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ABSTRACT 15 
 16 
Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific 17 
knockdown.  Yet in insects its efficacy varies between species, and how the systemic RNAi 18 
response is transmitted from mother to offspring remains elusive.  Using the flour beetle 19 
Tribolium castaneum, we report an RT-qPCR strategy to unmask the presence of double-20 
stranded RNA (dsRNA) distinct from endogenous mRNA.  We find that the injected dsRNA 21 
is directly transmitted into the egg and persists throughout embryogenesis.  Despite this 22 
depletion of dsRNA from the mother, we show that strong pRNAi can persist for months 23 
before waning at strain-specific rates.  In seeking the receptor proteins for cellular uptake of 24 
long dsRNA into the egg, we lastly present a phylogenomics profiling approach to ascertain 25 
macroevolutionary distributions of candidate proteins.  We demonstrate a visualization 26 
strategy based on taxonomically hierarchical assessment of orthology clustering data to 27 
rapidly assess gene age and copy number changes, refined by several lines of sequence-based 28 
evidence.  We use this approach to document repeated losses of SID-1-like channel proteins 29 
in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are 30 
nonetheless highly sensitive to pRNAi.  Overall, we elucidate practical considerations for 31 
insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of 32 
dsRNA transmission to achieve long-term, systemic knockdown. 33 
 34 
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INTRODUCTION 45 
 46 
Since the demonstration of systemic RNA interference in insects about twenty years ago [1-47 
3], this technique has become widely used for genetics research and there is growing interest 48 
in its application for species- and gene-specific pest management [4-9].  In many species, 49 
systemic knockdown is efficient across life history stages, with a particular advantage of 50 
parental RNAi.  Delivery of dsRNA into the mother, often by a single injection, can achieve 51 
knockdown of both maternal and zygotic gene expression in offspring, including at 52 
postembryonic stages [10].  This technique can provide highly efficient gene knockdown in 53 
hundreds of embryos that are often collected for up to three weeks after injection (e.g., [1, 54 
11]). 55 
 56 

As a well-established model system, the red flour beetle Tribolium castaneum has 57 
been at the forefront of research on the RNAi mechanism [1, 10, 12] and for diverse genetics 58 
studies [13].  It is an effective RNAi screening platform [14-16].  pRNAi in Tribolium is 59 
regularly used for phenotypic investigation of development and to test genetic interactions 60 
singly or globally, such as by RNA-seq after RNAi [17-20].  Empirical work has shown that 61 
efficient RNAi is achieved through the introduction of long dsRNA into the organism, which 62 
persists longer in vivo and has more efficient cellular uptake than short interfering RNA 63 
(siRNA) [10, 21].  Supporting this, an early genomic survey of RNAi molecular machinery in 64 
Tribolium [12] confirmed conservation of many core elements, but also with notable absences 65 
or changes in copy number or function of some elements compared to the well understood 66 
RNAi system of C. elegans.  This has generally been borne out by studies in other insect 67 
species [4, 5]. 68 
 69 

However, the mechanism of pRNAi is still poorly understood.  Germline tissues and 70 
developing eggs have been studied as one of several tissue types that exhibit distinct 71 
susceptibilities to systemic knockdown in adult females.  On the one hand, germline tissue 72 
showed lower levels of systemic effect in a pea aphid study in which this tissue was distal to 73 
the site of initial dsRNA delivery [9].  On the other hand, research in C. elegans has shown 74 
co-localization of dsRNA and yolk in oocytes, suggesting dsRNA transmission via a general 75 
mechanism for maternal provisioning of eggs [22]. 76 
 77 
 A key element for elucidating systemic pRNAi is the ability to detect and track the 78 
dsRNA.  In C. elegans, microscopy for visual detection of fluorescently labeled dsRNA 79 
showed that 50-bp dsRNA was transmitted to the oocyte [22].  However, this qualitative study 80 
did not examine embryos beyond the four-cell stage or test long dsRNA (~400 bp for efficient 81 
knockdown in Tribolium, [10, 15]).  Visual tracking of fluorescently labeled dsRNA has been 82 
attempted in insects, but with limits on transmissibility and detection sensitivity [23, 24].  83 
Recent reviews on insect RNAi have thus explicitly called for the use of quantitative, 84 
sensitive detection methods such as RT-qPCR as a complementary approach:  both to assay 85 
the extent of target gene knockdown after RNAi and for the systematic tracking of dsRNA 86 
[6].  RT-qPCR to assay knockdown is regularly used in developmental genetics research [19, 87 
20, 25], as one of several methods alongside global assays such as RNA-seq [17, 20] and 88 
spatiotemporally sensitive methods such as in situ hybridization, which can also detect inter-89 
embryo variability (e.g., [25]).  To the best of our knowledge, these methods have thus far 90 
been used to measure expression levels of endogenous target gene mRNA, but not for dsRNA 91 
detection. 92 
 93 
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 3 

 Here, we combine experimental results in Tribolium with comparative genomics 94 
assessments of gene repertoires across species to shed further light on the molecular 95 
mechanisms of dsRNA transmission during systemic pRNAi in insects.  We present an RT-96 
qPCR strategy whose amplicon design and sensitivity distinguishes dsRNA in offspring after 97 
pRNAi for genes with distinct temporal expression profiles, demonstrating its value for 98 
tracking throughout embryogenesis.  Furthermore, we show that knockdown in progeny 99 
persists at high levels for months, despite a finite starting amount of dsRNA, through time-100 
course analyses that evaluate female age, genetic strain, and different target genes.  Lastly, we 101 
compare hundreds of sequenced animal genomes to reveal limits in the conservation of 102 
candidate receptor proteins for dsRNA uptake, emphasizing the specificity of the importer 103 
protein SID-1 to nematodes compared to insects or vertebrates.  Thus, even as we provide 104 
empirical advances for investigation and application of pRNAi, we also flag multiple aspects 105 
of dsRNA transport that remain enigmatic. 106 
 107 
 108 
RESULTS 109 
 110 
dsRNA is transported into eggs and persists during embryogenesis 111 
The homeodomain transcription factor Tc-Zen1 is a critical regulator in early development, 112 
specifying the identity of the extraembryonic serosal tissue that surrounds the embryo and 113 
confers mechanical, physiological, and immunological protection [18, 20, 26, 27].  During 114 
routine verification of Tc-zen1 parental RNAi using RT-qPCR (as in [20]), we unexpectedly 115 
found that measured expression of Tc-zen1 mRNA was higher in RNAi samples than in wild 116 
type under certain assay conditions, despite strong phenotypic validation of systemic 117 
knockdown (see Methods). 118 
 119 

We observed this effect when using an RT-qPCR amplicon that was designed to be 120 
small and intron-spanning, ensuring efficient and specific amplification [28, 29].  However, 121 
due to the small size of the Tc-zen1 mRNA transcript, this amplicon was also nested within 122 
the region used as an established multi-purpose template for dsRNA and in situ hybridization 123 
(Fig. 1A: Fragment 2, compared to the long dsRNA, [20, 25, 30]).  Using this amplicon, at 124 
young embryonic stages we observed strong reduction to 25% of wild type levels in the RNAi 125 
sample, consistent with our phenotypic validation (Fig. 1B at 8-24 h: mean expression ratios 126 
of 1.24 RNAi/ 4.88 wild type for Fragment 2).  In contrast, this amplicon produces higher 127 
expression estimates in RNAi than in wild type samples at the older stages assayed (Fig. 1B: 128 
yellow vs. red plot lines, developmental time ≥16-24 h).  When the same samples are assayed 129 
with an RT-qPCR amplicon that only partially overlaps the dsRNA fragment (Fig. 1A: 130 
Fragment 1), we obtain the expected result of strong RNAi knockdown at all stages, including 131 
to only 5% of wild type levels at 8-24 h (mean expression ratios of 0.22 RNAi / 4.51 wild 132 
type), and no ostensible overexpression at older stages (Fig. 1B: blue plot lines). 133 
 134 

Notably, the semi-nested amplicon detects the same levels of wild type expression as 135 
in our original assay (Fig. 1B: light blue and red plot lines, respectively).  This corroborates 136 
the accuracy of the original, nested amplicon for quantification of Tc-zen1 transcript levels.  137 
Moreover, these findings with either amplicon are consistent with our previous work that 138 
documented a single early pulse of Tc-zen1 expression that peaks at 6-10 h before rapidly 139 
declining to undetectable levels for the rest of embryogenesis [20]. 140 
 141 

Thus, we infer that after Tc-zen1 RNAi the nested RT-qPCR amplicon is detecting 142 
both residual endogenous transcript as well as dsRNA transmitted from the mother to the egg.  143 
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This implies that the ostensible overexpression represents the unmasked detection of dsRNA 144 
specifically at older developmental stages when wild type expression is low.  Under standard 145 
culturing conditions, Tribolium embryogenesis is about three days, and here we show that the 146 
transmitted dsRNA stably persists in the egg throughout this interval (Fig. 1B: yellow plot 147 
line, ≥16-24 h).  Furthermore, although the nested fragment did capture the reduction in the 148 
target gene at a stage of high endogenous expression (8-24 h), the degree of transcript 149 
depletion after RNAi is likely underestimated due to the detection of the dsRNA (reduction to 150 
25% with nested Fragment 2 vs. to 5% with semi-nested Fragment 1).  In summary, there is a 151 
certain amount of dsRNA transmitted from the mother to the offspring that is detectable by 152 
RT-qPCR, but at levels that may be masked by high endogenous expression. 153 
 154 
 155 
The entire long dsRNA molecule is maternally transmitted 156 
The RNAi pathway involves processing of long dsRNA by the RNase III endonuclease Dicer 157 
to generate siRNAs of ~20-23 bp, which is the means of amplifying the RNAi effect to 158 
systemic levels [31].  Yet, our nested RT-qPCR amplicon is >100 bp.  We thus considered the 159 
possibility that the dsRNA is transmitted from the injected mother to the embryo as a largely 160 
intact, unprocessed molecule. 161 
 162 

