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Abstract

1: E�cient comparisons of biological color patterns are critical for understand-
ing the mechanisms by which organisms evolve in ecosystems, including sexual
selection, predator-prey interactions, and thermoregulation. However, elongate or
spiral-shaped organisms do not conform to the standard orientation and photographic
techniques required for automated analysis. Currently, large-scale color analysis of
elongate animals requires time-consuming manual landmarking, which reduces their
representation in coloration research despite their ecological importance.
2: We present Batch-Mask: an automated and customizable workflow to facilitate
the analysis of large photographic data sets of non-standard biological subjects. First,
we present a user guide to run an open-source region-based convolutional neural
network with fine-tuned weights for identifying and isolating a biological subject
from a background (masking). Then, we demonstrate how to combine masking with
existing manual visual analysis tools into a single streamlined, automated workflow
for comparing color patterns across images.
3: Batch-Mask was 60x faster than manual landmarking, produced masks that cor-
rectly identified 96% of all snake pixels, and produced pattern energy results that
were not significantly di�erent from the manually landmarked data set.
4: The fine-tuned weights for the masking neural network, user guide, and automated
workflow substantially decrease the amount of time and attention required to quan-
titatively analyze non-standard biological subjects. By using these tools, biologists
will be able to compare color, pattern, and shape di�erences in large data sets that
include significant morphological variation in elongate body forms. This advance
will be especially valuable for comparative analyses of natural history collections,
and through automation can greatly expand the scale of space, time, or taxonomic
breadth across which color variation can be quantitatively examined.
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1 INTRODUCTION6

The increasing digitization of museum specimens and the convenience of digital photography provide unparalleled opportunity7

to quantify how color varies across the entire tree of life. However, high morphological shape variation across taxa poses a8

challenge for automated image analysis tools, requiring prohibitively labor-intensive analysis with manual approaches. Snakes9

in particular demonstrate impressive variation in coloration and patterning (Allen et al., 2013) that serve critical functions, such10

as anti-predator signaling (Brodie III, 1993). Despite the iconic role of snake coloration in ecology and evolution, analysis of11

snakes and other elongate organisms lags behind taxa like insects and birds, specifically due to challenges in automating color12

quantification.13

FIGURE 1 Batch-Mask fine-tuned weights use a neural network to take A) unlabeled photographs of circular or coiled biologi-
cal specimens to generate B) a background-masked image. C) Batch-Mask is 60x faster than manual landmarking for specimens
that vary in color, color pattern, thickness, coiling, and lighting conditions.

When using photography to collect color data, it is essential to identify which portions of a photograph are associated with the14

biological subject and which are calibration tools or part of the background (i.e., masking). Generally, standardizing preparation15

and photographing protocols reduces postural variation and enables comparison among specimens by facilitating the isolation of16

a biological subject. Morphological features, such as limbs, are often used as landmarks to identify color variation in homologous17

regions (Van Belleghem et al., 2018). Because snakes and many other animals lack limbs, their elongated body forms cannot be18

consistently positioned for photographic data collection. Snakes are usually coiled into circles or spirals for practicality, but the19

number, the diameter, and direction of the coils (clockwise or counterclockwise) vary greatly because snake length spans six20
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orders of magnitude (Feldman et al., 2015). Such high disparity in morphology and posture hinders the application of traditional21

image processing techniques.22

Recently, machine learning has facilitated the automated detection and visual categorization of biological information in large23

and complex datasets (Li et al., 2018). Machine learning can be performed by neural networks, which consist of processing24

nodes that distribute information to neighboring nodes, much like a human brain (Suk, 2017). These networks can be trained to25

perform specific tasks by providing a dataset in which the task has already been performed (i.e., a training set; see Section 6 for26

glossary). Then, the trained neural network can be applied to an unlabeled dataset to perform the same task (i.e., inference). By27

including su�cient variability in the training set, the trained neural network can robustly perform the task on diverse real-world28

biological data that vary in color, position, size, orientation, and resolution (Davis et al., 2020; Ditria et al., 2020; Kumar and29

