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Summary 

Cell-cell communication and physical interactions play a vital role in cancer initiation, 

homeostasis, progression, and immune response. Here, we report a system that combines live 

capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling 

of doublets using a microfluidic integrated fluidic circuit (IFC) that enables measurement of 

physical distances between cells and the associated transcriptional profiles due to cell-cell 

interactions. The temporal variations in natural killer (NK) - triple-negative breast cancer 

(TNBC) cell distances were tracked and compared with terminally profiled cellular 

transcriptomes. The results showed the time-bound activities of regulatory modules and alluded 

to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve 

as a proof of concept for interrogating live cell interactions at doublet resolution, which can be 

applied across different cancers and cell types. 

Keywords: Cell-cell interactions, NK cells, single cell analysis, single cell genomics, 

transcriptome profiling, triple-negative breast cancer. 
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Introduction 

Cell-cell communication sustains the multicellular organism as an integral unit via direct 

physical interactions, surface receptor-ligand interaction, cell signaling from adjacent cells, 

nearby cells, or even distant organs1,2. The investigation of cell-cell interaction in the tumor 

microenvironment (TME) is one of the barriers to understanding cancer progression and 

identifying new therapeutic targets3. Despite the advances in high-throughput microscopy and 

single-cell based molecular analysis, tools to precisely quantify live cell-cell interactions are 

lacking or, more recently, characterized using combinations of spatial -omics techniques on 

fresh-frozen or formalin-fixed complex tissues and live cell analyses4-8. We developed a 

microfluidic workflow involving capture and co-incubation of live single stromal/cancer cells or 

doublets using the single-cell dosing mRNA-seq integrated fluidic circuit (IFC) system 

(Fluidigm®), which provides both spatial and transcriptional cell-cell interactions. To 

demonstrate the performance for the quantification of the cell-cell interaction, we applied our 

platform for natural killer (NK) - triple-negative breast cancer (TNBC) cancer-immune doublets 

(CIDs). 

 TNBC was chosen as a model due to its aggressive nature and lack of estrogen receptor, 

progesterone receptor, and human epidermal growth factor receptor 2 that limit the use of 

targeted therapies9,10. However, promising responses have been seen with immunotherapy11, 

which is emerging as an important component of cancer treatment12,13. Clinically promising 

discoveries exploit specific features of tumor-immune cell crosstalk involving 

immunosuppression and anti-tumoral response signaling14-17. Among immune cells, NK cells can 

efficiently kill multiple neighboring cells with oncogenic transformation of surface markers18,19. 

NK cell activation, combined with their capacity to enhance antibody responses, supports NK 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.468447doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.13.468447
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

cells’ role as anticancer agents20. It is speculated that genetically engineered endogenous NK 

cells can exert tumor immunosurveillance and influence tumor growth21,22. However, 

heterogeneity is ubiquitous in human cancer making the selection of personalized 

treatment/therapy a challenge. It is expected that NK cell heterogeneity further contributes to 

NK-tumor crosstalk dynamics with differential modulation of their cytotoxic response, triggering 

tumor death when the balance between activation and inhibitory protein levels are considered23-

25. It is essential, therefore, to characterize the molecular level cues emanating from single NK 

cells when they encounter tumor cells. Thus, a single-cell platform for NK-cancer cell interaction 

measurement is much needed to study NK-cancer immunotherapy. 

To better understand NK-tumor cell interactions, we present a microfluidic workflow 

involving capture and co-incubation of single NK and cancer cells (CIDs) using the PolarisTM 

Single-Cell Dosing mRNA Seq IFC26 (Fluidigm). The doublets captured in the microfluidic 

chambers were tracked for cell-cell distances, using time-lapse imaging. After 13 hours of 

incubation with the exchange of growth medium at a defined interval of time (5 hours), the cells 

were subjected to single-cell RNA sequencing (scRNA-seq). This offered a total of 290 

transcriptomes, including single NK and cancer cells as control and NK-cancer cell doublets 

(CIDs). Unsupervised clustering analysis of the scRNA-seq expression profiles revealed 

heterogeneity in the TNBC cell line. We also observed a small number of NK killing events 

among the co-incubated CIDs, which allowed us to characterize the gene expression signature 

associated with NK-mediated lysis event of the companion cancer cells. We correlated the hourly 

computed cell-cell distances with terminally profiled gene expression vectors. We noted the 

existence of transcriptional memory, governed by precise regulatory modules active in a time-

bound manner. In addition, we investigated the ligand-protein pairs interactions, which provided 
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cues for the inflated activity of CD24/SIGLEC10 and ANXA1/EGFR in the tumor-NK doublets 

and supporting a previously described interaction between CD24/SIGLEC10 as a potent 

immunotherapy target for ovarian and triple negative breast cancer27. 