Our method to detect transmitted dsRNA relies on measuring different expression 163 
levels in the same sample with two different amplicons, one being partially outside of the 164 
dsRNA sequence.  In theory, this method could also be used to determine the size of the 165 
transmitted dsRNA by increasing the length of the amplicons (e.g., by extending Fragments 1 166 
and 2 in the 3¢ direction).  Unfortunately, RT-qPCR analysis becomes increasingly unreliable 167 
with increasing amplicon size [29], and our results were inconclusive between biological and 168 
technical replicates with this strategy. 169 

 170 
As an alternative approach, we could robustly measure the relative expression of a 171 

series of RT-qPCR amplicons that span the Tc-zen1 transcript (Fig. 1A: Fragments 1-6).  As 172 
wild type expression is negligible at 16-24 hours (Fig. 1B), the measured expression at this 173 
stage largely represents transmitted dsRNA present in the egg.  Validating RNAi efficiency, 174 
the two amplicons that lay partially outside the dsRNA region show efficient knockdown of 175 
Tc-zen1 at 16-24 hours (Fig. 1C: Fragments 1 and 6, mean reductions to ≤25% of WT levels).  176 
This is consistent with phenotypic validation and RT-qPCR assays of early developmental 177 
samples with high wild type expression (Fig. 1B: 8-24 h).  In contrast, all amplicons that were 178 
fully nested within the dsRNA region show substantially increased expression after RNAi 179 
(>1000%; Fig. 1C: Fragments 2-5).  Strikingly, there was a five-fold range in expression 180 
levels among the nested amplicons, an issue we address in the Discussion in terms of 181 
experimental design and gene-specific sequence features.  Regardless, these four amplicons 182 
are each >100 bp and together span 654 bp.  We thus conclude that the entire 688-bp dsRNA 183 
molecule injected into the mother is transmitted to the egg. 184 
 185 
 186 
Unmasked dsRNA presence at stages of low expression is a general feature 187 
We next expanded our analyses to test whether maternal dsRNA transmission is a general 188 
feature of systemic RNAi in Tribolium.  For this purpose, we chose two additional genes that 189 
have distinct, well-characterized expression time courses and molecular functions that differ 190 
from Tc-zen1 and from one another.  The first gene, Tc-chitin synthase 1 (Tc-chs1), encodes a 191 
large, transmembrane enzyme that extrudes the polysaccharide chitin into developing cuticle 192 
of the serosa (early embryogenesis, [27]) and of the larval epidermis (late embryogenesis, 193 
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[32]).  Secondly, in the nuclear GFP (nGFP) line [33], red fluorescence encoded by DsRed 194 
serves as a transgenic marker under the control of the synthetic Pax6 core promoter-enhancer 195 
element 3xP3, which drives late expression in the developing eyes and ventral nerve cord 196 
(central nervous system, [34, 35]). 197 
 198 

For both genes we detected greater expression in the RNAi samples with the nested 199 
amplicon compared to the semi-nested amplicon (Fig. 2A-B: yellow vs. dark blue plot lines).  200 
Furthermore, the effect was again most pronounced – with ostensible overexpression – at 201 
developmental stages when wild type expression is low:  early embryogenesis for DsRed 202 
(4733%) and mid-embryogenesis for Tc-chs1 (322%).  As we had observed this effect in late 203 
embryogenesis for Tc-zen1 (Fig. 1B), these results clarify that it is the level of endogenous 204 
expression, and not a specific developmental stage, that determines when dsRNA 205 
transmission can be unmasked by our RT-qPCR strategy.  This is applicable whether the gene 206 
has a single stage of peak expression (Tc-zen1, DsRed) or a bimodal temporal expression 207 
profile with only a transient period of low expression (Tc-chs1).  At stages when the target 208 
gene is moderately to strongly expressed, for both Tc-chs1 and 3xP3-driven DsRed the nested 209 
amplicon underestimates the level of knockdown after RNAi by 5-20%, similar to what we 210 
had observed for Tc-zen1. 211 
 212 
 We also verified the knockdown efficiency for DsRed in the nGFP line by observing 213 
red fluorescence in late embryos and young larvae (Fig. 2C-F).  Fluorescent signal was 214 
detectable in >99% of untreated (wild type) larvae (n= 205) and absent in 93.1% of RNAi 215 
larvae (n= 159), consistent with very high efficiency knockdown. 216 
 217 
 218 
pRNAi is highly efficient for months before waning at strain-specific rates 219 
A single injection of the mother provides a finite number of dsRNA molecules, and the 220 
knockdown effect of pRNAi wanes over time in insects [1, 3, 36].  Our results suggest that 221 
waning may reflect not only endogenous transcript recovery after dsRNA degradation in the 222 
mother, but also maternal depletion of dsRNA due to its direct transmission into offspring.  223 
To determine how long pRNAi knockdown persists in Tribolium, we conducted time course 224 
experiments until the knockdown effect had fully waned, testing different genes, genetic 225 
backgrounds, and ages of adult female.  For this purpose, larval cuticle preparations were 226 
used as a robust phenotype assay (see Methods), targeting two genes whose knockdown 227 
produces distinctive and easily scorable cuticle phenotypes with high penetrance (Fig. 3A-C):  228 
Tc-tailup (Tc-tup, [15, 37, 38]) and Tc-germ cell-less (Tc-gcl, [39]). 229 
 230 

Across beetle strains and target genes, >90% penetrance for gene-specific knockdown 231 
in embryos is achieved within three days after adult injection and remains persistently high 232 
for nearly two months at 30 ºC (Fig. 3D: Experiments 1, 3a, and 3b).  Only in our aged female 233 
experiment did we see a delay in onset of knockdown and lower overall levels of penetrance 234 
(generally 50% over a 30-day interval; Fig. 3D: Experiment 2).  Nonetheless, across all 235 
experiments we still observed 50% phenotype penetrance at 42-71 days after injection.  A 236 
minor resurgence (<10%) after full depletion of the RNAi phenotype occurred briefly towards 237 
the end of both Experiments 2 and 3a. 238 
 239 
 In contrast to the consistent duration of strong knockdown, the rate of waning may be 240 
strain-specific, irrespective of female age or target gene.  In Strain 1, knockdown fully 241 
declined in a 10-day interval (from 91% or 78% to 0% in Experiments 1 and 2, respectively).  242 
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Waning in Strain 2 was more gradual, spanning the better part of a month (from ~86% to 0% 243 
over 20-34 days in Experiments 3a and 3b). 244 
 245 
 246 
pRNAi waning and transient fluctuations are strain- and female-specific 247 
Since our experimental beetle populations were maintained as pooled cohorts, we examined 248 
female lethality and fecundity to more precisely document the pRNAi waning effect (Fig. 3E-249 
H). 250 
 251 

Regarding survival (Fig. 3E), the dsRNA-injected females exhibited minor fatalities 252 
within the first week after injection before the populations stabilized over the next 1-2 253 
months, until death occurred from presumed old age.  The exception to this trend was in 254 
Experiment 2, where females were already aged for 5.3 months as adults before injection and 255 
subsequent mating:  these injected females showed steady mortality for the first 2.5 weeks 256 
before the population stabilized through the second month of the experiment.  Fatalities of the 257 
uninjected (wild type) females and males were minimal in all experiments. 258 
 259 

We then determined fecundity in terms of egg output per female per day (Fig. 3F).  260 
Age is the strongest predictor of female fecundity; neither the background genetic strain nor 261 
dsRNA injection had an appreciable effect.  Fecundity fluctuates on short time scales (<1 262 
week), but overall we find a marked but inexplicable increase in fecundity at 50-75 days, with 263 
≥6 eggs/female/ day.  After, there is a rapid decline to 130 days, and persistent, low-level 264 
fecundity through 230 days. 265 
 266 

In sum, we find that on multi-month timescales both survival and egg output of RNAi 267 
females is comparable to that of the uninjected controls, indicating that long-term activity of 268 
RNAi machinery does not generally impair female physiology or fecundity. 269 
 270 

