemplified by dark 
stress-specific downregulated activator Mp7g09260 downregulating multiple processes 
related to photosynthesis (Figure 4D). Thus, the inferred GRN can serve as a resource 
to dissect how Marchantia can cope with abiotic stresses. 

 

Functional comparison of gene expression responses and GRN of Marchantia 
and Arabidopsis thaliana 

Often, scientists study model organisms with the hopes of understanding the biology of 
other species. However, it is currently unclear how conserved the GRNs are between 
species. If Arabidopsis and Marchantia show a high degree of GRN conservation, we 
expect the TF orthologues to show conserved expression patterns and be necessary for 
survival under the same stresses. 
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Figure 5. Comparison of stress-specific transcription factors in Marchantia to Arabidopsis orthologs. A) The
function of Arabidopsis thaliana orthologs, inferred from the literature (green, obtained from NCBI, Arabidopsis.org)
and gene expression responses (blue, eFP browser). Each row contains one Arabidopsis TF, and the rows are
grouped and color-coded according to the stress response in Marchantia. The columns indicate the stresses
observed in Arabidopsis. B) Ratio of evidence from the literature for Arabidopsis transcription factors grouped
according to the stress specificity observed in Marchantia (x-axis). C) Ratio of evidence by observation of change in
expression in Arabidopsis transcription factors based on expression data (source eFP browser). High light, dark, and
nitrogen deficiency are omitted due to the lack of data. 'No specific response' comprise transcription factors that were
not robustly responding to a stress in Marchantia. 

 To gauge how similar the stress-specific responses are between Marchantia and
Arabidopsis, we identified the Arabidopsis orthologs of the 95 robustly-responding
Marchantia TFs and studied their experimentally-verified biological function and stress-
responsive expression patterns. Typically, each Marchantia TF has many Arabidopsis
orthologs due to larger gene families in Arabidopsis (Table S7). For most stresses, we
did not find visible congruence between the transcriptomic response of Marchantia TFs
and the biological function and transcriptomic response of the Arabidopsis orthologs
(Figure 5A, Table S8). For example, the heat-responsive Marchantia orthologs in
Arabidopsis have experimentally-verified biological functions in cold, dark, salt,
mannitol/drought, and nitrogen deficiency (Figure 5A) with the majority of functions not
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being involved in heat stress (Figure 5B). We also observed similar patterns for the 
gene expression responses of Arabidopsis orthologs (Figure 5C), where most observed 
gene expression responses were not related to heat. Taken together, the minor 
conservation of biological functions and gene expression responses suggest that stress-
responsive GRNs between Marchantia and Arabidopsis seem poorly conserved.  

 

Regression-based prediction of stress-responsive gene expression 

Our analysis of significantly differentially regulated MapMan bins across experiments 
revealed that specific stresses (e.g., darkness, heat) can dominate other stresses (e.g., 
salt, mannitol, Figure 2H). This indicates that when two stresses (Sx and Sy) are 
present, the combined stress Sxy may resemble one of the stresses more than the other. 
However, the rules governing how gene expression values change in a combined stress 
when two genes are aligned (a gene is up-regulated in Sx and Sy) or conflicting (a gene 
is up-regulated in Sx and downregulated in Sy), are still unclear.  

 To better understand the rules governing gene expression in combined stresses, 
we compared the gene expression change of single stresses and combined stresses. 
For each of the seven stresses, we identified significantly down- (blue), up-regulated 
(red), and unchanged genes, resulting in nine possible combinations of Sx and Sy 
(Figure 6A). Then, for each combination, we calculated the average log-fold changes in 
Sx, Sy, and Sxy. The resulting plot revealed simple near-additive rules governing the 
gene expression. For example, down-regulated genes in the cold (Sx log2 fold change -
2.3, Figure 6A, top left corner), when combined with down-regulated genes in all other 
stresses (Sy log2 fold change -2.5), result in more negatively downregulated genes in the 
combined stresses (Sxy log2 fold change -2.9). This near-additive pattern was seen for 
all seven stresses for down-regulated (first row) and up-regulated genes (last row, 
Figure 6A). Interestingly, when Sx, Sy types are conflicting (e.g., Sx is up- and  Sy is 
down-regulated), Sxy shows log2 fold change values between the two single stresses, as 
would be expected from additivity (Figure 6A).  