Das, 2019).30

FIGURE 2 Summary diagram of the Batch-Mask work flow. A) Landmarked data from a few photographs are used to train
a neural network and generate fine-tuned weights. This is unnecessary if the data set is visually similar to coiled snakes. B)
Biological subjects are automatically isolated from an unlimited number of photographs without landmarks. Yellow boxes
indicate outputs used for downstream processes

Here, we present an automated and customizable workflow (Batch-Mask) using a region-based convolutional neural network31

(R-CNN) to identify and isolate pixels associated with biological specimens from photographs (Figure 1 ). First, we describe32

how we used labeled photographs to train the neural network for these diverse biological specimens (Section 3.2, Figure 2 A).33

Then, we use the inferred weights to automate masking of unlabeled photographs (Section 3.4, Figure 2 B). Finally, we demon-34

strate how Batch-Mask combines with other tools to automate biological image processing (Section 5, Figure 2 C). Due to35

their challenging variability, we use a diverse benchmark photographic dataset of 33 species of neotropical snake to assess auto-36

mated masking and color pattern analysis (University of Michigan Museum of Zoology, Division of Herpetology et al., 2021).37

Because the weights are fine-tuned for a diverse dataset of coiled snakes, Batch-Mask is readily applied or trained to analyze38

other coiled forms, including whole organisms, organs, or tissues. By using a neural network to accommodate large amounts39

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.468394doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468394
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Curlis & Renney ET AL.

of variation in morphology and posture, this approach facilitates the automated analysis of highly diverse datasets for use in40

ecological and evolutionary analysis of color patterns.41

2 REQUIREMENTS AND INPUTS42

2.1 Software43

The Batch-Mask source code can be run through online cloud-based tools (such as Google Colab) to minimize hardware-44

induced performance constraints. Programs such as ImageJ (Schindelin et al., 2012) or TPSDIG (Rohlf) can be used to landmark45

the borders of a snake in training set photographs. Alternatively, the source code can be modified or run on a local machine,46

though we recommend access to a GPU. A list of required Python libraries is included in the source code). Any color calibration47

or color pattern analysis software can be used for downstream processing; here, we incorporated the micaToolbox (Troscianko48

and Stevens, 2015) plugin for ImageJ into a fully automated Python workflow.49

2.2 Obtaining images50

We trained and tested the neural network of Batch-Mask on an open-source dataset of Neotropical snakes (University of51

Michigan Museum of Zoology, Division of Herpetology et al., 2021). All specimens were photographed before preservation52

using a Nikon D7000 digital SLR camera (Nikon Inc., Melville, NY, USA) with a Coastal Optics UV-VIS-IR 60 mm F/453

macro lens (Jenoptik Optical Systems, Jupiter, FL, USA) using variable shutter speeds, F-stops, and ISO. Each specimen was54

illuminated from multiple angles using fluorescent and UV light bulbs. Each photograph contained one specimen, a set of color55

standards (X-rite Colorchecker Passport Pro), and a circular gray standard (40% Spectralon Di�use Reflectance Standard) that56

also functioned as an object of known diameter for size calibration. Photographs were saved as JPG files, but Batch-Mask is57

compatible with any image file type.58

To facilitate accurate downstream color comparisons, we wrote a custom macro in Photoshop (Adobe Inc., San Jose, USA)59

that uses the AutoColor tool to calibrate the color in each photograph. We also used the OpenCV (Bradski, 2000) GaussianBlur60

function with a 5x5 pixel kernel size to pre-process the photographs for the neural network.61

2.3 Creating labeled data62

To train and implement our model, we labeled a set of 151 photographs (Set 1 in the dataset) that included species with diverse63

colors and patterns and both dorsal and ventral views of each snake. We recommend that the dataset include a wide range of64

color, size, shape, and pattern variation to maximize generalizability and minimize overfitting (see Section 3.3).65