Arguably, intermediate RNAi penetrance at the population level could reflect 271 
offspring contributions from a mix of females with strong RNAi and resistant females that 272 
only lay wild type offspring.  Then, waning of RNAi over time might reflect the earlier death 273 
of the females that produced affected offspring.  However, our data support the waning of 274 
RNAi in individual females.  Firstly, for months we obtained exclusively affected offspring 275 
(100% RNAi phenotype) before eventually obtaining 0% phenotype (Fig. 3D: Experiments 1, 276 
3a, and 3b).  Secondly, RNAi penetrance fluctuates and wanes even when the number of 277 
females and egg laying rate are steady (Fig. 3G-H).  Thus, while we cannot formally exclude 278 
individual differences in reproductive senescence [40], decline in RNAi penetrance was not 279 
simply due to death of females in which RNAi was more effective. 280 
 281 
 282 
Multiple, independent losses of the dsRNA importer SID-1 in arthropods 283 
For the transit of dsRNA through the mother to the egg, diverse receptor proteins have been 284 
implicated in dsRNA cellular uptake and oocyte provisioning.  In widening our investigation 285 
of the molecular mechanisms of pRNAi, we took a phylogenomic approach to explore the 286 
potential relevance of selected receptor proteins in insects.  Moreover, our analyses 287 
demonstrate a systematic approach for conservation assessments that combines extensive 288 
orthology clustering datasets with curation and phylogenetic analysis. 289 
 290 
 RNAi requires that dsRNA is taken up into the cells of the body, where Dicer acts in 291 
the cytosol [4, 5].  The SID-1 protein is a transmembrane importer of long dsRNA and has 292 
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been a central focus of RNAi research.  First characterized in C. elegans [41], it is one of 293 
several functionally related proteins whose absence causes a systemic RNA interference 294 
deficient (SID) phenotype (reviewed in [42, 43]).  Conservation of SID-1 is in fact notably 295 
variable across insect species, with homologues somewhat agnostically referred to as SID-1-296 
like (SIL) or SID-1-related (Sir) [12].  Nonetheless, ever since early recognition of SID-1 297 
homologues in Tribolium and vertebrates [41], it is routinely sought when characterizing 298 
RNAi components in new transcriptomes and genomes (see Discussion). 299 
 300 

In the last five years the substantial increase in available genomic resources, 301 
particularly for the wider diversity of insects [44], enables a more systematic approach based 302 
on official gene set (OGS) data from sequenced genomes.  Here, we make use of the latest 303 
version of the orthology clustering database OrthoDB to survey 148 insect species, embedded 304 
in the evolutionary framework of 448 metazoan animal species ([45], Fig. 4: cladogram). 305 
 306 

Our assessments of orthology group membership at the hierarchical taxonomic levels 307 
of Insecta, Hexapoda, Arthropoda, and Metazoa substantially extend previous observations on 308 
the distribution of SID-1 (Fig. 4: “SID-1/SIL distribution”; see Methods and Discussion).  309 
Across the Metazoa, SID-1 proteins are present in 375 species, with multiple copies found in 310 
235 of these species.  As previously documented with limited sampling [12], we find lineage-311 
wide copy number increases within each of the sarcopterygian vertebrates (the lobe-finned 312 
fishes clade, including mammals), Coleoptera (beetles), and Lepidoptera (moths and 313 
butterflies).  This includes the three SIL proteins originally characterized in Tribolium [12].  314 
At the same time, SID-1 is absent from all 56 species of Diptera and 7 Acari species, 315 
augmenting previous reports [46, 47].  Furthermore, we newly report the complete absence of 316 
SID-1 homologues in an additional, independent lineage: the Heteroptera (true bugs) within 317 
the insect order Hemiptera (Fig. 4).  To corroborate these evolutionary changes, we further 318 
scrutinized OGS, genome assembly, and transcriptome analysis data. 319 
 320 

Orthology clustering indicates the lineage-specific loss of SID-1 within the Hemiptera 321 
based on its absence in five Heteroptera and presence in eleven outgroup species (formerly 322 
the paraphyletic “Homoptera”, including aphids, psyllids, and planthoppers; Fig. 4).  To 323 
augment species sampling, we compiled recently published results and conducted BLAST 324 
investigations of assembled genomes (see Methods), nearly doubling the number of species 325 
investigated (Fig. 5A).  Importantly, directly interrogating genome assemblies overcomes 326 
limitations of OGS gene model predictions [48, 49].  Our tBLASTn searches with diverse SIL 327 
orthologue queries did not detect any heteropteran or dipteran sequences but did recover all 328 
SIL proteins in other insects (Fig. 5B).  Thus, loss of SID-1/SIL spans the four major 329 
infraorders of Heteroptera (10 species) compared to its retention in other Hemiptera (present 330 
in 15 species, with absences confined to three taxonomically scattered species with limited 331 
transcriptomic evidence; Fig. 5A). 332 
 333 

Even with more extensive species sampling than was previously possible [12, 46], 334 
some of the same phylogenetic ambiguities of SIL proteins remain (Figs. 5C, S1).  Within 335 
Caenorhabditis nematodes, SID-1 has high sequence similarity to the functionally unrelated 336 
TAG-130/CHUP-1 protein (Figs. 4, 5C; [12]).  Our phylogenies are generally robust for 337 
topology within clades for the insects and the deuterostomes, but the long-branch nematode 338 
proteins are unstable.  Two nematode species with single-copy orthologues have particularly 339 
long branches and tend to show affinity with Caenorhabditis TAG-130.  However, the 340 
recovery of well supported clades for each of SID-1 and TAG-130 in Caenorhabditis species 341 
is inconsistent (Fig. S1A-C).  In our phylogeny with broad species sampling, all arthropod 342 
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and deuterostome proteins show greater affinity to nematode SID-1 (Fig. 5C).  Lineage-343 
specific duplications appear ancestral, with a single duplication at the base of the 344 
sarcopterygian vertebrates and the beetles, and two at the base of the Lepidoptera (Figs. 5C, 345 
S1B,D, but with unstable topology for Tribolium SirB).  The Hymenoptera (wasps, bees) are 346 
an outgroup to other Holometabola, yet their single-copy SIL orthologues group elsewhere 347 
(Figs. 5C, S1D).  Overall, sequence-based assessments of SID-1/SIL conservation are 348 
complicated by lineage-specific duplications and rates of sequence evolution, even before its 349 
functional relevance for RNAi in insects is considered (see Discussion). 350 
 351 
 352 
Maternal provisioning uses distinct receptor proteins in insects and nematodes 353 
An alternative, long-recognized mechanism of dsRNA cellular uptake is endocytosis, for 354 
which core genes are widely conserved as standard eukaryotic cellular machinery [4, 42].  355 
Receptor-mediated endocytosis also supports maternal provisioning of oocytes, and it has 356 
been proposed for invertebrates that yolk proteins (vitellogenins) and dsRNA may share a 357 
common import mechanism [22, 23].  We thus applied our phylogenomic approach to 358 
determine conservation of the vitellogenin receptor (VgR), known as Yolkless (Yl) in 359 
Drosophila (Figs. 4, 5D). 360 
 361 
 We find a fundamentally different distribution for VgR compared to SID-1 (Fig. 4: 362 
“VgR/Yl distribution”).  Whereas SID-1 had orthology group members extending to the non-363 
bilaterian Metazoa, VgR is essentially restricted to the Ecdysozoa, excluding the Nematoda.  364 
Secondly, whereas there is evidence for multiple VgR proteins in other arthropod groups, this 365 
protein is predominantly single-copy throughout the insects, including the Heteroptera and 366 
Diptera, and the Coleoptera and Lepidoptera – which lost or duplicated SID-1, respectively.  367 
Unlike SID-1, for VgR there are also scattered single-species absences throughout the 368 
hexapod orders. 369 
 370 
 Curiously, two species are the sole exception to the complete absence of vertebrate 371 
protein members from the metazoan VgR orthology group (Fig. 4).  Our phylogenetic 372 
appraisal centered on this anomaly.  We obtain two strongly supported clades containing 373 
either insect VgR or the deuterostome proteins, with a paraphyletic splitting of non-insect 374 
arthropod proteins between these two clades (Fig. 5D).  Tracking the vertebrate proteins into 375 
the more taxonomically restricted Vertebrata orthology group revealed that these proteins are 376 
divergent members of the Very Low-Density Lipoprotein Receptor (Vldlr) proteins, which are 377 
conserved in all 243 vertebrate species.  In summary, the broad distribution patterns suggested 378 
by orthology clustering alone are valid, with our follow-up analyses refining this to strongly 379 
support a hexapod-specific origin of VgR.  Thus, for the purposes maternal provisioning of 380 
oocytes, nematodes and insects rely on distinct receptors. 381 
 382 
 383 
DISCUSSION 384 
 385 
Our tripartite investigation of the molecular mechanism of pRNAi in Tribolium combines (1) 386 
an RT-qPCR strategy that detects dsRNA transmitted to the egg, (2) time course assays that 387 
show months-long persistence of pRNAi under different parameters, and (3) a phylogenomics 388 
profiling approach for appraisal of candidate genes’ taxonomic distributions.  Our surprising 389 
empirical observations can inform experimental design for developmental genetics studies 390 
and targeting strategies for RNAi-based pest management applications.  Furthermore, we 391 
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highlight several key steps at which the cellular mechanism of dsRNA transport remains 392 
unresolved, despite highly effective use of RNAi in insects for decades [1, 2, 5, 6, 15]. 393 
 394 
 395 
Amplicon design and developmental staging determine measured knockdown efficiency 396 
We show that comparison of RT-qPCR results between nested and semi-nested amplicons is a 397 
robust method for detection of maternally transmitted dsRNA in eggs (Figs. 1-2).  398 
Complementing short-term tracking of fluorescently labeled dsRNA [6, 22, 23], our method 399 
detects dsRNA throughout embryogenesis.  On the other hand, use of a nested amplicon alone 400 
may lead to underestimation of knockdown efficiency, or even to erroneous interpretations of 401 
target gene overexpression, depending on endogenous expression levels.  Awareness of these 402 
features can be applied to tracking dsRNA and to mitigate against unwanted dsRNA detection 403 
in single-amplicon assays. 404 
 405 