The near-additive pattern is seen when all possible combinations of Sx and Sy 
are color-coded by the Sxy outcome (Figure 6B). For example, genes up-regulated in Sx 
and Sy tend to be more up-regulated in  Sxy (Figure 6B, red points in upper right 
quadrant). Conversely, down-regulation in Sx and Sy produces an even stronger down-
regulation in Sxy (Figure 6B, blue points in the upper right quadrant). Conversely, the 
conflicting log2 fold change values tend to produce a response between Sx and Sy 

(Figure 6B, gray points). Differential gene expression analysis of Sx, Sy, and Sxy follow 
similar patterns, where down-regulated Sx and Sy almost exclusively result in 
downregulated Sxy (Figure 6C, top row).  
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Figure 6. Analysis of gene expression responses in combined stress. A) Averaged log2 fold change of genes in
Sx (type of stress indicated at the bottom), Sy (other stresses), and Sxy (combined stress). Blue, red, and gray circles
indicate genes that are significantly downregulated, up-regulated, and not changed, respectively. B) Scatter plot
depicting the outcome in combined stress, where red, blue, and gray dots indicate that the response is higher, lower,
or within the range of the single stresses, respectively. C) Break down of the response observed in combined stress
Sxy. The heatmap reflects the proportion of events in given stress (column), and the colors are normalized across
each category of Sx and Sy. The actual number of observations is annotated in the cells. Blue, red, and gray circles
indicate genes that are significantly downregulated, up-regulated, and not changed, respectively. D) Linear
regression of the average log2 fold change values from panel A). The inferred formula is shown, together with mean
absolute error (MAE), root mean squared error (RMSE), and R2 (goodness-of-fit measure). 

Since the rules of how the different stress responses seem to follow a simple
additive pattern, we investigated whether we can explain the average log2 fold change
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Sxy observed in Figure 6A by regressing it on the average log2 fold change Sx and Sy.
We found that the model Sxy = -0.04 + 0.61*Sx + 0.69*Sy can excellently explain the
average log2 fold change (R2 = 0.95, Figure 6D), suggesting a simple linear mechanism
of integrating gene expression changes. To further examine how well the different
stresses can be explained by the log2 fold change values of the individual genes, rather
than averages, we performed another 3-dimensional linear regression (Figure 7A-G).
While the R2 values dropped, the resulting models could still approximate the expected
values well (R2 = 0.57-0.67). 

 

Figure 7. Stress-specific linear regression analysis. Sx indicates log2 fold change from the specific stress, Sy

indicates log2 fold change from all other stresses, and Sxy represents the log2 fold change from the combined
stresses. The Sx stresses are A) Cold, B) Salt, C) Mannitol, D) Heat, E) Dark, F) Light, and G) Nitrogen deficiency. H)
Summary of the linear regressions coefficients and model prediction quality. The blue and red bars indicate the Sx

and Sy coefficients, respectively, while the light blue bar indicates the R2 value. 

Interestingly, we observed that the parameters Sx of Sy values differed between
stresses (Figure 7H). For example, the Sx parameter (reflecting log2 fold change from
the darkness experiment) in darkness is larger (0.86) than the SY parameter (0.31,
capturing log2 fold change from all non-darkness experiments), indicating that gene
expression differences resulting from the darkness have a higher influence on gene
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expression than other stresses, which is in line with above results (Figure 2H). Based
on the Sx

 coefficients, we can rank the dominance of stresses as darkness (0.86) > heat
(0.71) > cold (0.58) > light (0.53) > mannitol (0.46) > nitrogen deficiency (0.43) > salt
(0.35).   

 

Figure 8. Implementation of the Marchantia gene expression data in CoNekT and eFP browser. A) Heatmap
showing expression of PALs in representative stresses. B) Expression profile of Mp4g14110.1 (MpPAL7) under
single and combined stress in CoNekt. C) Expression of MpPAL7 in different organs and under different abiotic stress
conditions in eFP. D) Comparison of Cluster 102 and 50 bounded by green and blue boxes, respectively. The border
of node MpPAL7 is colored red, and blue dashed lines indicate homology between genes from the two clusters. A)
Heatmap showing expression of PALs in representative stresses. B) Expression profile of Mp4g14110.1 (MpPAL7)
under single and combined stress in CoNekt. C) Expression of MpPAL7 in different organs and under different abiotic
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stress conditions in eFP. D) Comparison of Cluster 102 and 50 bounded by green and blue boxes, respectively. The 
border of node MpPAL7 is colored red, and blue dashed lines indicate homology between genes from the two 
clusters. 

