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Abstract 
Aging is a process of progressive change. In order to develop biological models of aging, 
longitudinal datasets with high temporal resolution are needed. Here we report a multi-omic 
longitudinal dataset for cultured primary human fibroblasts measured across their replicative 
lifespans. Fibroblasts were sourced from both healthy donors (n=6) and individuals with lifespan-
shortening mitochondrial disease (n=3). The dataset includes cytological, bioenergetic, DNA 
methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, 
cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the 
bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the 
descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging 
the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy 
cells, and cells subjected to over a dozen experimental manipulations targeting oxidative 
phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These 
experiments provide opportunities to test how cellular energetics affect the biology of cellular 
aging. All data are publicly available at our webtool: https://columbia-
picard.shinyapps.io/shinyapp-Lifespan_Study/ 
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Background & Summary 

Aging is the major risk factor for all major diseases 1. In biological terms, aging involves 
progressive changes at multiple levels of molecular organization, including the genome 2–4, 
epigenome 5–7, transcriptome 8, proteome 9, secretome 10, and organs and organ-systems 11. 
Advances in aging biology have identified a set of molecular “hallmarks” or “pillars” thought to 
represent the root causes of aging-related declines in cellular- and organ-system integrity and 
subsequent disease, disability, and mortality 12,13. In parallel, recent expansion of omics 
technologies have enabled researchers to generate high-dimensional datasets across multiple 
modalities that illuminate the complex molecular landscape of biological aging. These data have 
been combined with machine-learning methods to develop molecular “clocks” that track 
chronological age and mortality risk with remarkable accuracy 14,15, and to model complex 
systems-level processes 16,17. The clocks and related measures make possible measurements of 
biological processes of aging in free-living humans. But their connections to the hallmarks of aging 
remain unclear. Research is needed to elucidate fundamental mechanisms that cause aging-
related changes, and that drive aging-related declines in resilience and increased vulnerability to 
disease, disability, and mortality.  

The ideal approach to meeting this research need would be to longitudinally monitor a population 
of individuals over their entire lifespan, taking regular measures of many metrics at frequent 
intervals. Such studies represent an important frontier in aging science 18,19. However, in addition 
to resource-constraints and participant-burden concerns that limit the frequency and depth of 
measurements, following a cohort of humans over their lifespan requires multiple generations of 
scientists and faces challenges of ever-changing techniques and technology for sample collection 
and analysis. One complementary strategy is to conduct lifespan studies of shorter-lived animals 
20,21, although these too require substantial time, and may be limited in their translability to humans 
22. Here we present a further complementary strategy: a “lifespan” study of cultured fibroblasts.  

One contribution from cross-species work has been to delineate conserved genes, pathways, and 
hallmarks of aging across multiple experimental modalites 12. One major pathway surfacing as a 
critical and possibly primary driver of aging biology is mitochondrial metabolism 23. Omics-based 
discovery studies consistently converge on mitochondria as a major molecular signature of 
biological aging 9,24. Beyond providing ATP for all basic cellular functions, mitochondria produce 
signals that can trigger multiple hallmarks of aging 25. In humans 26,27 and animals 28–30, 
mitochondrial respiratory chain dysfunction dramatically shortens lifespan, further suggesting a 
primary causal role of mitochondria as a “timekeeper” and driver of the biological aging process.  

To examine longitudinal aging trajectories and quantify the influence of mitochondria on canonical 
and exploratory aging markers in a human system, we generated a multi-omic, longitudinal 
dataset across the replicative lifespan of primary human fibroblasts from several healthy and 
disease donors (Figure 1). These data include genomic, epigenomic, transcriptomics, and 
protein-based measures along with bioenergetic and mitochondrial OxPhos measures. The 
relatively high temporal resolution of measurements allows for non-linear modeling of molecular 
recalibrations in primary human cells, as recently shown for DNA methylation in a pilot cellular 
lifespan study 31. In this cellular lifespan system, the rate of biological aging appears to proceed 
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at a rate ~40-140x faster than in vivo (i.e., in the human body), such that 200-300 days in vitro 
corresponds to multiple decades of human life 31. In addition to the rich descriptive data in multiple 
donors, this dataset includes experimental conditions with metabolic manipulations targeted to 
mitochondria, allowing investigators to directly test the influence of mitochondrial metabolism on 
human molecular aging signatures.  

 
Figure 1. Biological and conceptual rationale for the Cellular Lifespan Study. (A) Primary human 
fibroblasts aged in culture (i.e., in vitro) recapitulate several, although not all, molecular hallmarks of human 
aging. Previous work with this replicative lifespan system showed that canonical age-related changes in 
DNA methylation (DNAm) in human tissues, such as hypermethylation of the ELOVL2 gene promoter 
(cg16867657), global hypomethylation, and the rate of epigenetic aging captured by epigenetic clocks, are 
conserved, but occur at an accelerated rate in cultured primary human fibroblasts 31. This model provides 
a system to recapitulate and model some of the longitudinal changes in the cells of the same individuals, 
at high temporal resolution across the replicative lifespan. (B) Electron micrograph of a human cultured cell 
(left) and higher magnification view of the surface of the nucleus and nuclear envelope (yellow), with a 
neighboring mitochondrion. Arrows illustrate the diffusion path for soluble metabolic signals to reach the 
(epi)genome. Illustration modified from 32. (C) Micrograph of a whole fibroblast (HC2, P22, 103 days grown) 
with fluorescently-labeled mitochondria (MitoTracker green) surrounding the nucleus, from which DNA 
methylation can be measured using the EPIC array, quantified either at the single CpG level, or integrating 
data from multiple CpGs via different DNAm clocks. (D) Illustration of the experimental segment of the 
Cellular Lifespan Study, where specific signaling pathways (glucocorticoid signaling), OxPhos (oligomycin) 
and glycolytic pathways (no glucose, galactose, 2-deoxyglucose), respiratory chain defects (donors with 
SURF1 mutations), and other single and combinations of treatments were used to perturb selected 
metabolic pathways. 
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Methods  

Tissue culture 

Primary human dermal fibroblasts were obtained from commercial distributors or in our 
local clinic from 6 healthy control donors, and 3 donors with lethal SURF1 mutations (IRB 
#AAAB0483) that alter mitochondrial respiratory chain complex IV assembly and function 33,34, 
and lead to early death in affected patients 35 (see Table 1 for descriptive information and 
distributor). SURF1-mutant fibroblasts were isolated from dermal punch biopsies of the forearm 
skin using standard procedures. After isolation, fibroblasts were cryopreserved in 10% DMSO 
(Sigma-Aldrich #D4540), 90% fetal bovine serum (FBS, Life Technologies #10437036) in liquid 
nitrogen. To avoid freeze-shock necrosis cells were frozen gradually in an isopropanol container 
(Thermofisher #5100-0001) at -80°C overnight before storage in liquid nitrogen. Cells were 
thawed at 37°C (<4min) and immediately transferred to 20ml of pre-warmed DMEM (Invitrogen 
#10567022).  

For replicative lifespan studies, cells were cultured in T175 flasks (Eppendorf #0030712129) at 
standard 5% CO2 and atmospheric O2 at 37°C in DMEM (5.5 mM glucose) supplemented with 
10% FBS (Thermofisher #10437010), 50 μg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-
essential amino acids (Life Technologies #11140050), 10 μM palmitate (Sigma-Aldrich #P9767) 
conjugated to 1.7 μM BSA (Sigma-Aldrich #A8806), and 0.001% DMSO (treatment-matched, 
Sigma-Aldrich #D4540). Cells were passaged approximately every 6 days (+/- 1 day), with 
decreasing passaging frequency as cells enter quiescence, for up to 270 days.  

Brightfield microscopy images at 10x and 20x magnification were taken before each passaged 
using inverted phase-contrast microscope (Fisher Scientific #11350119). All images except those 
of Phase IV can be downloaded at: 
https://figshare.com/articles/dataset/Brightfield_Images_for_Cellular_Lifespan_Study/18444731.  

