ABSTRACT
Microridges are evolutionarily conserved actin-rich protrusions present on the apical surface of the squamous epithelial cells. In zebrafish epidermal cells, microridges form self-evolving patterns due to the underlying actomyosin network dynamics. However, their morphological and dynamic characteristics have remained poorly understood owing to lack of automated segmentation methods. We achieved ~97% pixel-level accuracy with the deep learning microridge segmentation strategy enabling quantitative insights into their bio-physical-mechanical characteristics. From the segmented images, we estimated an effective microridge persistence length as ~0.61μm. We discovered the presence of mechanical fluctuations and found relatively greater stresses stored within patterns of yolk than flank, indicating distinct regulation of their actomyosin networks. Furthermore, spontaneous formations and positional fluctuations of actin clusters within microridge influenced pattern rearrangements over short length/time-scales. Our framework allows large-scale spatiotemporal analysis of microridges during epithelial development and probing of their responses to chemical and genetic perturbations to unravel the underlying patterning mechanisms.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
A few lines within the manuscript mistakenly appeared twice on page 8. In this revision, the correction has been made.