eFP browser and CoNekT database for Marchantia 
Bioinformatic data is only as useful as its accessibility. To make our data readily 
accessible, we have constructed an eFP browser instance for Marchantia available at  
https://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi 37, and updated our CoNekT 
database 39, with our stress data, available at https://conekt.sbs.ntu.edu.sg/. To 
exemplify how our data and these databases can be used, we provide an example with 
phenylpropanoids, which contribute to all aspects of plant responses towards biotic and 
abiotic stimuli. In flowering plants, phenylpropanoids were found to be highly responsive 
to light or mineral treatment, important for resistance to pests 40, and invasion of new 
habitats and reproduction 41. The biosynthesis of phenylpropanoids begins with 
phenylalanine ammonia lyases (PAL) and tyrosine ammonia lyases (TAL) that catalyze 
the non-oxidative deamination of phenylalanine to trans-cinnamate, which directs the 
output from the shikimate pathway phenylpropanoid metabolism 40. 

To study phenylpropanoid metabolism in Marchantia, we started by entering 
'PAL1' into CoNekT's search box (https://conekt.sbs.ntu.edu.sg/), which took us to the 
page of PAL1, a PAL gene AT2G37040 from Arabidopsis thaliana. To identify PAL 
genes in Marchantia, we clicked on the link of the Land Plants orthogroup (CoNekT 
provides orthogroups for Archaeplastida, Land Plants, and Seed Plants), which 
revealed that all 11 land plants in the database contain PALs, while the algae 
Cyanophora paradoxa and Chlamydomonas reinhardtii do not. Marchantia contains a 
surprisingly large number (13) of PALs given the low redundancy of its genome, which 
is higher than Arabidopsis (4). CoNekT contains gene trees that also show the 
expression of genes in major organ types. The analysis revealed that the many PAL 
genes in Marchantia likely result from a recent duplication within Marchantia (Figure 
S16).  

To gain insight into the function of the 13 PAL genes from Marchantia, we set out 
to study the expression of the PALs during stress conditions. First, we copied the gene 
identifiers into Tools/Create heatmap (https://conekt.sbs.ntu.edu.sg/heatmap/), 
revealing that most PALs show a high expression during cold treatment combined with 
nitrogen starvation (Figure 8A). Then, we clicked on one of the highly responsive genes 
Mp4g14110.1, which took us to the page dedicated to the gene. The page contains 
various information, such as gene description, CDS/protein sequences, gene families, 
found protein domains, co-expression networks, and others. The detailed expression 
profile confirmed the high cold + nitrogen-specific expression of Mp4g14110 by using 
the CoNekT expression profile plot (Figure 8B) and eFP viewer (Figure 8C, red square 
at the intersection of cold and nitrogen deficiency). To better understand the function of 
Mp4g14110, we clicked on the cluster link that directed us to the co-expression cluster 
link of Mp4g14110. The cluster page contains information about the genes found in the 
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cluster, Gene Ontology enrichment analysis, found protein domains, and other 
functional information. 

Interestingly, the 'Similar Clusters' cluster page revealed similar co-expression 
clusters in other species (similarity is based on ortholog membership and defined by 
Jaccard Index), with another similar cluster in Marchantia. To study these duplicated 
clusters, we clicked on the 'Compare' button, which revealed that the two clusters 
contain several gene families involved in phenylpropanoid biosynthesis (yellow rounded 
rectangles: PALs, brown rectangles: chalcone synthases), ABC and DTX transporters 
implicated in metabolite transport across membranes (purple/gray/green and red 
rectangles 42), auresidin synthases that can hydroxylate or cyclize chalcones (light blue 
rounded rectangles 43) and glutathione transferases (red rounded square 44) (Figure 
8D). Interestingly, both clusters contained WRKY transcription factors (salmon 
rectangles), implicating these transcription factors in controlling the biosynthesis of the 
respective metabolites.  

Taken together, our tools revealed evidence of duplicated modules, likely 
involved in the biosynthesis of related phenylpropanoids. The updated CoNekT platform 
contains many additional tools to predict gene function and find relevant genes 16,28,39,45. 
For example, the tool found many of the described genes by identifying genes highly 
expressed during combined cold and nitrogen starvation (Table S9), by clicking on 
Tools/Search Specific Profiles, selecting Marchantia and 'Cold-Nitrogen deficiency'.  