We used the tpsDig program (Rohlf) to manually place landmarks along each side of the snake’s body to indicate the pixels66

associated with the snake. We then used a custom script to convert the tps outline into a JSON file.67
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Note that the output masks are highly dependent on the labeled data. In our dataset, lateral scales visible from the ventral view68

of the snake were excluded from the ventral landmarking due to substantially di�erent color patterning (Figure S1), resulting69

in output masks of ventral photographs that identify regions most relevant to biological analyses, rather than the edge of the70

snake’s body.71

3 TRAINING AND IMPLEMENTATION72

To facilitate customization for biological subjects that di�er greatly from the visual appearance of snake, we describe how to73

train the neural network to a customized ground truth dataset. However, if coiled or circular subjects are being analyzed, refer74

to Section 3.4 to begin implementation.75

3.1 Creating training and validation sets76

We randomly divided the 151 landmarked JSON files into a training pool of 135 labeled photographs and a validation pool of 1677

labeled photographs, a ratio of 9:1 (see (Guyon, 1997) to determine optimal ratio).In every training step, we randomly selected78

a photograph from the training pool, then randomly sampled one 512 x 512 pixel square image (tile) from the photograph for79

the training set. We created one fixed validation set by randomly choosing 32 x,y coordinates and sampling a 512 x 512 pixel80

tile at each location from each photograph in the validation pool. Note that no validation tiles overlap with training tiles because81

they are sampled from di�erent pools of photographs. However, validation tiles may stochastically overlap with each other .82

3.2 Training the neural network83

Batch-Mask utilizes a customized region-based convolutional neural network (R-CNN) model (He et al., 2017) to generate84

masks of snakes in photographs. This neural network uses the training process to fine-tune mask weights (WFT ) from pre-trained85

weights (WPT ) provided with Mask R-CNN (obtained from training on the COCO dataset (Abdulla, 2017)). On Google Colab86

(Abadi et al., 2015), we set the GPU count to 1 and the number of images per GPU to 1. Our learning rate was 0.0001 (see87

Section 4.1). All other parameters in the configuration file were left to their default values.88

The number of validation steps must be equal to the number of tiles in the validation set so that loss is calculated on the full89

validation set for every epoch. Mask-RCNN suggests using twice as many training steps as validation steps (Abdulla, 2017).90

The number of training and validation steps in an epoch does not a�ect model accuracy, but if training and validation loss values91

converge after a single epoch, decreasing the number of training steps will reveal the progression of loss values. Decreasing92

training steps should be accompanied by decreasing validation steps, such that a roughly 2:1 ratio is maintained. If the loss93

values take more than 12 hours to converge, the number of training steps can be increased. If both the training and validation94

loss plateau at non-zero values, Section 4.1 discusses how model settings can be adjusted to increase accuracy.95
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The training that resulted in the best masks used 450 training steps and 50 validation steps for each epoch. We trained for96

20 epochs, each lasting 1.21 hours. The training and validation losses plateaued at 16 epochs, after which the validation losses97

began increasing (likely due to overfitting). The weight values at 16 epochs were used for inference. Our training process duration98

was 24.2 hours.99

3.3 Loss and model accuracy100

We calculated training and validation losses using the ratio of correctly labeled pixels divided by all labeled pixels101

(Table S1).This loss equation does not penalize pixels incorrectly identified. The training loss values inform the training process,102

but the validation loss does not. We assessed model accuracy by comparing loss values after each epoch to assess asymptotic103

curves (Figure 3 ), indicating diminishing increases in accuracy with additional training.104

Based on the validation loss, Batch-Mask was successful in rapidly isolating pixels associated with a biological subject from105

the background. To maximize the size of our training and validation sets, we used the validation loss at the epoch used for106

inference to represent the accuracy of the trained neural network, instead of inferring masks for a labeled test set. We qualitatively107

examined the output masks for an unlabeled test set (Section 3.4), which we found to be usable.108
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FIGURE 3 The loss calculations from a successful training process. The training loss is plotted in orange, the validation loss
is plotted in teal. Epoch is indicated on the x-axis. Note that the training loss values decrease exponentially in the first epoch.
The model weights corresponding to epoch 16, indicated by the black vertical line, were used for inference because this is the
onset of the validation loss plateau.
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3.4 Implementation on Unlabeled Data (Inference)109