Cell counts, volume and proportion of cell death were determined in duplicates (CV <10%) and 
averaged at each passage using the Countess II Automated Cell Counter (Thermofisher 
#A27977). To determine the number of cells to plate at each passage, growth rates from the 
previous passage were used, pre-calculating the expected number cells needed to reach ~90% 
confluency (~2.5 million cells) by the next passage, ensuring relatively similar confluence at the 
time of harvesting for molecular analyses. Cells were never plated below 200,000 cells or above 
2.5 million cells to avoid plating artifacts of isolation or contact inhibition, respectively. However, 
some differences in cell density between early and late passages were unavoidable. Study 
measurements and treatment began after 15-days of culturing post-thaw to allow for adjustment 
to the in vitro environment. Individual cell lines from each donor were grown until they exhibited 
less than one population doubling over a 30-day period, at which point the cell line was terminated, 
reflecting the end of the lifespan. The hayflick limit was calculated as the total number of 
population doublings reached by the end of each experiment. 

Mycoplasma testing 
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Mycoplasma testing was performed according to the manufacturer's instructions (R&D 
Systems #CUL001B) on 100 media samples at the end of lifespan for each treatment and cell 
line used. All tests were negative.  

Bioenergetic parameters and calculations of metabolic rate 

Bioenergetic parameters were measured using the XFe96 Seahorse extracellular flux 
analyzer (Agilent) 36,37. Oxygen consumption rate (OCR) and extracellular acidification rate 
(ECAR, i.e. pH change, was measured over a confluent cell monolayer. Cells were plated for 
Seahorse measurement every 3 passages (~15 days) with 10-12 wells plated per a treatment 
group. Each well of the Seahorse 96-well plate was plated with 20,000 cells and incubated 
overnight under standard growth conditions, following the manufacturer’s instructions, including 
a plate wash with complete Seahorse XF Assay media. The complete XF media contains no pH 
buffers and was supplemented with 5.5 mM glucose, 1 mM pyruvate, 1 mM glutamine, 50 μg/ml 
uridine, 10 μM palmitate conjugated to 1.7 μM BSA, to ensure that cells have access to a variety 
of energetic substrates. After a wash with XF media, the plate was incubated with XF media in a 
non-CO2 incubator for one hour to equilibrate temperature and atmospheric gases before the 
assay.  

Different respiratory states were assessed using the MitoStress Test 38. Basal respiration, ATP 
turnover, proton leak, coupling efficiency, maximum respiration rate, respiratory control ratio, 
spare respiratory capacity, and non-mitochondrial respiration were all determined by the 
sequential additions of the ATP synthase inhibitor oligomycin (final concentration: 1 μM), the 
protonophore uncoupler FCCP (4 μM), and the electron transport chain Complex I and III 
inhibitors, rotenone and antimycin A (1 μM). The optimal concentration for the uncoupler FCCP 
yielding maximal uncoupled respiration was determined based on a titration performed on young 
healthy fibroblasts (data not shown). The final injection included Hoechst nuclear fluorescent stain 
(Thermofisher #62249) to allow for automatic cell counting. After each run, cell nuclei density in 
each well were counted using the Cytation1 Cell Imager (BioTek) and raw bioenergetic 
measurements were normalized to relative cell counts on a per-well basis. This normalization 
method was selected due to reduced well-to-well variability by approximately half compared to 
other normalization techniques (e.g., normalization to ug of protein). 

ATP production rates from oxidative phosphorylation (OxPhos, JATP-OxPhos) and glycolysis (JATP-
Glyc), as well as total cellular ATP production and consumption (JATP-Total) were estimated using the 
method described by Mookerjee et al.  36. Briefly, the method relies on the phosphate-to-oxygen 
(P/O) ratios of OxPhos and glycolysis, using oxygen consumption and proton production rates 
(PPR) as input variables. The same constants were used for all estimations, assuming glucose 
as the predominant carbon source, and constant coupling efficiency. Changes in substrate 
consumption along the lifespan would require parallel assessments of metabolic flux to resolve, 
and assuming the same major substrate across the lifespan and treatment conditions could have 
a minor influence on calculated ATP production rates that are not reflected in the ATP-related 
metrics in this bioenergetics data. All raw seahorse data files and analysis scripts are available at 
https://github.com/gav-sturm/Cellular_Lifespan_Study/tree/main/Seahorse. 

mtDNA next-generation sequencing and eKLIPse analysis 
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The entire mtDNA was amplified in two overlapping fragments using a combination of 
mtDNA primers. The primer pairs used for PCR amplicons were tested first on Rho zero cells 
devoid of mtDNA to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification  

○ PCR1: 5’-AACCAAACCCCAAAGACACC-3’ and 5’-
GCCAATAATGACGTGAAGTCC-3’  

○ PCR2: 5’-TCCCACTCCTAAACACATCC-3’ and 5’-
TTTATGGGGTGATGTGAGCC-3’ 

Long-range PCR was performed with the Kapa Long Range DNA polymerase according to the 
manufacturer’s recommendations (Kapa Biosystems, Boston, MA, USA), with 0.5µM of each 
primer and 20ng of DNA. The PCR products were analyzed on a 1% agarose gel electrophoresis.  

NGS Libraries were generated using an enzymatic DNA fragmentation approach using Ion Xpress 
Plus Fragment Library Kit. Library were diluted at 100 pM before sequencing and pooled by a 
maximum of 25 samples. 

Sequencing was performed using an Ion Torrent S5XL platform using Ion 540 chipTM. Signal 
processing and base calling were done by the pre-processing embedded pipeline. Demultiplexed 
reads were mapped according to the mtDNA reference sequence (NC_012920.1) before being 
analysed with a dedicated homemade pipeline including eKLIPse 39 
(https://github.com/dooguypapua/eKLIPse) using the following settings: 

○ Read threshold: min Quality=20 | min length =100bp 
○ Soft-Clipping threshold: Read threshold: Min soft-clipped length =25pb | Min 

mapped Part=20 bp 
○ BLAST thresholds: min=1 | id=80 | cov=70 | gapopen=0 | gapext=2 
○ Downsampling: No 

mtDNA copy number 

Cellular mtDNA content was quantified by qPCR on the same genomic material used for 
other DNA-based measurements. Duplex qPCR reactions with Taqman chemistry were used to 
simultaneously quantify mitochondrial (mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as 
described previously 40. The reaction mixture included TaqMan Universal Master mix fast (life 
technologies #4444964), 300nM of custom design primers and 100nM probes:  

○ ND1-Fwd: 5’-GAGCGATGGTGAGAGCTAAGGT-3’  
○ ND1-Rev: 5’-CCCTAAAACCCGCCACATCT-3’ 
○ ND1-Probe: 5’-HEX-CCATCACCCTCTACATCACCGCCC-3IABkFQ-3’  
○ B2M-Fwd: 5’-CCAGCAGAGAATGGAAAGTCAA-3’ 
○ B2M-Rev: 5’-TCTCTCTCCATTCTTCAGTAAGTCAACT-3’ 
○ B2M-Probe: 5’-FAM-ATGTGTCTGGGTTTCATCCATCCGACA-3IABkFQ-3’ 

The samples were cycled in a QuantStudio 7 flex qPCR instrument (Applied Biosystems) at 50°C 
for 2 min, 95°C for 20 sec, 95°C for 1min, 60°C for 20 sec, for 40 cycles. qPCR reactions were 
setup in triplicates in 384 well qPCR plates using a liquid handling station (epMotion5073, 
Eppendorf), in volumes of 20ul (12ul mastermix, 8ul template). Triplicate values for each sample 
were averaged for mtDNA and nDNA. Ct values >33 were discarded. For triplicates with a 
coefficient of variation (C.V.) > 0.02, the triplicates were individually examined and outlier values 
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removed where appropriate (e.g., >2 standard deviations above the mean), with the remaining 
duplicates were used. The final cutoff for acceptable values was set at a C.V.= 0.1 (10%); samples 
with a C.V. > 0.1 were discarded. A standard curve along with positive and negative controls were 
included on each of the seven plates to assess plate-to-plate variability and ensure that values 
fell within measurement range. The final mtDNAcn was derived using the ΔCt method, calculated 
by subtracting the average mtDNA Ct from the average nDNA Ct. mtDNAcn was calculated as 
2ΔCt x 2 (to account for the diploid nature of the reference nuclear genome), yielding the estimated 
number of mtDNA copies per cell. 