For a gene of interest, primer design may be constrained such that an RT-qPCR 406 
amplicon is nested within the dsRNA region.  To design intron-spanning primers for short, 407 
efficient amplicon sizes [28, 29], while also avoiding conserved coding sequence regions that 408 
could cause off-target effects [15, 20], both RT-qPCR and dsRNA primers may target the 409 
same region.  Small genes with few introns are particularly constrained, such as Tc-zen1 (Fig 410 
1A: Fragment 3 with respect to the short dsRNA that avoids the homeobox, as in [20]).  411 
Secondly, for efficient screening of both expression and function, a single longer amplicon 412 
may serve as template for both in situ hybridization, where probe sensitivity correlates with 413 
sequence length [50], and for RNAi, where longer dsRNA is more effective [10]: this is the 414 
case with the long dsRNA for Tc-zen1 examined here (Fig 1A, [25]). 415 
 416 

We find that nested amplicons underestimate true knockdown strength by 5-20% 417 
compared to measurements with semi-nested amplicons that only detect endogenous 418 
transcript (Figs. 1B, 2A-B).  Yet in previous work we consistently obtained strong 419 
knockdown validation with a nested amplicon, to 10% of wild type levels ([20]: Fragment 3 420 
and the short dsRNA, Fig. 1A).  A key factor was tight developmental staging that targeted 421 
peak endogenous expression.  Broad sampling beyond the peak expression window 422 
effectively dilutes the detection of wild type endogenous transcript levels as the baseline 423 
against which RNAi samples are compared.  This can substantially alter calculations of 424 
knockdown efficiency (Fig. 6), whether using nested or semi-nested amplicons.  Thus, staging 425 
precision is critical for accurate detection of knockdown efficiency, and this can largely 426 
overcome the underestimation effect of using a nested amplicon. 427 
 428 

Measured expression levels are also affected by sequence-specific features.  We most 429 
strongly detected dsRNA for medial regions of the Tc-zen1 molecule, with a five-fold 430 
decrease towards the 3¢ and 5¢ ends (Fig. 1C).  We therefore speculated that a dsRNA 431 
degradation mechanism may lead to progressive loss of detection from both termini.  432 
However, a 5¢ terminal amplicon detected stable dsRNA levels throughout embryogenesis 433 
(Fig. 1B: latter three stages with Fragment 2), arguing for alternative explanations.  On further 434 
scrutiny, we find that minor differences in amplicon length strongly negatively correlate with 435 
amplification efficiency (Fig. S2, [29]).  Also, despite primer specificity, we cannot exclude 436 
the possibility that our medial amplicon (Fragment 4) may weakly detect the homeobox of the 437 
closely related paralogue Tc-zen2 [20, 51]. 438 

 439 
Overall, it is striking that long dsRNA is stable in vivo in insect eggs, and our nested 440 

amplicon strategy offers new opportunities for dsRNA quantification and long-term tracking. 441 
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 442 
 443 
pRNAi application in relation to knockdown persistence and female fecundity 444 
While confirming that pRNAi wanes within individual females (Fig. 3, [1, 3, 36]), 445 
unexpectedly we find that this only occurs after strong knockdown for nearly nine weeks – far 446 
longer than was previously shown or assumed.  Early research in Tribolium reported 447 
substantial waning by three weeks after injection and complete cessation of knockdown by 448 
five weeks [1].  Accordingly, developmental genetics research generally examines eggs in the 449 
first 4-20 days after injection (e.g., [25, 36, 52]), although ≥90% phenotype penetrance for up 450 
to 4.5 weeks has been shown [11].  Differing knockdown durations may reflect differences in 451 
injection age (pupal or adult), gene-specific RNAi efficiency [20, 36], and strain-specific rates 452 
of waning (Fig. 3D).  More generally, our results demonstrate the potential for high-453 
efficiency, persistent pRNAi-mediated knockdown, even after a single instance of dsRNA 454 
delivery. 455 
 456 

It is also surprising that after 50 days there was an abrupt increase in fecundity in both 457 
beetle strains used in this study (Fig. 3F).  It was in this time window of intermediate female 458 
age (50-100 days) that we obtained fecundity levels comparable to previous reports, which 459 
examined the first two months in a third strain (San Bernardino strain: [1, 53]). 460 
 461 

These observations highlight within-species variation in the onset and duration of peak 462 
fecundity and the rate of RNAi waning.  Extrapolation from our study under laboratory 463 
conditions (at 30 ºC) could also imply longer durations of peak fecundity in natural 464 
environments, for slower life cycles at cooler ambient temperatures [e.g., 54].  These factors 465 
should be taken into account when planning seasonal management of agricultural pest species 466 
by RNAi [5, 6]. 467 
 468 
 469 
Genomic loss and ambiguous homology of SID-1 emphasizes its minimal relevance for 470 
RNAi outside of nematodes 471 
The SID-1 channel protein has been part of the standard repertoire of RNAi-associated 472 
cellular machinery in surveys of transcriptomes and genomes (e.g., [7, 12, 41, 46]).  However, 473 
our metazoan-wide appraisal confirms multiple lineage-specific losses of SIL from arthropod 474 
genomes (Figs. 4-5) and that this protein family encompasses homology across SID-1 and 475 
TAG-130/CHUP-1 proteins (Figs. 5, S1).  This strengthens a cumulative body of evidence in 476 
insects for ambiguous homology and limited functional relevance of SIL for RNAi [4, 5, 12, 477 
42, 46]. 478 
 479 

The loss of SIL proteins is far more pervasive than previously recognized.  Among the 480 
chelicerates, its absence in the Acari (mites and ticks) contrasts with retention in spiders and 481 
scorpions (Fig. 4, [47]).  Its absence in flies [12, 41] may reflect ancestral genomic loss in the 482 
wider lineage Antliophora (Diptera, Mecoptera, and Siphonaptera, [46]).  For other lineages, 483 
reports on single or few species noted anecdotal absences, including in the Heteroptera [7, 42, 484 
46].  A recent review of RNAi specifically in the Hemiptera thus only reported general 485 
conservation of SID-1/SIL proteins in this order [6], without recognizing its wholesale 486 
absence in the true bugs (Figs. 4-5).  Species sampling to date also supports SIL loss in the 487 
Trichoptera (Fig. 4 and [46]: 3 species), which may be further borne out as insect genomic 488 
resources continue to grow. 489 
 490 
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 Multiple SIL losses in arthropods may seem surprising compared to its vertebrate-491 
wide retention and the fact that nematodes and arthropods are more closely related as fellow 492 
Ecdysozoa (Fig. 4).  This could suggest a higher rate of evolutionary divergence in arthropods 493 
against a backdrop of bilaterian-wide conservation.  In fact, vertebrate protein homology 494 
suffers from the same ambiguities as analyses with arthropod proteins (Fig. S1).  Vertebrate 495 
Sidt proteins show greater sequence similarity in certain functional motifs with TAG-496 
130/CHUP-1 proteins, recognized for their role in cholesterol uptake [55].  Furthermore, 497 
recent cell culture work suggests that prior evidence for dsRNA uptake by Sidt/CHUP-1 may 498 
have detected a secondary consequence of dsRNA association with imported cholesterol [56], 499 
calling Sidt molecular function into question.  Overall, this is conceptually similar to the 500 
macroevolutionary “functional lability” and repeated lineage-specific loss of RNA-dependent 501 
RNA polymerases (RdRPs, [57]), another component of systemic RNAi in some species (see 502 
below). 503 
 504 

In C. elegans, SID-1 is required for the systemic spread of RNAi within somatic 505 
tissues and the pRNAi effect in offspring [41].  Yet, despite the absence of any SID-1/SIL 506 
protein, the Heteroptera are highly sensitive to RNAi (reviewed in [58]).  Knockdown is 507 
effective and systemic within the bodies of individual heteropteran nymphs [59].  pRNAi can 508 
achieve complete phenotypic knockdown in >95% of progeny for at least three weeks [60]. 509 
 510 
 Thus, just like other nematode SID proteins [4, 5, 43], SID-1 should be retired from 511 
general inclusion among the insect RNAi repertoire. 512 
 513 
 514 
The power of orthology clustering, in context 515 
As discussed, some of our key insights into the taxonomic distribution of SID-1 were already 516 
documented on an anecdotal level in a range of published studies, but they had not been 517 
integrated.  We show that metazoan-wide orthology clustering [45] combined with 518 
taxonomically-informed visualization (Fig. 4) can reveal previously unappreciated 519 
macroevolutionary patterns of protein origin, conservation, duplication, and loss across 520 
disparate lineages such as insects and vertebrates.  With corroboration from additional lines of 521 
evidence including protein member curation, genome searches, phylogenetics, and literature 522 
surveys (Fig. 5), this is a powerful approach. 523 
 524 