To demonstrate the utility of our automated workflow to accurately process images outside of our training and validation sets,110

we implemented Batch-Mask on a test set of 50 unlabeled photographs (Set 2) (University of Michigan Museum of Zoology,111

Division of Herpetology et al., 2021), each subdivided into 212 tiles of 512 x 512 pixel resolution with 100 pixels of overlap112

with neighboring tiles in each direction. The implementation of the trained model required approximately 25 minutes to mask 50113

unlabeled images. By comparison, generating a JSON file of ROIs for an equal number of images would require approximately114

25 hours for a trained human to do by hand (based on landmarking rates in the training set).115

Because there are no landmarks associated with these photographs, we created a Python workflow that displays a random116

subset of masks overlaid on original photos to qualitatively assess mask accuracy.117

4 PARAMETER OPTIMIZATION118

To assist with troubleshooting and customization of the workflow, we discuss settings as they relate to loss, mask outputs, and119

computation time. However, we note that this is not an exhaustive guide and other settings could also be modified (such as120

learning momentum, relative loss values, and mask shape).121

4.1 Troubleshooting and modifying settings122

The three parameters that have the most e�ect on output are learning rate, tile size (resolution), and tile overlap. earning rate123

controls the magnitude of the correction to the weights in response to a mismatch between training output and the labeled data.124

High learning rate values cause the training and validation loss values to diverge or wildly oscillate, while small values result in125

slower convergence but less oscillation. We recommend starting with smaller learning rate values and slowly increasing between126

training sessions to improve performance. Note, the Mask R-CNN code includes by default a learning rate decay throughout a127

training session, which was not modified for this method.128

The resolution of each tile, the number of subdivisions, and the overlap between neighboring tiles sampled from each pho-129

tograph are all interdependent. If the entire ROI is not identified (Figure 4 A, top) or if undesired regions are included, we130

recommend decreasing tile size (increasing the number of subdivisions for the same amount of overlap) to increase mask res-131

olution. A higher resolution typically produces a more accurate model but requires exponentially more memory (Figure 4 A,132

bottom).133

If mask inaccuracies correspond to the edges of subdivided image tiles, we recommend increasing overlap (the number134

of pixels shared between neighboring tiles). With higher overlap, features are viewed in multiple contexts, providing more135

opportunities for proper identification. Alternatively, decreasing overlap reduces computation time for acceptable output masks.136
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4.2 Overfitting137

Accuracy is highest when the distribution of variation in the training and validation sets match. Overfitting occurs when the138

model is complex enough to memorize the entire training dataset, resulting in poor generalization (training loss decreases, but139

validation loss plateaus or increases after a plateau). To avoid overfitting, expand the size and variation within the training set140

(specimen size, shape, pattern diversity, color) to more accurately reflect the variation in the validation set. If diversity cannot141

be expanded with additional images, randomly changing the brightness and the hue of each image enhances useful variation in142

the training set.143

FIGURE 4 Visual guide to troubleshooting the training process. Each column in this diagram represents the indicators for
tuning a di�erent parameter. Loss plots can be used to troubleshoot a) Learning rate. Mask quality can be used to troubleshoot
b) Subdivision/Resolution, c) Overlap. The top row displays the output indicating that the parameter should be increased. The
bottom row displays the output indicating that the parameter should be decreased. Note that the loss plots are exaggerated to
show the most recognizable patterns and were not generated by training results.

4.3 Post-Processing144

Because the loss calculation does not penalize non-ROI pixels misidentified as ROI pixels, the resulting inferred masks will145

likely include pixels outside of the snake. To eliminate these outliers, our script uses the OpenCV function findContours to146

identify the largest contiguous unmasked area and eliminate unconnected areas. This is helpful if portions of the background are147

being recognized incorrectly as ROI. If the ROI is in more than one contiguous piece, this function can be changed to recognize148

two or more unmasked areas.149
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FIGURE 5 The mean residual di�erences (dashed line) between the pattern energies computed using the hand-labeled (solid
line) and the inferred (dotted line) masks for the each photograph in the training dataset. Di�erences are sorted by color channel:
red, green, and blue. The clouds represent the standard deviation from the mean for each pattern size in the color channel.