RNA sequencing 

Total genomic RNA was isolated for 360 samples every ~11 days across the cellular 
lifespan for control lines and selected treatments. RNA was stabilized using TRIzol (Invitrogen 
#15596026) and stored at -80oC until extraction as a single batch. RNA was extracted on-column 
using a RNeasy kit (Qiagen #74104), DNase treated according to the manufacturer’s instructions, 
and quantified using the QUBIT high sensitivity kit (Thermofisher #Q32852). RNA integrity was 
quantified on Bioanalyzer (Agilent RNA nano kit 6000, #5067-1511) and Nanodrop 2000. Of the 
360 samples, 352 had an RNA integrity number (RIN) score >8.0, a A260/A280 ratio between 
1.8-2.2, and no detectable levels of DNA. For cDNA library preparation, 1,500ng of RNA at 
50ng/μl was processed using Ribo-Zero Gold purification (QIAseq FastSelect -rRNA HMR Kit 
#334387) and NEBNext® Ultra™ II RNA Library Prep Kit (Illumina #E7770L). cDNA was 
sequenced using paired-end 150bp chemistry on a HiSeq 4000 instrument (Illumina, single index, 
10 samples/lane, Genewiz Inc). Sequencing depth was on average 40 million reads per sample. 
Post-sequencing QC (multiQC, v1.8) excluded 6 more samples, for a final sample set of 345. 
Sequenced reads were then aligned using the pseudoalignment tool kallisto v0.44.0 41. This data 
was imported using txi import (‘tximport’, v1.18.0, length-scaled TPM), and vst normalized 
(‘DEseq2’, v1.30.1).  

DNA methylation 

Global DNA methylation was measured on 512 samples using the Illumina EPIC 
microarray (Illumina, San Diego). Arrays were run at the UCLA Neuroscience Genomic Core 
(UNGC). DNA was extracted using the DNeasy kit (Qiagen #69506) according to the 
manufacturer’s protocol and quantified using QUBIT broad range kit (Thermofisher #Q32852). At 
least 375 ng of DNA was submitted in 30 µl of ddH2O to UNGC for bisulfite conversion and 
hybridization using the Infinium Methylation EPIC BeadChip kit. Samples with DNA below 12.5 
ng/ul (~90 of 512 samples) were concentrated using SpeedVac Vacuum Concentrator 
(Thermofisher #SPD1030A-115) for <1 hour. Sample positions were randomized across six assay 
plates to avoid systematic batch variation effects on group or time-based comparisons.  

All DNA methylation data was processed in R (v4.0.2), using the ‘minfi’ package (v1.36.0). Quality 
control preprocessing was applied by checking for correct sex prediction, probe quality, sample 
intensities, and excluding SNPs and non-CpG probes. Of the 512 samples, 22 failed quality 
control and were excluded from further analysis, yielding a final analytical sample of n=479. Data 
was then normalized using functional normalization (Fun Norm). Using the R package ‘sva’ 
(v3.12.0), both RCP and ComBat adjustments were applied to correct for probe-type and plate 
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bias, respectively. After quality control, DNAm levels were quantified as beta values for 865,817 
CpG sites.  

DNA methylation clocks and related measures 

We used DNA methylation data to calculate a series of measures broadly known as 
epigenetic clocks 15. We computed four clocks designed to predict the chronological age of the 
donor, Horvath1 (i.e. PanTissue clock) 5, Horvath2 (i.e. Skin&Blood clock) 42, Hannum 43, and 
PedBE 44 clocks; two clocks designed to predict mortality, the PhenoAge 45 and GrimAge 46 clocks; 
a clock to measure telomere length, DNAmTL 47; a clock designed to measure mitotic age, MiAge 
48; a clock trained to predict cellular senescence, DNAmSen 49, and two DNA methylation measure 
of the rate of deterioration in physiological integrity, DunedinPoAm 17, and DundedinPACE 50.  

For the Horvath, Hannum, PhenoAge, GrimAge, and DNAmTL clocks, this dataset 
includes both the original versions of these clocks, calculated using the online calculator hosted 
by the Horvath Lab (https://dnamage.genetics.ucla.edu/new) and versions developed using the 
methods proposed in Higgins-Chen et al. (https://github.com/MorganLevineLab/PC-Clocks) 51. 
Briefly, this method replaces the clock’s individual illumina probe measurements (5-500 CpGs) 
with the shared extracted variances among genome-wide CpGs from principal components (PC), 
yielding the PC-adjusted DNAmAges for each clock. Chronological age values used in the 
calculations of these clocks were the ages of the donors at the time of sampling. The MiAge clock 
was computed using the software published by in 48 
(http://www.columbia.edu/~sw2206/softwares.htm). The Pace of Aging clocks, DunedinPoAm 
and DunedinPACE, were computed using the software published in 17,50 
(https://github.com/danbelsky/DunedinPACE). 

Whole genome sequencing (WGS) 

Total genomic DNA was isolated for 94 samples across cellular lifespan using column 
based DNeasy blood and tissue kit (Qiagen #69504) and quantified using Qubit dsBR assay 
(ThermoFisher #Q32850). Sample quality assessment, library preparation, whole genome 
sequencing and data pre-processing was performed by Genewiz using standard Illumina 
workflow. Briefly, WGS paired-end (PE) reads with 2x150bp configuration were obtained from 
Illumina HiSeq platform and processed using SAMtools (v1.2) and BaseSpace workflow (v7.0). 
PE reads were aligned to hg19 genome reference (UCSC) using Isaac aligner (v04.17.06.15) and 
BAM files were generated. Duplicate reads were identified and filtered using Picard tools (GATK). 
More than 80% of the bases were of high quality with a score >Q30. Mean depth of sequencing 
coverage was >20x with more than 90% of the genome covered at least 10 times. Variant calling 
from the entire genome was performed using Strelka germline variant caller (v2.8) for small 
variants including single nucleotide variants (SNVs) and insertion/deletion (Indels) and structural 
variants (SVs) were identified using Manta (v1.1.1). WGS data is available from the authors upon 
request. 

Telomere Length 
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Relative telomere length was evaluated on the same genomic material used for other 
DNA-based measurements. Measurements were performed by qPCR and expressed as the ratio 
of telomere to single-copy gene abundance (T/S ratio), as previously described 52,53. The reaction 
mixture included 20 mM Tris-HCl, pH 8.4; 50 mM KCl; 200 µM each dNTP; 1% DMSO; 0.4x Syber 
Green I; 22 ng E. coli DNA; 0.4 units of Platinum Taq DNA polymerase (Thermo Fisher Scientific 
#10966018) with custom design primers. The primers utilized were the following: i) For the 
telomere (T) PCR: tel1b [5'-CGGTTT(GTTTGG)5GTT-3'], used at a final concentration of 100 nM, 
and tel2b [5'-GGCTTG(CCTTAC)5CCT-3'], used at a final concentration of 900 nM; ii) For the 
single-copy gene (S, human beta-globin) PCR: HBG1 Fwd:[5' 
GCTTCTGACACAACTGTGTTCACTAGC-3'], used at a final concentration of 300 nM, and HBG2 
Rev: [5'-CACCAACTTCATCCACGTTCACC-3'], used at a final concentration of 700 nM. 
Approximately 6.6 ng of DNA template was added per 11 μL of the reaction mixture. A standard 
curve of human genomic DNA from buffy coat (Sigma-Aldrich #11691112001) along with positive 
and negative controls were included on each of plates to assess plate-to-plate variability and 
ensure that values fell within measurement range. The qPCR reactions were performed in 
triplicate using a LightCycler 480 qPCR instrument (Roche) using the following thermocycling 
conditions: i) For the telomere PCR: 96°C for 1 min, one cycle; 96°C for 1 sec, 54°C for 60 sec 
with fluorescence data collection, 30 cycles; ii) For the single-copy gene PCR: 96°C for 1 min, 
one cycle; 95°C for 15 sec, 58°C for 1 sec, 72°C for 20 sec, 8 cycles; 96°C for 1 sec, 58°C for 1 
sec, 72°C for 20 sec, 83°C for 5 sec with data collection, 35 cycles. Triplicate values for each 
sample were averaged of T and S were used to calculate the T/S ratios after a Dixon’s Q test for 
outlier removal. T/S ratio for each sample was measured twice. For duplicates with C.V. > 0.07 
(7%), the sample was run a third time and the two closest values were used. Only 5% of the 
samples (25 of 512 samples) had a C.V. > 0.01 after the third measurement, and the inter-assay 
C.V. = 0.03 ± 0.043. Telomere length assay for the entire study were performed using the same 
lots of reagents. Lab personnel who performed the assays were provided with de-identified 
samples and were blind to other data. 