Such rapid phylogenomic profiling (Fig. 4) could be widely applied to whole suites of 525 
proteins, providing criteria for candidate gene selection alongside standard gene ontology 526 
(GO) features such as molecular function (transmembrane receptor) or biological process 527 
(receptor-mediated endocytosis).  And, while our focus is the insects in general, visualization 528 
can be customized for other taxa of interest (e.g., Vertebrata, Hymenoptera), particularly as 529 
the number and diversity of sequenced genomes increases. 530 
 531 
 Orthology clustering across distantly related species requires care.  Whereas wholesale 532 
loss or duplication in a clade is convincing, taxonomically scattered copy number changes 533 
may reflect genuine evolutionary change in undersampled lineages or limitations in individual 534 
species’ data quality.  Manual curation is necessary to eliminate redundant isoforms, which 535 
inflate copy number (Fig. 5A), and incomplete or suspiciously large and divergent proteins, 536 
which often reflect inaccurate gene model annotation [48, 49] and can skew phylogenetic 537 
analysis (see Methods).  Secondly, each taxonomic level of orthology clustering is an 538 
independent analysis.  At wider taxonomic levels, groups of single-copy orthologues often 539 
gain divergent within-species homologues and appear multi-copy due to greater sequence 540 
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divergence between homologues in distantly related species.  The inclusion of divergent 541 
vertebrate Vldlr proteins within the metazoan-level orthology group for VgR exemplifies this 542 
(Fig. 4).  The challenge of reconciling clustering analyses across taxonomic levels is a known, 543 
but perhaps not widely appreciated, issue [61].  Clarification of orthology is possible by 544 
prioritizing taxonomically restricted clustering results and then progressively adding wider 545 
taxa (e.g., from Insecta to Metazoa, Fig. 4), supported by phylogenetic analysis (Fig. 5).  546 
However, the SID-1 and TAG-130/CHUP-1 proteins are particularly recalcitrant, forming a 547 
single orthology group even within the Nematoda alone. 548 
 549 
 550 
How can pRNAi persistence be reconciled with dsRNA cellular processing and maternal 551 
transmission? 552 
Our unexpected finding that the long dsRNA molecule is maternally transmitted into eggs, 553 
thereby depleting maternal dsRNA levels, is difficult to reconcile with pRNAi persistence for 554 
months (Figs. 1-3).  We also find limitations in attributing dsRNA cellular transmission to 555 
specific import proteins (Figs. 4-5).  Furthermore, biochemical, physiological, and cellular 556 
studies on dsRNA processing highlight where dsRNA is not located, rather than how it is 557 
delivered to Dicer to trigger RNAi.  To conclude, we discuss how our observations fit into the 558 
wider framework of outstanding major questions on systemic parental RNAi insects (Fig. 7). 559 
 560 
 Upon injection into the female’s body cavity (Fig. 7A), dsRNA spreads throughout the 561 
circulatory system.  However, it rapidly clears – on the scale of minutes to hours – from the 562 
hemolymph due to cellular uptake and degradation (Fig. 7B, [21, 23, 62]).  In Tribolium, 563 
substantial activity of endogenous dsRNases is documented in the gut and implicated in the 564 
hemolymph [63].  Also, the ovary represents just one organ in the female body in which 565 
dsRNA uptake occurs.  In effect, the germline competes with other cell types for dsRNA.  566 
Particularly when it is distal to the site of dsRNA injection, it may be less sensitive or even 567 
refractory to RNAi [9, 23].  Injection of dsRNA for pRNAi is highly effective in practice, but 568 
not without limitations. 569 
 570 
 Second, the dsRNA received by the insect ovary represents a non-renewable resource.  571 
In this and other studies, pRNAi is achieved after a single injection, providing a finite number 572 
of dsRNA molecules.  That starting pool is amplified by RdRPs in plants, nematodes, and 573 
possibly fungi [57, 64-66].  This property can be exploited in planta for sustained delivery of 574 
non-endogenous transcripts in RNAi-based pest control [64].  However, there is no evidence 575 
to date for dsRNA amplification in insects (reviewed in [57, 63]).  Also, amplification in other 576 
species generally or exclusively involves siRNA synthesis [64-66], which contrasts with our 577 
detection of ≥100-bp RT-qPCR amplicons spanning full-length long dsRNAs (Figs. 1-2). 578 
 579 
 Next, there are uncertainties as to how cellular uptake of long dsRNA is accomplished 580 
(Fig. 7C).  In principle dsRNA could be shuttled into the oocyte after uptake by the nurse 581 
cells or the follicular epithelium, or it could be directly imported by the oocyte during 582 
patency, when intercellular openings in the follicular epithelium confer direct access to the 583 
hemolymph.  However, neither SID-1 for cellular uptake (discussed above) nor VgR for 584 
oocyte endocytosis seems to be the effector.  In C. elegans, co-accumulation of dsRNA and 585 
vitellogenin in oocytes suggested a common import mechanism for these molecules [22].  586 
However, the VgR receptor is hexapod-specific (Figs. 4-5), arguing against a conserved 587 
mechanism associated with invertebrate vitellogenin transport.  Furthermore, trials with 588 
labeled dsRNA revealed its exclusion from oocytes during vitellogenesis [23].  On the other 589 
hand, SID-1 and VgR are two candidates among many potential receptor proteins.  Clathrin-590 
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dependent endocytosis is required for within-individual larval RNAi in Tribolium [24], and 591 
such mechanisms may also be applicable for pRNAi. 592 
 593 
 More generally, endocytosis has long been recognized as a potential mechanism for 594 
dsRNA uptake, but it has its own cellular challenges (Fig. 7D, reviewed in [4, 5, 42]).  First, if 595 
dsRNA is sequestered within an endosome, it is inaccessible for processing by Dicer in the 596 
cytosol, and the mechanism of selective endosomal escape of dsRNA is unknown.  Species-597 
specific levels of dsRNA sequestration have been correlated with susceptibility to RNAi [5].  598 
Second, endosome maturation culminates in fusion with a lysosome, targeting all contents for 599 
degradation [4].  Thus, endosomes do not seem suitable as long-term, slow-release reservoirs 600 
for pRNAi.  Beetles including Tribolium appear to have low levels of endosomal 601 
sequestration, but those studies were performed in larvae [reviewed in 5].  Further 602 
investigation of maternal reproductive tissues may reveal alternative, germline-specific 603 
mechanisms of dsRNA retention and cell-to-cell transmission.  This would be fully consistent 604 
with the growing body of evidence for the tissue-specific as well as stage-specific nature of 605 
RNAi (e.g., discussed in [9, 23, 67]). 606 
 607 
 Finally, dsRNA’s journey from maternal injection through successful embryonic 608 
knockdown requires two levels of maternal transmission (Fig. 7E).  After dsRNA is delivered 609 
into the oocyte, cellular uptake must happen again:  when dsRNA within the yolky oocyte is 610 
taken up by the embryonic cells, where knockdown is finally achieved.  As maternal injection 611 
can lead to deposition of labeled oligonucleotides in the yolk without embryonic uptake [68], 612 
this step also cannot be taken for granted.  In summary, while we continue to successfully use 613 
pRNAi for developmental genetics research and in devising new and improved strategies for 614 
pest management, there remain many aspects of dsRNA transport and systemic propagation 615 
that await explanation. 616 
  617 
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MATERIALS AND METHODS 618 
 619 
Tribolium castaneum (Herbst) stocks and genomic resources 620 
All beetle stocks were kept under standard culturing conditions [13] at 30°C, 50 ± 10% RH.  621 
The lines used for the RT-qPCR assays were San Bernardino (SB) wild type [13] and nuclear 622 
GFP (nGFP) [33].  For the RNAi penetrance time course experiments, Strain 1 was a 623 
heterozygous cross of the enhancer trap lines G04609 (females; [35]) and HC079 (males; 624 
[30]), both in the pearl white-eyed mutant background [69]; Strain 2 was the LifeAct-GFP 625 
line, in a rescued vermillion white background [70]. 626 
 627 

Sequence data for the target genes in this study are based on the latest genome 628 
assembly and official gene set (OGS3, [71]):  Tc-zen1 (TC000921, [20, 26]), Tc-chitin 629 
synthase 1 (Tc-chs1, TC014634, [27]), Tc-Ribosomal protein S3 (Tc-RpS3, TC008261, [25]), 630 
Tc-germ cell-less (Tc-gcl, TC001571, [39]), and Tc-tailup (Tc-tup, TC033536, [15, 37]).  631 
Details of primers and amplicon sizes are presented in Table S1, also for the transgene 632 
DsRed2 (based on the piggyBac mutator construct: GenBank accession EU257621.1). 633 
 634 
Parental RNAi 635 
Parental RNAi was performed as described [25], with dsRNA resuspended in H2O and 636 
injected at a concentration of approximately 1 µg/µl (range: 900-1100 ng/µl).  Beetles were 637 
sexed as pupae (distinguished by genital morphology) and allowed to mature to adulthood.  638 
Females were anesthetized on ice and dsRNA was injected into the abdomen.  Uninjected 639 
females served as wild type controls.  Gene-specific knockdown phenotypes were confirmed 640 
based on published resources for all genes, using the specific assays described below for each 641 
of the RT-qPCR and time course experiments.  As Tc-tup has thus far only been characterized 642 
in a high throughput screening analysis [15, 37], we used two non-overlapping fragments 643 
(NOFs) of dsRNA in our experiments (NOF1 for Experiments 1 and 2, NOF2 for Experiment 644 
3: see Table S1).  We found no quantitative or qualitative phenotypic difference between the 645 
non-overlapping fragments. 646 
 647 
RT-qPCR experiments 648 
Embryos were collected over a period of 20 days after injection.  Knockdown efficiency was 649 
ensured by:  manual assessment of serosal cuticle structure (eggshell rigidity) for Tc-zen1 [11, 650 
20] and Tc-chs1 [27], detection of fluorescent signal for dsRed [34, 35], and by RT-qPCR for 651 
all genes.  To evaluate DsRed knockdown efficiency by fluorescence screening, only larvae 652 
were scored to ensure all offspring had successfully completed embryogenesis and were thus 653 
old enough to produce strong 3xP3-DsRed signal. 654 
 655 