Results 

To study the interactions between NK and TNBC cells, we captured single NK-92MI cells 

(interleukin-2 independent Natural Killer cell line), single MDA-MB-231 cells, and cancer-

immune doublets (CIDs, one NK-92MI cell and one MDA-MB-231) and incubated the cells for 

13 hours using the Fluidigm Polaris system26,28-31 (Fig. 1A, Fig S1). Time-lapse images of CIDs 

were captured every hour to measure the distance between the CIDs. Following incubation, 

single cells and doublets were processed for RNA-sequencing. The integrated fluidic circuit can 

perform on-chip multi step chemistry that includes cell capture, co-incubation, lysis, reverse 

transcription, and cDNA amplification29. Single-cell and CIDs were analyzed for expression of 

marker genes that distinguished the two cell types. We identified previously known markers for 

both NK-92MI cells and MDA-MB-231 cells. In the case of NK cells, we observed strong 

expression of NK cell marker genes KLRD1, LAIR1, CCR6 and TNFRSF9. Single cancer cells 

showed TNBC marker genes HMGA1, ANKRD11, and TACSTD2 (Fig. 1B) when analyzed using 

SCANPY32 toolkit for analyzing single-cell gene expression data. Further to validate our cell 

type annotations, we took advantage of the imaging capability of the Polaris system. Prior to cell 

selection on the microfluidic IFC, the NK and cancer cells were stained with CellTracker™ Deep 

Red Dye and CellTracker™ Orange CMRA Dye respectively. The z-score normalized intensities 

of NK and cancer cell channels were subjected to 2D visualization (plotted using R package 

scatterD3) revealing the grouping of cells as per their annotations based on cell staining (Fig S2). 

Unsupervised clustering with Seurat v3 and associated Uniform Manifold Approximation and 
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Projection (UMAP) based 2D visualization33 of the transcriptomes revealed two separate 

clusters, which were primarily dominated by clonal heterogeneity of the cancer cell line (Fig. 

1C). The single NK cells shared one of the clusters, cluster 1, with a cancer cell sub-group. Upon 

performing principal component analysis (PCA) exclusively on the transcriptomes from this 

cluster, we noted spatial segregation of the NK cells (Fig. 1C). To further delineate the cancer 

cell heterogeneity, we performed unsupervised clustering of single cancer cells separately, which 

also resulted in two distinct clusters (Fig S3A), featuring differentially expressed genes (Fig 

S3B).  

 

Distance Tracking of Cancer-Immune Cell Interactions Over Time Shows 
Transcriptional Memory  

 

We tracked CIDs for dynamic changes in the distance between cancer and the companion NK 

cells under incubation in the same microfluidic chamber over 13 hours (Fig. 1A).  At the end of 

the 13th hour, transcriptome sequencing was performed on the CIDs (n = 102). This allowed us to 

determine the association between terminally measured gene expression with cancer/immune cell 

distances measured across different time points. Transcriptomes profiled at the end of the 13th 

hour featured transcripts that correlate significantly with CID distance measurements across all 

the time points (Fig 2A, 2B). Surprisingly, we identified time-bound activities of at least three 

distinct gene modules (Fig 2B).  At time point 6 (after five-hour incubation and a change in 

culture medium), we noted a new set of genes (module 2; M2) expressed. However, we did not 

observe a similar shift in gene expression at later culture medium change time points. We 

performed module wise transcription factor activity analysis using ShinyGO34 and RcisTarget35, 

which inferred the regulatory role of three potential transcription factors, namely BRCA1, YY1, 
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and THAP1. Among these, BRCA1 is predicted by ShinyGO, whereas YY1 and THAP1 along 

with their candidate target genes by RcisTarget (Fig 2C).  

Cancer-Immune Cell Killing Events 

 

The microfluidic system allowed us to design experiments that tracked NK cell killing events 

and the associated transcriptomic signatures. We observed ten NK cell killing events across a 

total of 132 CID interactions. Differential expression analysis between CIDs subgroups showed 

unique gene expression signatures between NK killing and non-killing events.  Among the 187 

up-regulated genes in the NK killing group were CASP8, SH3BP2, IGF-1, CNPY1 and LMO1 

(Fig. 1D). We applied PROGgene V2, a tool for prognostic implications measurement of 

genes36, to the Cancer Genome Atlas (Breast Invasive Carcinoma; TCGA-BRCA patients), and 

analyzed the impact of these 187 up-regulated genes  on overall survival. 164 out of 187 up-

regulated genes overlapped with TCGA-BRCA dataset from PROGgene V2. We observed a 

subtle survival advantage in the patients having a higher mean expression of this combined gene 

signature (Hazard ratio (HR)= 0.11, p<0.05) (Fig. 3) 

Discussion 

TNBC is a highly aggressive form of breast cancer with limited targeted treatment options. 

However, immunotherapy has recently turned out to be a promising strategy in the clinical 

management of the disease. In addition to current widely used T cell-mediated immunotherapy, 

research is also focused on NK cells that perform key roles in innate immune response in cancer. 

As such, comprehensive characterization of interacting NK and cancer cells at single-cell 
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resolution might unravel actionable biomarkers and pathways involved in tumor growth and 

progression.  