Cytokines 

Two multiplex fluorescence-based arrays were custom-designed with selected cytokines 
and chemokines based on human age-related proteins. Analytes were selected based on 
reported correlations of their levels in human plasma with chronological age 54, and based on their 
availability on R&D custom Luminex arrays (R&D, Luminex Human Discovery Assay (33-Plex) 
LXSAHM-33 and LXSAHM-15, http://biotechne.com/l/rl/YyZYM7n3). Cell media samples were 
collected at selected passages across cellular lifespan and frozen at -80oC until analysed as a 
single batch. Thawed samples were centrifuged at 500g for 5 min and supernatant transferred to 
a new tube. Media samples were ran undiluted, and the plates were incubated, washed, and 
signal intensity quantified on a Luminex 200 instrument (Luminex, USA) as per the manufacturer’s 
instructions. Positive (>200 days aged healthy fibroblast) and negative controls (fresh untreated 
media) samples were used in duplicates on each plate to quantify and adjust for batch variations. 
Data was fitted and final values interpolated from a standard curve in xPONENT v4.2. Cytokine 
concentrations were then normalized to the number of cells counted at the time of collection to 
produce estimates of cytokine production on a per-cell basis.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2021.11.12.468448doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

Quantification of two selected cytokines, interleukin 6 (IL-6, Abcam#ab229434) and growth 
differentiation factor 15 (GDF15, R&D#DGD150), were repeated using enzyme-linked 
immunosorbent assays (ELISAs), according to the manufacturer’s instructions. 

Automated cell-free DNA isolation from cell culture media 

Total cell-free DNA (cf-DNA) was isolated from cell culture media using a previously 
published automated, high throughput methodology 55. In brief, thawed cell culture media was 
centrifued at 1000g for 5min. 75 µL of supernatant was then dispensed into a clean 96 deep-well 
plate (Thermo Fisher, cat#95040450) using a Freedom EVO 150 automated liquid handler 
(Tecan, cat#10641150). 5.7 µL of 20 mg/mL Proteinase K (VWR, cat#97062-242) and 7.5 µL of 
20% sodium dodecyl sulfate (Boston BioProducts, cat#BM-230) were subsequently dispensed 
into each well using a HandyStep digital repeater pipette (BrandTech Scientific, cat#705002). The 
plate was sealed with an adhesive PCR seal (Thermo Fisher Scientific, cat#AB0558) and covered 
with generic packaging tape. The plate was centrifuged at 500 x g for 1 minute (min), then 
incubated in an New Brunswick Innova 44 incubator shaker (Eppendorf, cat#M1282-0000) at 
70°C for 16 hours. Following the overnight incubation, the plate was left at room temperature for 
15 min and centrifuged again. After the seal was removed, 125 µL of MagMAX Cell Free DNA 
Lysis/Binding Solution (Thermo Fisher cat#AM8500) and 5 µL of Dynabeads MyOne Silane 
magnetic beads (Thermo Fisher cat#37002D) were dispensed into each well using the repeater 
pipette. The plate was loaded onto a KingFisher Presto (Thermo Fisher, cat#5400830) magnetic 
particle processor to begin the extraction process. The DNA-bound magnetic beads were washed 
three times with the following solutions: 1) 265 µL of MagMAX Cell Free DNA Wash Solution 
(Thermo Fisher, cat#A33601), 2) 475 µL of 80% ethanol, and 3) 200 µL of 80% ethanol. The cf-
DNA was resuspended in 60 µL of MagMAX Cell Free DNA Elution Solution (Thermo Fisher, 
cat#33602) and stored at -20°C in a sealed 96-well PCR plate (Genesee Scientific, cat#24-302).  

Quantification of cf-mtDNA and cf-nDNA abundance 

qPCR: cf-mtDNA and cf-nDNA levels were measured simultaneously by qPCR. Taqman-
based duplex qPCR reactions targeted mitochondrial-encoded ND1 and nuclear-encoded B2M 
sequences as described previously 55–57. Each gene assay contained two primers and a 
fluorescent probe and were assembled as a 20X working solution according to the manufacturer’s 
recommendations (Integrated DNA Technologies). The assay sequences are:  

○ ND1-Fwd: 5’-GAGCGATGGTGAGAGCTAAGGT-3’ 
○ ND1-Rev: 5’-CCCTAAAACCCGCCACATCT-3’ 
○ ND1-Probe: 5’-5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABkGQ-3’ 
○ B2M-Fwd: 5’-TCTCTCTCCATTCTTCAGTAAGTCAACT-3’ 
○ B2M-Rev: 5’-CCAGCAGAGAATGGAAAGTCAA-3’ 
○ B2M-Probe: 5’-56FAM-ATGTGTCTG-ZEN-GGTTTCATCCATCCGACCA-

3IABkFQ-3’ 

Each reaction contained 4 µL of 2X Luna Universal qPCR Master Mix (New England Biolabs, 
cat#M3003E), 0.4 µL of each 20X primer assay, and 3.2 µL of template cf-DNA for a final volume 
of 8 µL. The qPCR reactions were performed in triplicate using a QuantStudio 5 Real-time PCR 
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System (Thermo Fisher, cat#A34322) using the following thermocycling conditions: 95°C for 20 s 
followed by 40 cycles of 95°C for 1 s, 63°C for 20 s, and 60°C for 20 s. Serial dilutions of pooled 
human placenta DNA were used as a standard curve. 

Digital PCR (dPCR): mtDNA and nDNA copy number (copies/µL) of the standard curve used in 
cf-mtDNA/cf-nDNA assessment were measured separately using singleplex ND1 and B2M 
assays using a QuantStudio 3D Digital PCR System and associated reagents (Thermo Fisher, 
cat#A29154) according to the manufacturer’s protocol. The values obtained for the standard curve 
were used to calculate the copy number for the experimental samples. All reactions were 
performed in duplicate (two chips). Because the same standard curve was used on all plates, its 
copy number was applied uniformly to all qPCR plates.  

Data Records 

This multi-omics cellular lifespan dataset includes longitudinal data across 13 major 
biological outcomes, including cytological measures (growth rate, cell size), cellular bioenergetics 
(respiratory capacity, total energy consumption), transcriptomics (bulk RNA-seq), DNA 
methylation (EPIC array), whole genome sequencing (WGS), secreted factors (cytokines, cell-
free DNA), and others (Figure 2-3 and Table 3). These outcomes differ by the number of samples, 
repeat experiments, and length of timecourses for each donor line and treatment group 
(Supplementary File 2 and Table 4).  All expected hallmarks of cellular aging were observed in 
this model, including the upregulation of quiescence and senescence markers, and 
downregulation of genes associated with cell division (Figure 4). 

 
Figure 2. Overview of the study design and temporality of outcome measures. The outcome measures 
listed on the left were collected longitudinally at multiple time points following different periodicity, 
determined by resource or cell number constraints. The duration and periodicity of measurements vary by 
experimental conditions and cell line. See Tables 1 and 2 for details. 
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Figure 3. Data availability for each measured parameter. Heatmap of sample availability for each 
parameter (columns) associated with a given donor cell line and treatment (rows). 
 
 

 
Figure 4. Intersection between the Cellular Lifespan Study conditions and the hallmarks of aging. 
Schematic of the hallmarks of aging adapted from López-Otín et al. 12, annotated with the treatments and 
datasets that directly or indirectly enable to longitudinally investigate their interplay with molecular features 
of cellular aging in aging cultured primary human fibroblasts.  
 