Discussion 
Plants are often exposed to multiple abiotic stresses, which requires them to perceive 
and integrate multiple signals and respond in a manner that allows them to survive. To 
understand how plants integrate and respond to the various environmental cues, we 
constructed a stress expression atlas capturing gene expression changes to single and 
combined stresses for Marchantia polymorpha.  
 To determine the response of M. polymorpha towards various single stresses, we 
tested a range of severity for heat, cold, salt, osmotic, light, dark, and nitrogen 
deficiency on M. polymorpha gemmae. As expected in most stresses, the size of the 
plants decreased proportionally to the severity of stresses  (Figure 1B). Specific 
stresses, such as 3oC cold and 535 uEm-2s-1 light, caused only minor growth 
phenotypes, suggesting that Marchantia can survive under even lower temperatures 
and higher light intensities. Conversely, stresses such as osmotic (100mM mannitol), 
salt (40mM NaCl), and carbon starvation (3 days of darkness) produce strong growth 
phenotypes resulting in reduced growth (osmotic, salt, darkness) and discoloration 
(yellow-green for mannitol > 150mM,  darker plants for salt > 60mM salt) (Figure 1B). 
Death of plants occurred for heat stress at 36oC for 24 hours and at higher salt 
concentrations (>200mM). Interestingly, the plants grew at 0mM KNO3,  albeit slower 
and with reddish discoloration likely caused by auronidin, a flavonoid shown to 
accumulate during phosphate deficiency 38. 
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 In most cases, the combination of two stresses resulted in additive phenotypes 
(e.g., salt+mannitol stress results in smaller plants than the two stresses separately, 
Figure 1C-E). While heat (33oC) combined with high light intensity (435 uEm-2s-1) 
resulted in death, this was caused by temperature built up in the sealed plates, causing 
the temperature to rise to the lethal 38oC. Consequently, this stress combination should 
be performed using an open plate setup in the future. The only exception to this was 
salt+nitrogen deficiency (SN) (40 mM NaCl, 0 mM KNO3), which was significantly larger 
than plants exposed only to salt stress and was observed to have extensive and dense 
rhizoids (Supplemental Data 1). Curiously, we did not observe any dramatic phenotypes 
when combining carbon/energy starvation (3 days of darkness) with any other stresses 
(Figure 1C). This is counterintuitive as, e.g. heat stress acclimation is a costly process 
requiring the biosynthesis of new transcripts and proteins to repair, replace and 
rebalance the affected cellular machinery 46. A hypothesis for the unexpectedly mild 
phenotype for combined dark stress could be due to the lack of photosynthetic 
processes in the absence of light, which increases the plant's capacity to cope with 
increased ROS, a typical response to most abiotic stresses 47. This is also exemplified 
by the significant downregulation of oxidoreductases and chloroplast redox homeostasis 
in combined dark stress (Figure 2H). These phenotypes demonstrate that Marchantia is 
able to survive various adverse growth conditions and can serve as an excellent model 
for studying stress acclimation. 

Interestingly, purely physical stresses (cold, heat, darkness, and high light) 
showed a higher number of DEGs than chemical stresses (salt, mannitol, and nitrogen 
deficiency) (Figure 2A). We speculate that the physical stresses cause more DEGs 
because these stresses can permeate every cell, affect every protein (heat, darkness), 
and/or dramatically affect the energy levels that have consequences on all processes 
(darkness, high light). Conversely, stresses such as mannitol and salt can be effectively 
contained by the action of ion transporters and osmolyte accumulation 48. Interestingly, 
we did not observe any correlation between the number of DEGs and the effect on plant 
growth (Figure 2B); while salt and mannitol treatments caused the most dramatic growth 
defects, these two stresses also showed the lowest number of DEGs (Figure 2B). This 
observation is in line with our study on alga Cyanophora 16, suggesting that there is no 
correlation between a visible phenotype and growth across stresses in other plants.  
 We observed that certain stresses dominate the transcriptional responses. For 
example, darkness+cold looks more like darkness than cold (Figure 2H), suggesting 
that darkness is the dominant stress (Figure 2F, G, dominance plots are red in darkness 
stresses). The analysis of differentially expressed pathways allowed us to rank the 
strength of dominance of abiotic stresses: darkness (clustered in six stress 
combinations), then heat and light (four combinations each), then nitrogen deficiency 
and cold (three each)(Figure 2H). To better understand the mechanism governing the 
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dominance of the stresses, we performed several analyses that revealed multiple 
mechanisms that likely work together.  