RT-qPCR and data analysis were performed as described, including TRIzol extraction, 656 
DNase treatment and gDNA quality control checks, cDNA synthesis, and Fast SYBR Green 657 
detection on an Applied Biosystems 7500 Fast cycler (reagents: ThermoFisher Scientific; 658 
TURBO DNAfree Kit, Applied Biosystems; SuperScript VILO cDNA Synthesis Kit, 659 
Invitrogen; Life Technologies; respectively) [20, 25].  All samples were run in triplicates 660 
(technical replicates) with three samples per treatment (biological replicates).  Tc-RpS3 was 661 
used as the reference gene, this being established as more stable across embryogenesis as a 662 
single reference gene compared to several alternatives with pairs of reference genes or seven 663 
other single genes [25].  Raw data were analyzed using LinRegPCR v12.16 [72, 73] and the 664 
expression ratio (R) was calculated using the ΔΔCt method, according to the formula: 665 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468425doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468425
http://creativecommons.org/licenses/by-nc/4.0/


 15 

, 666 
where E is the mean efficiency of the corresponding amplicon as calculated by LinReg and 667 
CP is the mean CP of the three technical replicates (after passing quality control in LinReg). 668 
The control sample was a pool of all samples (wild type and RNAi; all time points; all 669 
biological replicates) of the respective experiment (i.e., RNAi knockdown of a given gene: 670 
Tc-zen1, Tc-chs1, or dsRed).  The % of wild type (WT) was calculated by dividing RRNAi by 671 
RWT for the same time point and sample collection date, where both R values are relative to 672 
the control sample. 673 
 674 
RNAi penetrance time course experiments 675 
Larval cuticle preparations were used to monitor phenotype penetrance over time after a 676 
single injection of dsRNA into the adult female.  A cuticle assay is highly effective even with 677 
limited embryonic material, which was important in our months-long experiments because 678 
female survival and fecundity decline over time [74].  Moreover, Tc-tup and Tc-gcl provide 679 
clear cuticle readouts, whereas RNAi for each of our RT-qPCR target genes can result in non-680 
lethal knockdown that must be analyzed at specific developmental stages (Fig. 2C-F, [27] 681 
 682 

Eggs were collected at regular intervals and maintained under standard culturing 683 
conditions until a minimum age of ≥4 days after egg lay, to ensure time for larvae to hatch.  684 
Larval cuticles were then prepared as described previously [15].  Briefly, eggs and larvae 685 
were dechorionated in bleach (VWR # L14709.0F, sodium hypochlorite (11-14% Cl₂) in 686 
aqueous solution), rinsed in tap water, and mounted on slides in 1:1 lactic acid:Hoyer’s 687 
solution [75].  Slides were cured overnight at 60 ºC to fully clear soft tissues.  Slides were 688 
then scored under incidental white light on stereomicroscopes, distinguishing six categories: 689 
wild type larvae, unhatched wild type (post dorsal closure with no apparent defects, but still at 690 
least partially within the vitelline membrane), gene-specific phenotype category 1 (generally a 691 
larger body size), gene-specific phenotype category 2 (generally a smaller and less well 692 
formed body), non-specific defects, or no larval cuticular material (“empty egg”, indicative of 693 
unfertilized eggs or early embryonic lethality).  Statistics on penetrance compare wild type 694 
with gene-specific knockdown, combining each of the first two categories while for simplicity 695 
omitting the latter two, minor categories.  The time point of a sample represents the start of 696 
the egg collection period (e.g., data at 3 dpi represent the sample collected 3-4 dpi in 697 
Experiment 1, Fig. 3D).  Egg collection intervals were extended or pooled to ensure sample 698 
sizes of ≥10 offspring per treatment condition for each time point. 699 
 700 
 Experiments were conducted until three egg collections contained only hatched larvae 701 
and the knockdown effect was deemed to have fully waned.  Throughout the experiments, 702 
dead adult beetles were periodically removed and sexed to note female-specific lethality 703 
(males have a darkened cuticular sex patch on the inner/ proximal side of the first leg pair; 704 
this is absent in females: https://www.ars.usda.gov/plains-705 
area/mhk/cgahr/spieru/docs/tribolium-stock-maintenance/#sexing [last accessed 15 October 706 
2021]). 707 
 708 
 To assay females of different ages, adult beetles were maintained continuously under 709 
standard culturing conditions at 30 ºC until injection.  Female age was calculated from the last 710 
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date when beetles in the experimental cohort were sexed as pupae, reflecting a minor 711 
overestimation (≤5 days) relative to eclosion of the adult for some individuals in the cohort. 712 
The females used in Experiments 1 and 2 derive from the same cohort and were sexed at the 713 
same time. 714 
 715 
Microscopy 716 
Images were acquired on an epifluorescent microscope with structured illumination (Zeiss 717 
Axio Imager.Z2 with Apotome.2).  Red fluorescence signal in the eyes and ventral nerve cord 718 
was used to evaluate DsRed RNAi, with green fluorescence from the ubiquitous nGFP signal 719 
in this transgenic line serving an internal control.  Representative cuticle images were 720 
acquired with GFP acquisition settings to detect cuticle autofluorescence, presented as 721 
maximum intensity projections from the acquired z-stacks. 722 
 723 
Orthology distribution, BLAST, and phylogenetic evaluations 724 
We examined orthology groups in OrthoDB v. 10.1 [45], comparing the independent 725 
orthology clustering analyses at taxonomic levels including Metazoa, Arthropoda, Hexapoda, 726 
Insecta, Hemiptera, Coleoptera, Nematoda, and Vertebrata.  We noted minor changes in 727 
species membership, copy number, and protein ID between the independent orthology 728 
clustering analyses conducted at the various taxonomic levels, which is a known issue for 729 
orthology clustering [discussed in 61].  In all cases, we used data at the most taxonomically 730 
restrictive level (last common ancestor, LCA, level) as the most specific and reliable.  For the 731 
genes examined here (Fig. 4), orthology clustering was very robust, with only minor 732 
differences (e.g., Fig. 4: asterisk and legend note for VgR). 733 
 734 
 Curation of protein sequences obtained from orthology groups involved visual 735 
inspection of the protein size and sequence in order to remove partial and redundant isoforms.  736 
In choosing appropriate protein members of an orthology group for use in phylogenetic 737 
analyses, visual inspection of multiple sequence alignments and preliminary trees were used 738 
to identify and cull divergent (long branch) proteins and overly long proteins (which may 739 
reflect erroneous protein fusion or other model annotation errors such as inclusion of 740 
extraneous predicted exons). 741 
 742 
 Protein sequences were aligned for manual inspection in ClustalW [76], at 743 
https://www.genome.jp/tools-bin/clustalw [last accessed 15 October 2021].  Phylogenies were 744 
generated at Phylogeny.fr with default settings (alignment with MUSCLE 3.8.31, phylogeny 745 
with PhyML 3.1/3.0 aLRT, and tree rendering with TreeDyn 198.3) [77]. 746 
 747 