Table 1 contains information about all cell lines used, including the biopsy site, sex and age of 
the donor, as well as known clinical and genetic information.  

Table 2 indicates the cell lines with available data for each of the 22 experimental treatments, 
which are described below. 

Table 3 lists the assessed biological outcomes along with their dimensionality (number of 
parameters quantified), the number of samples available across all cell lines, their temporal 
frequency, and the total size or number of datapoints. For example, there is available 
transcriptomic (i.e., gene expression) data quantified by RNA sequencing, which includes read 
counts for each annotated gene expressed as transcripts per million (TPM), on 360 samples 
collected on average every 11 days (min: 5 days, max 15 days), and each cell line has on average 
8 timepoints (min:2, max:19). The transcriptomic dataset includes a total of 12.6B datapoints. 
Although multiple treatments were used to perturb bioenergetic and endocrine pathways, the 
dataset is most extensive and is of highest temporal resolution for cell lines from healthy controls. 
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Table 4 lists the five main phases for which the study was conducted (Phases I-V). The time 
periods and experimenters associated with each study phase. 

 
Experimental treatments 

1. Control (untreated) 
a. Rationale: Cells are grown under metabolically diverse conditions of Dulbecco’s 

modified Eagle’s medium (DMEM, Thermofisher #10569044) containing 5.5 mM 
glucose, 1 mM pyruvate, 4 mM GlutaMAXTM, supplemented with 10% fetal bovine 
serum, 1% non-essential amino acids, 50 mg/ml Uridine, and 10 mM Palmitate.  

b. Design & dose: No treatment. To enable direct comparison of control growth 
trajectories to treatments (diluted in the vehicle DMSO), untreated controls were 
grown in 0.001% DMSO (Sigma-Aldrich #D4540). 

c. Duration: 0-270 days 
d. Study Phase: I-V 

2. Chronic Dexamethasone (DEX) 
a. Rationale: Glucocorticoid receptor agonist, activates transcription of >1,000 

genes 58. Used as a mimetic of chronic neuroendocrine or psychosocial stress in 
animal studies 59. This treatment was used to examine the effects of chronic 
activation glucocorticoid signaling, a major evolutionary conserved stress pathway, 
on aging- and metabolism-related processes. 

b. Design & dose: (PubChem CID: 5743, SID: 46508930) Chronic 100nM (in EtOh) 
dose every passage, Sigma-Aldrich #D4902.  

c. Duration: 20-270 days (chronic) 
d. Study Phase: I-III 

3. Oligomycin (Oligo) 
a. Rationale: Inhibition of the mitochondrial OXPHOS system by inhibiting the ATP 

synthase (Complex V). Oligo treatment causes depletion of mitochondria-derived 
ATP, hyperpolarization of the membrane potential, and triggers retrograde 
signaling that activates the integrated stress response (ISR) 60. This treatment was 
used to inhibit OXPHOS downstream from the respiratory chain, and thereby 
examine the effect of chronic OXPHOS dysfunction. 

b. Design & dose: Chronic, 1nM (stored in DMSO) dose every passage, Sigma-
Aldrich #75351 

c. Duration: 20-220 days 
d. Study Phase: II 

4. Mitochondrial Nutrient Uptake Inhibitors (mitoNUITs)  
a. Rationale: Inhibiting the import of three major substrates into mitochondria, 

including i) pyruvate, with UK5099, an inhibitor of the mitochondrial pyruvate 
carrier (MPC); ii) fatty acids, with Etomoxir, an irreversible inhibitor of carnitine 
palmitoyltransferase-1 (CPT-1) that prevents the transport of fatty acyl chains from 
the cytoplasm to the mitochondria; and iii) glutamine, with BPTES, an inhibitor of 
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glutaminase GLS1 that converts glutamine to glutamate inside the mitochondria. 
This treatment was used to starve the tricarboxylic acid (TCA) cycle of carbon 
intermediates, thus inhibiting OXPHOS upstream of the respiratory chain. 

b. Design & dose: UK5099 (PubChem CID: 6438504, SID: 329825569) chronic at 
2μM (in DMSO), Sigma-Aldrich #PZ0160; Etomoxir (PubChem CID: 123823) 
chronic at 4μM (in ddH2O), Sigma-Aldrich #E1905; BPTES (PubChem CID: 
3372016) chronic at 3μM (in DMSO), Sigma-Aldrich #SML0601; dosed every 
passage. 

c. Duration: 20-210 days 
d. Study Phase: II 

5. Hypoxia 
a. Rationale: Oxygen is the terminal electron acceptor at respiratory chain complex 

IV (cytochrome c oxidase), and decreasing ambient oxygen tension from 21% to 
3% has been shown to influence cellular bioenergetics. In cellular and animal 
models of mitochondrial disease, including the Ndufs4 deficient mouse 30, hypoxia 
treatment has shown promise to alleviate the disease phenotype and extend 
lifespan. In relation to cellular aging, 3% oxygen tension also extends cellular 
lifespan in murine and human fibroblasts 61–65. 

b. Design & dose: Cells chronically grown at 3% O2 (5% CO2), except periodic 
exposure to ambient 21% O2 during passaging (~3 hours, once each week). This 
experiment was run twice (Study Phase III and V). Phase III compared healthy to 
chronic DEX cells in hypoxia, while Phase V compared healthy to SURF1-mutant 
cells in hypoxia. Additionally, all seahorse bioenergetic measurements were 
measured in 21% oxygen (Phase V included an overnight incubation at 21% O2). 

c. Duration: 0-70 days 
d. Study Phase: III & V 

6. Contact Inhibition 
a. Rationale: Allowing cells to fill up the dish and enter a quiescent state allows for 

the experimentally untangle the role of cell division in time-dependent changes. 
Contact-inhibited fibroblasts continue to undergo morphological changes, exhibit 
>88% reduced division rate on average, and display skin-like tissue appearance 
after months in culture. 

b. Design & dose: After thawing and adjustment to culture environment cells are 
plated in multiple flasks at high density with marked collection points with the 0 
time point collected 7 days after the initial plating. Media is changed weekly, at the 
same time points as dividing cells are passaged.  

c. Duration: 20-140 days 
d. Study Phase: III 

7. Galactose 
a. Rationale: Galactose is a non-fermentable sugar and its oxidation into pyruvate 

through glycolysis yields no ATP, thereby forcing cells to rely solely on OXPHOS 
for ATP production 66. 
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b. Design & dose: Galactose (PubChem CID: 6036, SID: 178101363) chronic at 
5.5mM (stored in ddH2O) dose every passage, Sigma-Aldrich #G5388. 

c. Duration: 20-170 days 
d. Study Phase: IV 

8. 2-deoxy-d-glucose (2-DG) 
a. Rationale: 2-deoxy-d-glucose (2DG) is an inhibitor of hexokinase 67 that blocks 

metabolic flux and ATP synthesis from the metabolism of glucose through 
glycolysis. 

b. Design & dose: 2-DG (PubChem CID: 108223, SID:24893732) chronic at 1mM 
(in ddH2O) dose every passage, Sigma-Aldrich #D3179. 

c. Duration: 20-170 days 
d. Study Phase: IV 

9. Beta-hydroxybutyrate (and 0mM glucose) 
a. Rationale: Caloric restriction has been shown to extend lifespan. Beta-

hydroxbutyrate is a ketone body that is induced in caloric restriction and acts as a 
signaling metabolite to effect gene expression in diverse tissues 68. 

b. Design & dose: hydroxybutyrate (PubChem CID: 10197691, SID: 57651496) 
chronic at 10mM (in ddH2O) dose every passage, Sigma-Aldrich #54965. 

c. Duration: 20-170 days 
d. Study Phase: IV 

10. 5-azacytidine (5-aza) 
a. Rationale: 5-aza was used to induce global demethylation of the genome, thus 

testing if direct alteration of the methylome would reset the aging of our cells. Note, 
no significant change was seen in the growth rate or global DNA methylation after 
treatment, suggesting that the dose used may have been insufficient to induce 
robust alterations in DNA methylation . 

