Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A dynamic clamp protocol to artificially modify cell capacitance

View ORCID ProfilePaul Pfeiffer, Federico José Barreda Tomás, View ORCID ProfileJiameng Wu, View ORCID ProfileJan-Hendrik Schleimer, View ORCID ProfileImre Vida, View ORCID ProfileSusanne Schreiber
doi: https://doi.org/10.1101/2021.11.12.468368
Paul Pfeiffer
1Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4, 10115 Berlin, Germany
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paul Pfeiffer
Federico José Barreda Tomás
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
3Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiameng Wu
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
4Einstein Center for Neurosciences Berlin, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jiameng Wu
Jan-Hendrik Schleimer
1Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4, 10115 Berlin, Germany
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jan-Hendrik Schleimer
Imre Vida
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
3Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Imre Vida
Susanne Schreiber
1Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4, 10115 Berlin, Germany
2Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Susanne Schreiber
  • For correspondence: s.schreiber@hu-berlin.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted November 13, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A dynamic clamp protocol to artificially modify cell capacitance
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A dynamic clamp protocol to artificially modify cell capacitance
Paul Pfeiffer, Federico José Barreda Tomás, Jiameng Wu, Jan-Hendrik Schleimer, Imre Vida, Susanne Schreiber
bioRxiv 2021.11.12.468368; doi: https://doi.org/10.1101/2021.11.12.468368
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A dynamic clamp protocol to artificially modify cell capacitance
Paul Pfeiffer, Federico José Barreda Tomás, Jiameng Wu, Jan-Hendrik Schleimer, Imre Vida, Susanne Schreiber
bioRxiv 2021.11.12.468368; doi: https://doi.org/10.1101/2021.11.12.468368

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4090)
  • Biochemistry (8772)
  • Bioengineering (6487)
  • Bioinformatics (23356)
  • Biophysics (11756)
  • Cancer Biology (9154)
  • Cell Biology (13256)
  • Clinical Trials (138)
  • Developmental Biology (7418)
  • Ecology (11376)
  • Epidemiology (2066)
  • Evolutionary Biology (15095)
  • Genetics (10403)
  • Genomics (14014)
  • Immunology (9126)
  • Microbiology (22070)
  • Molecular Biology (8783)
  • Neuroscience (47394)
  • Paleontology (350)
  • Pathology (1421)
  • Pharmacology and Toxicology (2482)
  • Physiology (3705)
  • Plant Biology (8054)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2211)
  • Systems Biology (6017)
  • Zoology (1250)