Genome assemblies were examined by BLAST, supported by visual inspection of hits 748 
with respect to the assembly, gene model predictions, and expression evidence tracks in the 749 
Apollo genome browsers, hosted at the i5K@NAL workspace [78].  Species sampling 750 
involved a particular focus on the Heteroptera [48, 79-82] and selected species from other 751 
orders (Thysanoptera, [83]; Hymenoptera, [84]; Coleoptera, [85, 86]).  The genome assembly 752 
versions interrogated by tBLASTn are detailed in Table S2. 753 
  754 
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FIGURE LEGENDS 755 
 756 
Figure 1.  Long dsRNA molecules are transmitted maternally and persist throughout 757 
embryogenesis after parental RNAi for Tc-zen1. 758 
(A) Structure of Tc-zen1 mRNA (CDS: solid black, UTRs: grey, homeobox: open box) and 759 
corresponding dsRNA fragments (green) used to silence the gene: the long dsRNA (solid 760 
green) was used in this study; the short dsRNA (dashed green) was used previously [20] to 761 
specifically avoid the highly conserved homeobox.  Beneath, the six fragments (Fr. 1-6) 762 
indicate the regions used for RT-qPCR quantification, where the two outermost fragments 763 
(blue) lay partially outside of the dsRNA fragment and four fragments (red) lay inside the 764 
dsRNA fragment.  Fragment lengths are indicated and are shown to scale. 765 
(B) Expression ratio of Tc-zen1 in knockdown (RNAi) and wild type (WT) samples at 766 
different stages of development, assayed by RT-qPCR with fragments that extend outside (Fr. 767 
1) or are nested within (Fr. 2) the dsRNA fragment, as indicated in the legend.  In the three 768 
older stages, Fragment 2 in the RNAi samples (yellow) shows consistently higher expression 769 
than all other samples, due to its ability to detect the dsRNA in addition to endogenous 770 
transcript. Developmental time is specified in hours after egg lay (i.e., after fertilization). 771 
(C) Tc-zen1 expression measured by RT-qPCR in the RNAi samples compared to WT 772 
samples for all fragments, at a developmental stage when endogenous mRNA levels are 773 
negligible (at 16-24 h).  The two outermost fragments (1 and 6) show reduced expression 774 
compared to WT, consistent with successful RNAi knockdown, while the inner fragments (2-775 
5) show increased expression after RNAi, with highest overexpression for Fragment 4 (see 776 
also Fig. S2).  The mean values (%) for each fragment are indicated. 777 
Mean expression levels are shown from three biological replicates (see Methods); error bars 778 
represent ± one standard deviation. 779 
 780 
Figure 2.  Maternal transmission of dsRNA occurs for diverse genes with distinct 781 
expression profiles. 782 
(A-B) RT-qPCR expression ratio assayed with amplicons that are nested (“in”: red and 783 
yellow) or partially outside (“out”: light and dark blue) with respect to the dsRNA fragment, 784 
in WT and after RNAi, as indicated in the legends.  Mean expression levels are shown from 785 
three biological replicates; error bars represent ± one standard deviation.  For Tc-chs1 (A), the 786 
nested qPCR amplicon shows higher expression in RNAi samples (yellow) when endogenous 787 
Tc-chs1 expression is low (48-56 h).  Similarly, in the nGFP strain expressing transgenic 788 
dsRed (B), the DsRed nested qPCR amplicon detects a relative overexpression after RNAi at 789 
a stage when DsRed transgene is not expressed (8-24 h).  Inset schematics depict the 790 
transcript, dsRNA, and qPCR fragments to scale, using the same color scheme as in Fig. 1; 791 
only the first 700 bp of the 5092-bp mRNA is shown for Tc-chs1. 792 
(C-F) Phenotypic confirmation of DsRed knockdown through loss of DsRed fluorescence in a 793 
transgenic line that ubiquitously expresses nuclear-localized GFP (green).  The 3xP3 core 794 
promoter drives DsRed signal (magenta) in the brain and ventral nerve cord of untreated 795 
control (WT) embryos (C) and larvae (E).  After DsRed RNAi, 3xP3-driven DsRed signal is 796 
absent, with only weak autofluorescence detected in the epidermal cuticle and the yolk (D, F).  797 
Views are lateral (C-D) or dorsal (E-F), with anterior left and, as applicable, dorsal up.  798 
Landmark thoracic (T) and abdominal (A) segments are numbered.  Letter-prime panels show 799 
the DsRed channel alone.  Scale bars are 100 µm.  Horizontal bar charts show the proportions 800 
of larvae with no (black), weak (yellow), or strong (magenta) DsRed signal in larvae. 801 
 802 
 803 
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Figure 3.  Systemic parental RNAi persists at high levels for months before fully waning. 804 
(A-C) Representative larval cuticle preparations for wild type (WT), Tc-tupRNAi, and Tc-805 
gclRNAi (from Experiment 3, collected 39-52 dpi, assayed ≥6 days after egg lay). 806 
Views are lateral (A,B) or dorsal-lateral (C), with anterior left and dorsal up.  Landmark 807 
thoracic (T) and abdominal (A) segments are numbered.  The dashed line indicates the plane 808 
of symmetry in the Tc-gclRNAi mirror-image double abdomen phenotype; brackets outline the 809 
terminal urogomphi.  Scale bars are 100 µm. 810 
(D) Time courses of parental RNAi penetrance from experiments that differ in beetle strain, 811 
female age, and target gene for knockdown (see figure legend and Methods).  Data points 812 
represent minimum age after injection, with n≥10 eggs in each sample (see Methods).  Shaded 813 
plot segments for Experiments 2 and 3b represent time intervals with dynamic changes in 814 
RNAi penetrance that encompass both transient fluctuations (increase or decrease) and the 815 
interval of RNAi waning, while female population size was constant (no fatalities). 816 
(E) Survival curves for females from all treatment conditions from all three experiments.  For 817 
Experiments 2 and 3b, respectively, the red and orange shading corresponds to the same 818 
intervals as in (A). 819 
(F) Fecundity values (number of eggs per female per day) relative to female age from all 820 
treatment conditions in all experiments, assayed at 19-26 time points per treatment. 821 
(G-H) Juxtaposition of phenotype penetrance (%, left y-axis) with female population size and 822 
fecundity values (integer values, right y-axis) for the period of RNAi waning in Experiments 823 
2 and 3b (red and orange shaded intervals, as above): female population size and fecundity 824 
remain steady or exhibit only minor fluctuation while RNAi wanes. 825 
 826 
Fig. 4. Visualization of metazoan orthology clustering reveals macroevolutionary 827 
patterns of protein conservation and lineage-specific losses. 828 
Taxonomic distribution and copy number of the SID-1/SIL and VgR transmembrane receptor 829 
proteins, representing all metazoan animal species in OrthoDB v10.1, with species numbers 830 
stated parenthetically.  Phylogenetic relationships are based on [87, 88].  Protein distributions 831 
are shown with one box per species, ordered sequentially by copy number, with the color 832 
code indicated in the legend for each gene.  Notable lineage-specific absences are indicated in 833 
bold grey text.  For one mite species (Acari), a VgR protein was only included in the wider 834 
metazoan orthology group, but this species did not have a VgR protein based on orthology 835 
clustering of Arthropoda only (magenta with white asterisk).  No other presence/absence 836 
results differed across the Insecta, Hexapoda, Arthropoda, and Metazoa clustering analyses.  837 
For minor changes in copy number across clustering analyses, the value reported here is based 838 
on the most taxonomically restricted analysis (see Methods).  Hexapoda taxonomic 839 
abbreviations and species counts: Hex.: Non-insect Hexapoda (4), Palaeoptera (3), 840 
Polyneoptera (4), Non-hemipteran Paraneoptera (2); Hem.: Hemiptera (16); Hym.: 841 
Hymenoptera (40); Col.: Coleoptera (9); Lep.: Lepidoptera (16); Oth.: other Holometabola: 842 
Strepsiptera (1), Trichoptera (1).  Vertebrate SID-1 proteins are mostly multi-copy, with 843 
single orthologues in ray-finned fishes (Actinopterygii), some orders of birds 844 
(Pelecaniformes, Gruiformes), and the platypus. 845 
 846 
Figure 5.  Curation, BLAST, and phylogenetics confirm and refine orthology clustering 847 
assessments of SID-1 and VgR distributions. 848 
(A) Detailed evaluation of genomic resources for Hemiptera and selected outgroups supports 849 
the lineage-specific loss of SID-1 in the Heteroptera: species in blue text lack SID-1.  Data 850 
types and sources are indicated in the legend, including recent transcriptomes (^:[46]; #: [7]), 851 
genome assemblies (i5K: [78]), and OGS collections at OrthoDB (*: [45]).  Phylogenetic 852 
relationships after [88-90].  For two species (Nilaparvata lugens and Anoplophora 853 
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glabripennis), follow-up curation (“C”) reduced SID-1 copy number compared to the 854 
OrthoDB assessment, as indicated (see Methods). 855 
(B) Selected subset of 14 species from (A) that were further interrogated by direct tBLASTn 856 
searching of the genome assembly.  Each of the three orthologous query proteins from A. 857 
pisum, T. castaneum (SirA), and Danio rerio produced identical outcomes for copy number. 858 
(C-D) Maximum likelihood whole-protein phylogenies of SID-1 homologues based on 35 859 
proteins from 23 species (C) and VgR/Vldlr homologues based on 50 proteins from 50 860 
species (D).  The branch length unit representing substitutions per site.  All nodes have ≥50% 861 
support (enlarged labels for selected nodes).  Shaded boxes indicate clades of interest, as 862 
labeled in the figure, with dashed colored lines for paraphyletic protein members.  For the 863 
VgR/Vldlr tree, the protein marked with an asterisk (*) represents the chelicerate species that 864 
was only included in the Metazoa, but not the Arthropoda, orthology clustering analysis (see 865 
Fig. 4). 866 
 867 
 868 
Figure 6.  Tighter developmental staging mitigates underestimation of RNAi knockdown 869 
when assayed with a nested qPCR amplicon. 870 
This schematized representation based on empirical data for Tc-zen1 illustrates how the time 871 
window assayed by RT-qPCR compares to the time course of endogenous expression [20], 872 
and in turn how this affects the apparent efficiency of RNAi knockdown.  Even with a nested 873 
amplicon, assays that strictly target the time window of peak endogenous expression confirm 874 
strong knockdown to 10% of wild type levels (blue: based on use of Fragment 3 depicted in 875 
Fig. 1A, [20]).  In contrast, broad sampling that includes periods of low endogenous 876 
expression are more susceptible to underestimation of knockdown (calculated as 25% of wild 877 
type levels), due to unmasked detection of dsRNA with a nested amplicon (orange: based on 878 
Fragment 2, data in Fig. 1B).  Equally, for Tc-chs1 we obtained two-fold variation in 879 
calculated knockdown level from different developmental stages of the same experiment, with 880 
either nested or semi-nested amplicons (Fig. 2A). 881 
 882 
Figure 7.  Unresolved features of systemic parental RNAi. 883 
Where is the dsRNA stored long-term in the mother without degradation and with continuous 884 
transmission to eggs?  Cartoons represent the progression of dsRNA from initial injection (A), 885 
through the mother’s tissues (B) and cells (C,D), to the oocytes (E).  Presence of dsRNA is 886 
represented in blue, with specific cell- and tissue-scale challenges to its transmission shown in 887 
red, and with final waning of pRNAi indicated by pale blue and grey.  Clip art images 888 
reproduced and modified from Microsoft PowerPoint 2021, v. 16.52.; ovary silhouette based 889 
on image at https://cronodon.com/BioTech/Insect_Reproduction.html. 890 
 891 
 892 
SUPPLEMENTARY FILES 893 
 894 
Figure S1.  Additional phylogenies with species subsampling for SID-1/SIL proteins. 895 
(A-D) Maximum likelihood phylogenies of selected SID-1 homologues.  The branch length 896 
unit representing substitutions per site.  All nodes have ≥50% support.  The designation 897 
“jumbled” highlights clades that conflate distinct genes (nematode SID-1 with TAG-898 
130/CHUP-1, vertebrate Sidt1 with Sidt2), which did not occur across all trees. 899 
 900 
Figure S2. Negative correlation of nested RT-qPCR amplicon length and detection of 901 
dsRNA (expression in excess of WT), assayed for Tc-zen1 at 16-24 h, as in main text Figure 902 
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1C.  Fragments 3 and 4 are shorter than Fragments 2 and 5.  Logarithmic trendline for mean 903 
expression level (% WT) vs. amplicon length: R2 = 0.76. 904 
 905 
Table S1.  Primers used in this study.  Note that primers for RNAi (dsRNA synthesis) also 906 
included an adapter sequence, 5'-GGCCGCGG-3' (forward primers) or 5'-CCCGGGGC-3' 907 
(reverse primers), for subsequent amplification with T7 promoter universal primers (adapters 908 
not shown in table).  The T7 universal primers are: 5'-universal primer 5'-909 
GAGAATTCTAATACGACTCACTATAGGGCCGCGG-3', and 3'-universal primer 5'-910 
AGGGATCCTAATACGACTCACTATAGGGCCCGGGGC-3'. 911 
 912 
Table S2.  Genome assembly versions queried by BLAST.  These resources were 913 
interrogated with tBLASTn queries for selected SID-1 proteins (see main text Figure 5B).  914 
Accessed at the i5K@NAL site, most recent access date: 13 October 2021. 915 
 916 
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Figure 1. Long dsRNA molecules are transmitted maternally and persist throughout 
embryogenesis after parental RNAi for Tc-zen1.