b. Design & dose: 5-aza (PubChem CID: 9444, SID: 24278211) acute treatment for 
2 passages (~10days) at 1μg/mL (stored in PBS), Sigma-Aldrich #A2385. 

c. Duration: 60-230 days 
d. Study Phase: II 

11. MitoQ 
a. Rationale: MitoQ is a mitochondria-targeted antioxidant compound used 

specifically in the mitochondrial compartment 69. MitoQ was used to test how 
reducing mitochondrial oxidation would influence cellular aging, or moderate the 
influence of chronic stressors (see Treatment 19). 

b. Design & dose: MitoQ (PubChem CID: 11388332, SID:134224101) chronic 
treatment at 10nM (stored in DMSO), provided by author M.P.M. 

c. Duration: 20-120 days 
d. Study Phase: I 

12. N-Acetyl-L-cysteine (NAC) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2021.11.12.468448doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468448
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

a. Rationale: NAC acts as a precursor of glutathione (GSH), which is itself a direct 
antioxidant and a substrate for antioxidant enzymes 70, NAC also generates H2S 
and sulfanes that can act as antioxidants 71. NAC was used to test whether 
reducing total cellular oxidative stress burden by scavenging of reactive oxygen 
species may influence cellular aging, or moderate the effect of chronic stress (see 
Treatment 20). 

b. Design & dose: NAC (PubChem CID: 12035, SID: 24277970) chronic treatment 
at 2mM (in ddH2O), Sigma-Aldrich #A7250. 

c. Duration: 20-120 days 
d. Study Phase: I 

13. !"#$%&'()%*+*%$,-!"./0 

a. Rationale: !"KG (also 2-oxoglutarate) is a key tricarboxylic acid cycle (TCA) cycle 
metabolite that is a substrate for 2-oxoglutarate-dependent dioxygenases (2-
OGDD), and necessary cofactor for enzymes that perform demethylation of 
proteins and DNA 72. !"./,1*2,)2$3,%&,2456%, %4$,!"./"%&"2)7758*%$,+*%5&9,14574,

1*2, 4:;&%4$25<$3, %&, ;+&=&%$, >?@, 3$=$%4:(*%5&8, 73. The cellular uptake and 

bioavailability of !"./ was not monitored. 
b. Design & dose: A-ketoglutarate (PubChem CID: 164533, SID: 329766750) 

chronic treatment at 1mM (in ddH2O), Sigma-Aldrich #75890.  
c. Duration: 20-130 days 
d. Study Phase: I 

14. Oligomycin + DEX 
a. Rationale: The complex V inhibitor oligomycin was used in combination with DEX 

to examine their interactions. DEX increases mitochondrial OXPHOS-derived ATP 
production, which is inhibited by Oligo, suggesting that DEX and Oligo may have 
antagonistic effects. 

b. Design & dose: same as Treatments 2 and 3. 
c. Duration: 20-70 days 
d. Study Phase: II 

15. mitoNUITs + DEX 
a. Rationale: Because the increase in mitochondria ATP production induced by DEX 

requires the uptake of carbon substrates, which is inhibited by mitoNUITs. Both 
treatments were used in parallel to examine if mitoNUITs would interfere with the 
effects of DEX on cellular bioenergetics and signaling. 

b. Design & dose: same as Treatments 2 and 4. 
c. Duration: 20-270 days 
d. Study Phase: II 

16. Hypoxia + DEX 
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a. Rationale: Hypoxia triggers a shift towards glycolytic metabolism, whereas DEX 
causes a shift towards OXPHOS. Both treatments were used in parallel to examine 
if DEX hypoxia could rescue the chronic effects of DEX on energetic parameters 
and aging markers. 

b. Design & dose: same as Treatments 2 and 5. 
c. Duration: 20-70 days 
d. Study Phase: III 

17. Contact inhibition + hypoxia 
a. Rationale: Both contact inhibition and hypoxia reduce cellular division rate, and 

partially recreate some of the natural conditions of skin fibroblasts in the human 
body. Both were used in parallel as an attempt to recapitulate as closely as 
possible in vivo conditions and evaluate the influence of this state on aging 
markers. 

b. Design & dose: same as Treatments 5 and 6. 
c. Duration: 20-140 days 
d. Study Phase: III 

18. 5-azacytidine + mitoNUITs 
a. Rationale: Here we tested the idea that mitochondrial activity stores the memory 

of epigenetic state. By demethylating the genome with 5-azacytidine and then 
simultaneously diverting energy away from the ETC we hypothesized that the 
genome would take longer to be remethylated back to its original state. 

b. Design & dose: same as Treatments 4 and 10. 
c. Duration: 60-230 days 
d. Study Phase: II 

19. MitoQ + DEX 
a. Rationale: DEX causes a bioenergetic shift towards OXPHOS, and causes 

premature aging based on several biomarkers (unpublished). MitoQ was used to 
examine if these effects of chronic glucocorticoid stimulation could be alleviated by 
buffering mitochondrial ROS, which would suggest that part of the accelerated 
aging phenotype in DEX-treated cells is in part driven by mitochondrial ROS. 

b. Design & dose: same as Treatments 2 and 11. 
c. Duration: 20-130 days 
d. Study Phase: I 

20. NAC + DEX 
a. Rationale: Similar to Treatment 19, NAC was used in parallel with DEX to examine 

if the chronic effects of glucocorticoid signaling could be alleviated by buffering of 
ROS in the cytoplasmic compartment (vs MitoQ, for mitochondrial ROS). 

b. Design & dose: same as Treatments 2 and 12. 
c. Duration: 20-120 days 
d. Study Phase: I 

21. Pulsated DEX 
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a. Rationale: This treatment was used to examine the effects of a more physiological 
pulsatile activation of glucocorticoid signaling, compared to its chronic activation 
(Treatment 2). 

b. Design & dose: Same molecular composition as chronic DEX (100nM, see 
Treatment 2). Cells were treated once, for 30 min, before each passage (every 5-
7 days). 

c. Duration: 20-120 days (pulsated) 
d. Study Phase: I 

22. Contact Inhibition & regrowth 
a. Rationale: Allowing cells to continue their replicative lifespan after being held in 

contact inhibition for several weeks allows for the experimental determination of 
whether cultured cells remember their divisional age and contain the same total 
replicative lifespan. 

b. Design & dose: After 80 days of contact inhibition cells were allowed to continue 
dividing until replicative exhaustion (i.e. ‘Contact Inhibition Regrowth’).  

c. Duration: 80-210 days 
d. Study Phase: I 

 
Technical Validation 

The number of days per passage were systematically recorded (and can be derived from 
the ‘Date_time_of_passage’ variable, for each cell count timepoint in the database). Variation and 
deviations in the number of days between passages increase towards the latter part of the lifespan 
for all lines and treatments because of the limited number of cells once enter quiescence and 
senescence (Figure 5A).  

Two of the 6 healthy controls’ growth curves were repeated 4 times, over a ~2 year period, 
in separate phases by different experimenters (see Table 4), confirming that the growth curves 
were reproducible (Figure 5B). Chronic DEX (Treatment 2) was repeated in study Phases I, II, 
and III. Hypoxia (Treatment 5) was repeated in study Phases III and V. SURF1-mutant cells were 
run in both study Phases II and V. All data reflecting independent growth curves on multiple 
parameters can be visualized on our webtool (https://columbia-picard.shinyapps.io/shinyapp-
Lifespan_Study/) and from the downloaded data. 

The telomere length qPCR assay contained 5 technical replicates of the same sample 
(HC1, passage 10, 42 days grown). Replicates had a C.V. of 9% (range of 0.21 T/S units) (Figure 
5C). 

The mtDNA copy number qPCR assay contained 7 technical replicates across 7 plates of 
the same 2 samples (HC5 & HC6). Replicates had an average C.V. of 3.5% (range: 95.05 
copies/cell) (Figure 5D). 

The cell-free DNA qPCR assay contained 9 technical replicates across 8 plates of the 
same samples (HC3, passage 32, 189 days grown). An aged sample was selected to ensure 
robust extracellular DNA levels. Replicates of cf-mtDNA and cf-nDNA measurements had an 
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average C.V. of 25% and 40% (range: 100,609 and 166 copies/mL/106 cells, respectively) (Figure 
5E). 