Firstly, we identified 75 robustly-responding TFs, revealing that the dominant 
stresses (e.g., heat and darkness) differentially express a higher number of TFs than 
the non-dominant stresses (Figure 3A). Secondly, the inferred GRN showed that the 
TFs active in the dominant stresses regulate more genes and other TFs than TFs from 
non-dominant stresses (Figure 4A, H, D nodes tend to be darker). Thirdly, our 
regression model showed that the gene expression changes in a combination of two 
stresses could be explained by the addition of the log2 fold change values. Thus, when 
combining stress with a high number of largely negative  log2 fold change values (e.g., 
darkness down-regulated log2 fold change is between -3.9 to -2.9, Figure 6A, top row), 
with other stresses, the log2 fold change in combined stress will also be negative (log2 
fold change for combined stress in darkness down-regulated genes ranges between -
4.7 to -1.8, Figure 6A). Fourth, our regression model showed that dominant stresses 
have higher coefficients (Figure 7H), suggesting yet another unknown component 
governing the integration of multiple stress responses.  

Our comparison of Marchantia robustly responding TFs and their Arabidopsis 
orthologs revealed that the majority of Arabidopsis TFs are not involved in the same 
stresses as the Marchantia TFs (Figure 5AC). This contrasts with studies showing 
conservation of stress response in plants focusing on transcription factors and 
hormones 49–53. However, the lack of conservation between Marchantia and Arabidopsis 
is not entirely unexpected, as massive changes such as genome and gene duplications 
have occurred since the last common ancestor, rendering a lack of homology in genes 
across species and differences in gene families and regulation. This suggests that each 
model plant uses a different strategy to acclimate to stress, making it uncertain to what 
degree knowledge gained from model species such as Arabidopsis can be used to 
improve our crops. This lack of conservation of responses to abiotic stresses has been 
observed by us at the species level in Cyanophora 16, and at the intraspecies level by a 
salt stress study in six Lotus accessions, where only 1% of genes showed a conserved 
response 54, in seven Arabidopsis accessions, which showed a divergent response to 
treatment by salicylic acid 55 and by two strawberry cultivars, which displayed modest 
conservation of DEGs to the same pathogen 56. However, while we analyzed only gene 
expression, stress responses can be active at the epigenetic (methylation of genes), 
transcriptomic (mRNA, microRNA, lncRNA) and proteomic (posttranslational 
modifications and activation) levels 57–61.  

To make our data more readily accessible, we provide an eFP browser for 
Marchantia, a popular tool allowing the visualization of gene expression by an 
'electronic Fluorescent Pictograph'. Furthermore, we provide an updated CoNekT 
database with expression atlases of 13 species comprising various algae and land 
plants. The database provides tools to study gene expression, functional enrichment 
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analyses of co-expression networks, and other comparative tools. These valuable tools 
will help further dissect the gene regulatory networks behind abiotic stress responses in 
Marchantia and other species Figure 7). 

Importantly, our analysis shows that it is possible to predict gene expression of 
combined stresses with a simple linear regression. This paves the way to building more 
complex, better-performing models that can predict gene expression in any 
environment, given sufficient input data. This strengthens the call for more emphasis on 
studying combined biotic and abiotic stresses in light of future challenges posed by 
climate change 62,63. 
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Supplementary figures 

 