Figure 2. Maternal transmission of dsRNA occurs for diverse genes with distinct 
expression profiles.
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Figure 3. Systemic parental RNAi persists at high levels for months 
before fully waning.
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Figure 4. Visualization of metazoan orthology clustering reveals macro-
evolutionary patterns of protein conservation and lineage-specific losses.
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Table S1.  Primers used in the study.  Note that primers for RNAi (dsRNA synthesis) also included 
an adapter sequence, 5'-GGCCGCGG-3' (forward primers) or 5'-CCCGGGGC-3' (reverse primers), 
for subsequent amplification with T7 promoter universal primers (adapters not shown in table).  The 
T7 universal primers are: 5'-universal primer 5'-GAGAATTCTAATACGACTCACTATAGGGCCGCGG-
3', and 3'-universal primer 5'-AGGGATCCTAATACGACTCACTATAGGGCCCGGGGC-3'. 
 

Application Gene and fragment ID Primer 
direction Sequence (5' to 3') Amplicon 

length (bp) 
RNAi         

  Tc-zen1 (TC000921) forward TCCCAATTTGAAAACCAAGC 688 
  

 
reverse CGTTCCACCCTTCCTGATAA   

  Tc-chs1 (TC014634) forward (F1) CACCAGGACTGTGCA 390 
  

 
reverse (R1) GGCTTTTTGGACGAT   

  DsRed2 (EU257621.1) forward AGTTCATGCGCTTCAAGGTG 600 
  

 
reverse TGGTGTAGTCCTCGTTGTGG   

  Tc-tup (TC033536), NOF 1 forward (F1) CGTGCGAGATGGTAAAACCT 306 
  

 
reverse (R1) TTGCTCAAGCTGGTGTTGTT   

  Tc-tup (TC033536), NOF 2 forward (F2) CACGTTGAGGACGTGCTATG 347 
  

 
reverse (R2) GCTGATGGGGTTGCTCTAAG   

  Tc-gcl (TC001571) forward (F1) CGTTGATCAGTGGTGTTGCA 437 
  

 
reverse (R1) TCGCTTCCTCCCAGAAATGT   

          

RT-qPCR         

  Tc-RpS3 (TC008261) forward ACCTCGATACACCATAGCAAGC 186 
  

 
reverse ACCGTCGTATTCGTGAATTGAC   

  Tc-zen1 (5'-3'): 
  

  
  Fragment 1 outside dsRNA forward TCCTGTTGTGAGTCAGTGCA 223 
  

 
reverse CAGTTCCAATCAGAAGGTGGA   

  Fragment 2 inside dsRNA forward TGAAAACCAAGCCGTTCTGC 169 
  

 
reverse CAGTTCCAATCAGAAGGTGGA   

  Fragment 3 inside dsRNA forward TCCACCTTCTGATTGGAACTG 161 
  

 
reverse CGTTGGGGTTGAGTTTCTTG   

  Fragment 4 inside dsRNA forward CGGCCCAATTAGTGGAATTA 101 
  

 
reverse ACGCTCACTCAGGTTCAGGT   

  Fragment 5 inside dsRNA forward CCATCGACAGTGCAAACCAA 130 
  

 
reverse TCCTCTTGTTTGGGCAAAGC   

  Fragment 6 outside dsRNA forward CCATCGACAGTGCAAACCAA 190 
  

 
reverse GTTAAAGCAGGCTGGGACAC   

  
   

  
  Tc-chs1 (3') forward ATTCTGTAACCGGGACCTGG   
  

 
reverse inside 
dsRNA 

CCAGAAGGCGAAGATCAAGC 100 

  
 

reverse outside 
dsRNA 

ATGAGGAAGTGGGAGAAGGC 186 

  DsRed (5') forward inside 
dsRNA 

AGTTCATGCGCTTCAAGGTG 123 

  
 

forward outside 
dsRNA 

GCTCCTCCAAGAACGTCATC 147 

    reverse CCTTGGTCACCTTCAGCTTC   
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Table S2.  Genome assembly versions queried by BLAST.  These resources were interrogated 
with tBLASTn queries for selected SID-1 proteins (see main text Figure 5B).  Accessed at the 
i5K@NAL site, most recent access date: 13 October 2021. 
 

Taxonomic grouping Species 
Species 
abbrevi-
ation 

Assembly version 

Paraneoptera > Hemiptera > 
Sternorrhyncha 

Bemisia tabaci Btab Genome Assembly - Bemisia tabaci 
genome assembly GCF_001854935.1 
(ASM185493v1) 

Paraneoptera > Hemiptera > 
Sternorrhyncha 

Diaphorina citri Dcit Genome Assembly - NCBI-diaci1.1 
(Current RefSeq assembly version) 

Paraneoptera > Hemiptera > 
Heteroptera 

Gerris buenoi Gbue Genome Assembly - 
Gbue.scaffolds.50_new_ids.fa 

Paraneoptera > Hemiptera > 
Heteroptera 

Cimex lectularius Clec Genome Assembly - 
Clec_Bbug02212013.genome_new_ids.fa 

Paraneoptera > Hemiptera > 
Heteroptera 

Halyomorpha halys Hhal Genome Assembly - Halyomorpha halys 
genome assembly GCA_000696795.3 

Paraneoptera > Hemiptera > 
Heteroptera 

Oncopeltus fasciatus Ofas Genome Assembly - 
Ofas.scaffolds_new_ids.fa 

  
  

  

Paraneoptera > Thysanoptera Frankliniella occidentalis Focc Genome Assembly - Frankliniella 
occidentalis genome assembly 
GCA_000697945.4 

  
  

  

Holometabola > Hymenoptera Athalia rosae Aros Genome Assembly - Aros01112013-
genome_new_ids.fa 

  
  

  

Holometabola > Coleoptera Anoplophora glabripennis Agla Genome Assembly - 
Agla_Btl03082013.genome_new_ids.fa 

Holometabola > Coleoptera Leptinotarsa decemlineata Ldec Genome Assembly - Leptinotarsa 
decemlineata genome assembly 
GCF_000500325.1 

Holometabola > Coleoptera Tribolium castaneum Tcas Genome Assembly - Tribolium castaneum 
genome assembly Tcas5.2 
(GCF_000002335.3), genomic scaffolds 

  
  

  

Holometabola > Diptera Drosophila biarmipes Dbia Genome Assembly - Drosophila biarmipes 
genome assembly GCF_000233415.1 

Holometabola > Diptera Drosophila elegans Dele Genome Assembly - Drosophila elegans 
genome assembly, ASM1815250v1 

Holometabola > Diptera Drosophila kikkawai Dkik Genome Assembly - Drosophila kikkawai 
genome assembly, ASM1815253v1 
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