The IL6 ELISA assay contained 9 technical replicates across 8 plates of the same samples 
(HC3, passage 32, 189 days grown). An old media sample (robust extracellular IL6 levels) was 
selected as a positive control. Replicates had a C.V. of 49% (range: 101.5 pg/mL/106 cells) 
(Figure 5F). 

The technical variation in DNAm on the EPIC array was also previously determined on six 
DNA replicates from HC5 (GEO #GSE131280). DNAmAge computed from the combination of 
multiple probes or CpG sites showed a coefficient of variation, for selected clocks, of 3% for the 
Horvath1 (PanTissue) clock, 4% for the Horvath2 (Skin&Blood) clock, and 13% for the PhenoAge 
clock (Figure 5G). After PC-adjustment based on 51, the technical variation between samples was 
reduced to 2%, 8%, and 2%, respectively, indicating moderately robust technical validity at the 
single-CpG level, but high validity when multiple CpGs are combined into multivariate DNAm 
clocks. The DNAm dataset also contains 3 replicate longitudinal experiments of HC1 & HC2 that 
can be used to quantify the variability in the longitudinal rates of epigenetic aging using the 
investigator’s preferred clock(s) or individual CpGs. 

Technical variation for RNA- and DNA-based OMICS measures with >100 samples (i.e. 
RNAseq, DNAm, telomere length etc.) was determined by distributing the same biological sample 
(healthy HC1 fibroblasts, untreated, passage 6, 21 days grown) across multiple plates and 
sequencing lanes. For RNAseq, the technical assay variation was determined from 7 biological 
replicates. The average coefficient of variation (C.V., standard deviation divided by the mean) in 
normalized read counts across all genes was 1.47% (range = 3.42 normalized expression units 
(Figure 5H). Figure 5J shows the frequency distribution of C.V. for each mapped gene, and how 
technical variation for individual genes influenced sample position on a 2-component principal 
component analysis (PCA) across all study samples, indicating good reliability (Figure 5I). 

The mean sequencing depth for WGS was >20X for most samples, as shown in Figure 
5k.  
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Figure 5. Experimental replication and technical variation across multi-modal measurements. (A) 
Timecourse of the number of days between each passage for each phase of the study. (B) Growth curves 
of donors repeated at different phases of the study. Color indicates phase of study and shape indicates cell 
line donor. (C-H) Variation in technical replicates for (C) telomere length, (D) mtDNA copy number, (E) cell-
free DNA, (F) IL6 as measured by ELISA, (G) DNAmAge as estimated by three epigenetic clocks and there 
PC-adjusted calibrations, and (H) average RNAseq-based transcript levels across all expressed genes. (I) 
Principal component analysis of all expressed genes for the full 354 sample RNAseq dataset. Technical 
replicates are highlighted in blue (n=7). (J) Coefficient of variations in transcript per million (TPM) across 
the 7 RNAseq technical replicates for each mapped gene. The majority of genes have CVs < 5%, and 99% 
of genes have CVs < 10%. (K) Mean sequencing coverage for whole genome sequencing (n=94 samples). 
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Usage Notes 

Here we mention some of the limitations of the dataset that should be considered for the 
analysis and interpretation of findings. 

Sample Exclusion. All samples and measurements that did not pass quality control, regardless of 
the assay, were excluded from the published dataset (i.e. ‘Supplemental File 1’ & ShinyApp). See 
‘Data Access’, section for access to raw data files. 

Prestudy passaging. Fibroblast cell lines were sourced from different vendors and isolated using 
varying culture methods (Table 1). Additionally, donor medical history, chronological age, and 
environmental exposures add additional variability between cell lines. Due to these constraints, it 
is not possible to determine the exact number of population doublings cells underwent before 
performing the study. These constraints could influence the cumulative population doublings of 
each cell line but should not affect rates of aging or age-related trajectories.  

Pre-study freeze-thaw cycles. Study Phases I and II involved a single freeze-thaw cycle in liquid 
nitrogen in our laboratory from the cell obtained; while an additional cycle occurred in cells used 
in Phases III, IV, V.   

Normalization to cell numbers. The raw values for some features are influenced by the number of 
cells in the culture flask at each passage. For example, secretome data that includes extracellular 
levels of cytokines or cell-free mitochondrial DNA (cf-mtDNA) in the cell media are determined 
not only by the secretion rate, but also by the total number of cells contributing to the signal in the 
flask. Therefore, secreted factors levels are normalized to cell number at the time of harvesting 
media, which represents the amount of analyte released per cell counted. To obtain raw 
concentrations media concentrations, the investigator can multiply the normalized values 
(variable_name_example e.g. ‘IL6_ELISA_Upg_per_ml’) by the cell count 
(variable_name_in_database_for_cellcount, e.g. ‘Cells_counted_UmillionCells’) at each time 
point. Cell counts should include the fraction of dead cells at any given passage unless otherwise 
established secretion from exclusively live cells.  

Cell seeding density. In Phase V of the study, we improved our calculation of seeding numbers 
to ensure <80% confluency at each passage. This minor change in protocol could contribute to 
differences between replicate experiments and trajectories of metabolic rate and other potential 
differences between Phase V and earlier phases. 

Sample size and robustness of experimental treatments. As detailed in Table 2, this Cellular 
Lifespan dataset includes longitudinal assessments of treatment conditions in primary human 
fibroblasts from multiple independent donors, in some cases replicated multiple times. This is the 
case for untreated (Treatment #1), chronic DEX (#2), and hypoxia (#5) treatments. These time-
series data enable robust modeling of time-related dynamics and treatment effects, using the 
user’s preferred methods. Other treatment conditions were either performed in a smaller number 
of donors, particularly HC1 (male) and HC2 (female), and/or for some treatments the timecourse 
experiment was not subsequently repeated. These conditions should be considered exploratory 
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and may serve as preliminary data for subsequent experiments. All treatment conditions were 
conducted in at least two different donors, and each experiment contained multiple timecouse 
data points. The more limited domains of the dataset enable to calculate robust estimates of effect 
sizes, directionality of effects, and effects across two donors of different biological sex. 

Rate of epigenetic aging. To obtain stable estimates of epigenetic aging without potential artifacts 
attributable to the early effects of culture or before the onset of treatments, or to later alterations 
in the epigenome (i.e., non-linear trajectories on DNAmAge clocks) related to quiescence or 
senescence towards the end of life, rates of epigenetic aging were determined by taking the linear 
slope for each cell line from 25 to 75 days of growth. 

Future analyses. This dataset contains multi-modal data that can be used to investigate each of 
the hallmarks of aging (see Figure 4).  In particular, the high-resolution timecourses are ideal to 
model age-related trajectories with either linear or complex non-linear functions. These models 
could then be systematically classified and statistically examined using functional regression 
approaches, for example, to identify (groups of) parameters exhibiting similar related age-
associated trajectories. Such parameters would indicate co-regulation and could inform 
subsequent mechanistic studies aiming to establish causal pathways, bioenergetic parameters, 
enzymes, or genes that drive specific aging trajectories. Because the average timecourse 
contains ~12 timepoints, and because interpolation likely overfits beyond the 3-sample resolution 
rule-of-thumb, non-linear modeling efforts should be limited to 4 inflection points across the 
cellular lifespan.  

It is also possible to leverage the repeated measures design across portions of the 
lifespan, or across the whole lifespan, to examine stable (i.e. time-invariant) differences between 
treatment groups. Examples include: i) the SURF1 mutant cells effects relative to control, which 
triggers hypermetabolism, a robust hypersecretory phenotype, the transcriptional integrated 
stress response, and accelerates several markers of cellular aging 74, and ii) the chronic Dex 
treatment effects on control fibroblasts, which alters cytological, transcriptional, secretory, and 
(epi)genomic aging markers 75.  

Finally, these longitudinal data can be used to develop or validate new penalized 
regression algorithms or “epigenetic clocks” 51. 