5 DOWNSTREAM ANALYSES AND COMPATIBILITIES150

Here, we demonstrate the ease of incorporating our Batch-Mask approach into a Python workflow for processing large datasets151

by analyzing the color pattern energy of snakes in the dataset (Figure 2 C).152

Prior to analysis, we identified the gray size standard in each photograph using the Circle Hough Transform algorithm153

(available from OpenCV (Bradski, 2000)). The gray standard and snake ROIs were combined and exported into a single JSON154

file.155

5.1 An automated workflow for color analysis156

We incorporated the micaToolbox functions into the Batch-Maskworkflow to combine color channels, scale the image by size,157

and create a single MSPEC file for pattern energy analysis of complexity in the snake ROI. To automate the process of generating158

MSPEC images, we modified the micaToolbox script to load the ROIs directly from the JSON file and batch-generate MSPEC159

files for multiple specimens at once.160

To test whether the errors in machine-learned inference reduced the quality of color analyses, we compared hand-labeled161

masks to those produced by Batch-Mask for the photographs in the training set. Pattern energy as a function of pattern size for162

each color channel showed no significant di�erences between the hand-labeled and inferred datasets (paired t-tests, all p > 0.05,163

Figure 5 ). These results demonstrate that small pixel-wise di�erences between the hand-labeled and inferred datasets do not164

compromise the quality of downstream color analyses.165
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6 GLOSSARY166

• Mask R-CNN: A Region-based Convolutional Neural Network that uses a mix of convolutional layers and fully connected167

layers to classify images.168

• Mask: Binary array with the same dimensions as the image, with 1 indicating snake pixels and 0 indicated non-snake169

pixels.170

• Region of interest (ROI): Parts of an image outlined by a polygon or designated by a binary array.171

• Label: Human-generated ROIs for both the training and validation sets.172

• Landmarking: Identifying the locations of comparable morphological features among distinct biological specimens.173

• JSON: JavaScript Object Notation formatted file comprising landmarking and image information.174

• Weights: Values applied and changed during training to fit the neural network to data. Pre-trained weights (WPT ) were175

provided with the standard Mask R-CNN model trained on the COCO dataset. Fine-tuned weights (WFT ) fit during training176

are utilized, but not changed, during inference.177

• Training pool: Set of labeled photographs from which sample tiles are extracted to generate the training set. There is no178

overlap between training and validation pools.179

• Training set: Set of tiles sampled from photographs in the training pool. There is no overlap between training and180

validation sets.181

• Training step: The neural network predicts the label for a tile from the training set, then updates the model weights if the182

model fails to match the true mask.183

• Validation pool: Set of labeled photographs from which sample tiles are extracted to generate the validation set.There is184

no overlap between training and validation pools.185

• Validation set: Set of labeled tiles used for the validation steps of the training process. There is no overlap between186

training and validation sets.187

• Validation step: The neural network predicts the label for an image from the validation set but does not change the model188

weights. Validation steps calculate loss values on a labeled dataset that is distinct from the training set. This allows us to189

detect overfitting to the training dataset.190
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• Loss: A measure of the accuracy of model predictions for each pixel. Loss is calculated by the number of pixels shared191

by the label and the mask divided by the number of pixels in the label only, as in (He et al., 2017).192

• Epoch: The interval of time after a certain number of training and validation steps have been completed. Model weights193

are saved after each epoch. Changing the number of training and validation steps per epoch changes how frequently model194

accuracy is assessed.195

• Training Process: Using several epochs of training and validation to fine-tune model weights.196

• Inference Process: Using fine-tuned weights to generate masks for data outside of the training and validation sets. Note197

that weights are not updated during inference.198
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