Figure S1. Area of plants at 15 days (day of harvest) and day 21 (6 days post-
harvest) for the single and combined stresses. Each bar represents measurements
from at least 4 plants. Error bars are represented by standard deviation and significance
was determined by Student's two-tailed, t-test, p < 0.05. 
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Figure S2. Hierarchical clustering of the Marchantia stress experiments. Transcript
per million (TPM) gene expression values were scaled with standard scaler and
clustered with seaborn.clustermap() function. 
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Figure S3. Volcano plots of stress experiments. The x-axis represents log2-fold
change, the y-axis indicates the -log10 of the adjusted p-value. Each point represents a
gene that has an absolute log2-fold change > 1 and is significantly (adjusted p-
value<0.05, orange color) or not significantly (p-value>0.05, blue point) differentially
expressed. 
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Figure S4. Comparison of found differentially expressed genes for the single and
combined stressed. For each stress combination, we estimated significant DEGs
(adjusted p-value<0.05) by using control D2 (red circle) and control H2 (green circle).
The orange areas indicate the overlap between the found DEGs of the two controls. The
overlapping DEGs were used for further study. The following abbreviations are used for
the description of stresses: cold (C), dark (D), heat (H), light (L), mannitol (M), nitrogen
deficiency (N), and salt (S). The combination of stresses is indicated by two letters,
where e.g., HD indicates heat+darkness treatment. 
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Figure S5. Upset plot showing the top 50 intersections of differentially expressed
genes. A) Up-regulated genes. B) Downregulated genes. The package is available from
htps://upsetplot.readthedocs.io/en/stable  
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Figure S6. Venn diagrams of up-regulated genes in single and combined 
stresses. The abbreviations are cold (C), dark (D), heat (H), light (L), mannitol (M), 
nitrogen deficiency (N), and salt (S). A combination of stresses is indicated by two 
letters and purple circles. The first and second stress in a pair is colored red and green 
(e.g., cold is red in CD), while the combined stress is colored purple. The sizes of the 
circles and intersections and the numbers within indicate the number of significant 
DEGs. 
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Figure S7. Venn diagrams of downregulated genes in single and combined
stresses. The abbreviations are cold (C), dark (D), heat (H), light (L), mannitol (M),
nitrogen deficiency (N), and salt (S). A combination of stresses is indicated by two
letters and purple circles. The first and second stress in a pair is colored red and green
(e.g., cold is red in CD), while the combined stress is colored purple. The sizes of the
circles and intersections and the numbers within indicate the number of significant
DEGs. 
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Figure S8. Considerations for the reconstruction of the stress-specific gene
regulatory networks. A) Number of differential genes in more than a certain number of
experiments. B) List of experiments in each stress specific-network. 
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Figure S9. Metrics used to construct the unified GRN. A) Distribution of model
counts across various R2. B) Similarity of various gene regulatory networks against a
shuffled AGRIS gene regulatory network. Point indicates observed similarity while
asterisk indicates significance, hypergeometric test, p < 0.05. 
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Figure S10. Expression profile of transcription factors involved in GRN
reconstruction. Red, blue, and gray cells represent up-, down-regulated and
unchanged expression respectively. The similarity of transcription factors was
calculated based on the Jaccard index. Transcription factors with more than 3 members
in a family are assigned a unique color.  
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Figure S11. The ratio of expected interactions across absolute coefficient cut-
offs. A) Number of nodes retained. B) Number of edges retained. 
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Figure S12. The magnitude of response in GRN for each stress. Blue, orange, and
green bars reflect the number of stress-specific TFs, the number of TFs in the first
neighborhood of the former, and genes associated with the first neighborhood
respectively. 
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Figure S13. Robustly responding second-level mapman bins across the 7 abiotic
stresses. Red, blue, and gray cells correspond to specifically up-, down-regulated, and
no change respectively. Cells that do not contain enrichment for stress are in white. 
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Figure S14. Frequency of ratio of robustly responding MapMan bins regulated by
robustly responding transcription factors. 
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Figure S15. Representation of enriched second-level mapman bins under the
regulation of specifically expressed transcription factors in A) Cold, B) Light, C)
Salt, D) Mannitol and E) Nitrogen deficiency stresses. Node colors red and blue reflect
the degree to which the nodes are specifically up or downregulated in the stress
respectively. The edge width represents the ratio of genes under regulation as a fraction
of the total number of genes found in that particular MapMan bin. The color of edges
reflects the general trend of regulation of the TF, with green and red for positive and
negative regulation respectively. 
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Figure S16. Phylogenetic Tree of PAL OG_02_0000119 (Land Plants). 
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Supplementary Tables 

Supplementary Table 1. Summary of experiment label to experiment conditions 
and mapping statistics from Kallisto. 

Supplementary Table 2. TPM normalized gene expression matrix for Marchantia 
experiments 

Supplementary Table 3. Raw gene expression matrix for Marchantia experiments 

Supplementary Table 4. PCC values within Marchantia experiment replicates 

Supplementary Table 5. Summary of DESeq2 output of Marchantia stress 
experiments 

Supplementary Table 6. List of genes that are identified to be differentially 
expressed in both controls with corresponding MapMan bins and annotation. 'UP' 
and 'DOWN' in L2FC_D2 and L2FC_H2 columns indicate significant up and 
downregulation when compared against control D2 and H2 respectively. 

Supplementary Table 7. Evidence of function in Arabidopsis orthologs of 
Marchantia transcription factors based on literature and gene expression 
changes.  

Supplementary Table 8. Incidents of evidence in Arabidopsis (yellow) for each 
group of robustly responding Marchantia transcription factor (green) 

Supplementary Table 9. Cold-Nitrogen deficiency specific genes as obtained from 
conekt.plant.tools 
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