 
Data Access  

All data can be accessed, visualized, and downloaded without restrictions at 
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/. This simple interface allows 
users to select (and de-select) the donors of interest, select the experimental treatment(s), and 
visualize the time course data in an realtime-updatable display panel (Figure 6). Users can select 
multiple donors and-or treatments simultaneously to visualize the effects of interest and explore 
the data. All data visualized is downloadable as a .csv file which can further be found directly at: 
https://figshare.com/articles/dataset/Lifespan_Study_Data/18441998. The app will be regularly 
updated with new data as additional lifespan experiments and analyses are performed.  

The unprocessed RNAseq (GSE179848) and EPIC DNA methylation array data 
(GSE179847) can also be accessed and downloaded in full through Gene Expression Omnibus 
(GEO). WGS coverage and variant information can be accessed on the ShinyApp, and the 
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complete data is available upon request. Brightfield microscopy images can be downloaded at: 
https://figshare.com/articles/dataset/Brightfield_Images_for_Cellular_Lifespan_Study/18444731. 
Raw Seahorse assay files along with corresponding data analysis scripts can be found at : 
https://github.com/gav-sturm/Cellular_Lifespan_Study/tree/main/Seahorse. 

 
 

 
Figure 6. Data visualization and exploration on the Cellular Lifespan ShinyApp. (A-C) Visualization 
example of high-dimensionality epigenetic DNA methylation (DNAm) data using tools on the ShinyApp. (A) 
Interactive timecourse of the DNAm Skin&Blood clock (Horvath2, a multivariate algorithm trained using 
penalized elastic net regression) across the cellular lifespan of HC1 fibroblasts, both untreated (grey) and 
treated chronically (red) with 100nM of dexamethasone (DEX, glucocorticoid receptor agonist) to mimic 
chronic stress exposure. Note that the x axis represents time in culture, which can be changed using the 
selector menu on the left to “population doublings” to take into account the reduced division rate in Dex-
treated cells. Other biological measures are visualized via tabs on the top. (B-C) Interactive principal 
component analysis of the 45,000 significant age-related CpGs in 2D (B) and 3D (C). The frequency and 
duration of different cytological, molecular, and bioenergetic measurements vary by cell lines and 
experimental conditions. See Figure 3, Tables 2-4, and Supplemental File 2 for details. The Shiny App can 
be accessed, and the data downloaded, at https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study.  
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Code Availability 

Code is available at https://github.com/gav-sturm/Cellular_Lifespan_Study 
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TABLES 

 
Table 1. Cell line metadata. Demographic, tissue of origin, and genetic characteristics of the primary 
human fibroblast cell lines used in the Cellular Lifespan Study dataset. The dataset includes 6 healthy 
control donors, and 3 donors with lethal SURF1 mutations that alter mitochondrial respiratory chain complex 
IV assembly and function, and lead to early death in affected patients.  
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 Healthy Controls SURF1 Mitochondrial Disease 

 
Treatments 

HC1 
(hFB12) 

HC2 
(hFB13) 

HC3 
(hFB14) 

HC4 
(hFB11) 

HC5 
(hFB1) 

HC6 
(hFB2) 

SURF1_1 
(hFB6) 

SURF1_2 
(hFB7) 

SURF1_3 
(hFB8) 

1. Control ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

2. Chronic DEX ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

3. Oligomycin ⚫ ⚫ ⚫       

4. mitoNUITs ⚫ ⚫ ⚫       

5. Hypoxia ⚫ ⚫ ⚫ ⚫   ⚫ ⚫ ⚫ 

6. Contact Inhibition ⚫ ⚫  ⚫ ⚫     

7. Galactose ⚫ ⚫        

8. 2DG ⚫ ⚫        

9. β-hydroxybutyrate ⚫ ⚫        

10. 5-aza ⚫ ⚫        

11. MitoQ     ⚫ ⚫    

12. NAC     ⚫ ⚫    

!"#$%&'(     ⚫ ⚫    

14. Oligomycin+DEX ⚫ ⚫ ⚫       

15.mitoNUITs+DEX ⚫ ⚫ ⚫       

16. Hypoxia+DEX ⚫ ⚫ ⚫       

17. Contact 
Inhibition+Hypoxia 

⚫ ⚫  ⚫      

18. 5-aza+mitoNUITs ⚫ ⚫        

19. MitoQ+DEX     ⚫ ⚫    

20. NAC+DEX     ⚫ ⚫    

21 Pulsated DEX     ⚫ ⚫    

22. Contact inhibition 
& regrowth 

    ⚫     

 
Table 2. Cell lines and treatments for the Cellular Lifespan Study. Experimental conditions, or 
absence thereof, applied to each primary human fibroblast cell line. 
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Biological 
measures 

 
Platform 

# of 
parameters 

# of 
Samples 

Timepoints 
per cell line& 

Frequency 
(days) * 

Total data 
points 

Cell cytology Countess 3 1,547 Avg. 21  
(7,41) 

Avg. 7  
(5,22) 

5x10e3 

Cell morphology Bright field 
microscopy 

2 1,547 Avg. 21  
(7,41) 

Avg. 7  
(5,22) 

3x10e3 

Bioenergetics  Seahorse XFe96 34 468 Avg. 9 
(3,18) 

Avg. 6  
(6,7) 

16x10e3 

Transcriptomics RNAseq  
Illumina HiSeq 

28,633 345 Avg. 8  
(2,19) 

Avg. 11  
(5,15) 

9x10e9 

Telomere length qPCR 1 496 Avg. 7 
(2,15) 

Avg. 8  
(4,15) 

500 

DNA methylation Illumina EPIC 
Bead Array 

865,817 479 Avg. 7 
(2,15) 

Avg. 8  
(4,15) 

427x10e6 

Whole Genome 
Sequencing 

Illumina HiSeq ~3,200,000,
000 

94 Avg. 6 
(2,11) 

Avg. 18 
(8,28) 

301x10e9 

IL6  ELISA 1 695 Avg. 10  
(5,20) 

Avg. 8  
(5,15) 

700 

GDF15  ELISA 1 100 Avg. 9  
(7,10) 

Avg. 21 
(10,60) 

100 

Cytokines Luminex array 52 76 Avg. 8  
(6,10) 

Avg. 21 
(10,60) 

4x10e3 

cf-mtDNA  qPCR 2 695 Avg. 12  
(6,20) 

Avg. 8  
(5,15) 

1.4x10e3 

mtDNA copy number qPCR 2 494 Avg. 10  
(5,20) 

Avg. 8  
(4,15) 

1x10e3 

mtDNA sequencing Ion Torrent  10 120 Avg. 8  
(4,14) 

Avg. 8  
(8,8) 

1.2x10e3 

 
Table 3. Dimensionality of biological measures available in this dataset. Molecular, cellular and 
bioenergetic features, the technique or platform used to generate the data, their temporal resolution, and 
the dimensionality of datasets for each biological measure. & Values are averages with minimum and 
maximum number of timepoints (min, max). * The frequency of passaging differs by study Phase: Phase I, 
5 days; Phase II, 5 days; Phase III, 7 days; Phase IV, 7 days; Phase V, 5 days. 
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Study Phase Investigator Time period Cell lines Treatments 

Phase I G.S. Oct 2017-Feb 2018 (4 mo) HC5,6 1,2,6,11,12,13,19,20,21,22 

Phase II G.S. Aug 2018-May 2019 (10 mo) HC1,2,3, 
SURF1_1,2,3 

1,2,3,4,10,14,15,18 

Phase III G.S. Feb 2019-April 2019 (3 mo) HC1,2,4 1,2,5,6,16,17 

Phase IV J.M. May 2019-Oct 2019 (6mo) HC1,2 1,7,8,9 

Phase V A.S.M. Oct 2020-June 2021 (8mo) HC1,2,3, 
SURF1_1,2,3 

1,5 

 
Table 4. Study phases, cell lines used, and treatments applied in the Cellular Lifespan Study. Five 
phases conducted by different investigators with varying study lengths, cell lines, treatments, and 
exposures.  
 
 
Supplementary Files 

Supplementary File 1. Cellular Lifespan Study complete dataset. 

Supplementary File 2. Heatmaps of available experimental data.   
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