Here, we performed gene expression analysis of NK-cancer cell doublets resulting from the 

interacting distance between doublets measured over time. Statistical and bioinformatic 

investigation of the data enabled identification of gene expression signatures associated with 

successful and unsuccessful cancer cell lysis (killing events). Using TCGA gene expression 

profile data, we further confirmed that the identified signatures are linked to patient survival. 

Using single cell analysis, we also noted that the heterogeneity of the two cancer subclones 

confounded the process of dimension reduction by overshadowing the distinction of the NK 

cells’ identity.  

Cell interaction distances and transcriptional memory 

We noted activation of exclusive, exposure time-bound, gene regulatory modules governing cell-

cell physical proximity during the life cycle of NK-cancer cell interaction under co-incubation. 

We also noted an association between CID cell distance and their terminally profiled 

transcriptome in live cells. Similarly, Gide and colleagues reported a potential association 

between cancer/immune cell proximity with anti-PD-1 therapy response in melanoma patients37. 

This underscores the importance of cell-cell distance as an informative parameter to understand 

immunosurveillance and response in cancer. We observed changes in gene expression modules 

over time that correlated to the distance between live cells, suggesting the existence of 

transcriptional memory.  Recent work has highlighted the controlled synthesis and degradation 

of mRNA transcripts as a major regulatory strategy influencing cell fate decisions38. 

Transcriptional memory is a phenomenon that allows cells to retain reversible memory to 
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respond to similar stimuli encountered in the future39. At time point 6 (after five-hour incubation 

and a change in culture medium), we noted a new set of genes expressed. During the initial hours 

of co-incubation, the cells might undergo the formation of lytic synapses as reported 

previously1,40, post which their interactions might take a drift.  

In our study, we observed a regulatory role of three potential transcription factors, namely 

BRCA1, YY1, and THAP1, in transcriptional memory. BRCA1 is a well-studied tumor suppressor 

gene and has known implications in breast and ovarian cancers. Among the remaining two, YY1 

promotes oncogenic activities in breast cancer41, whereas THAP1 plays a key role in DNA repair 

and is also found to be overexpressed in breast cancers42. One of the genes from module 1 is 

TRAP1, whose overexpression is involved in promoting breast tumor growth. On the other hand, 

it also suppresses metastasis by regulating mitochondrial dynamics43. Another gene MELK from 

this module promotes TNBC proliferation. Targeting MELK can result in cell cycle arrest by 

reducing cyclin B1 and increasing p27 and p-JNK44. EYA2 is also involved in promoting breast 

cancer proliferation. Its overexpression results in an increase of proliferative markers cyclin E, 

PCNA, and EGFR45. 

Cell-cell signaling is a major component of cancer-immune cell interactions. We used gene 

expressions as a surrogate for ligand-protein activities. We focused on cancer-specific ligand-

protein interactions featured in the iTALK ligand-protein pairs database46. To estimate the extent 

of ligand-protein coordination, we computed Pearson’s correlation coefficient for molecule pairs 

across CIDs and the other single cells (Fig. 4). We observed an elevated correlation between 

ANXA1 and EGFR in CIDs. ANXA1 is involved in mediating endocytosis of the EGFR receptor 

ANXA1/S100A11 complex47-49, and mediates cell-cell communication via exosomal EGFR50. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.468447doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.13.468447
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

We also observed a higher correlation between CD24/SIGLEC10 in the CIDs. Similarly, higher 

coordination between EGFR and HSP90AA1 was observed in CIDs.  

We observed preferentially elevated co-expression between CD24 (receptor) - SIGLEC10 

(ligand) transcripts among NK-cancer doublets as compared to single NK and cancer cells. The 

coordination among this ligand-protein pair in CIDs suggests the importance of the 

CD24/SIGLEC10 axis in NK/TNBC cells. A past study reported the association of SIGLEC10 in 

impeding NK cell function and poor patient survival in hepatocellular carcinoma (HCC); 

CD24/SIGLEC10 axis may thus be involved in regulating NK cell function51. In another study, 

the possibility of CD24/SIGLEC10 interaction in TNBC under the exposure of tumor-associated 

macrophages (TAMs) was reported. It has been observed that CD24 and SIGLEC10 are 

overexpressed in different tumor types and the TAMs, respectively27. Targeting this interaction 

may be therapeutically important. Another ligand-protein pair observed was the coordination 

between EGFR and HSP90AA1. HSP90AA1 is critical for maintaining the stability and function 

of its client protein EGFR. This stabilization promotes pathogenesis in breast, head and neck 

cancer52,53. This occurs via EMT and tumor migration activating signaling pathways in MDA-

MB-231 cells54. 

Cancer-Immune Cell Killing Events 

When the CIDs were analyzed for cell killing events, we noted a gene expression signature that 

included CASP8, SH3BP2, IGF-1, and LMO1. CASP8, when activated through FASLG, results in 

activation of the extrinsic pathway of apoptosis in the target cells55. On the other hand, 

SH3BP256 and IGF-157 have shown to play a decisive role in NK cell development and 

cytotoxicity. A strong differential expression signal was observed for several genes that are 

largely undocumented for their NK cytotoxicity links. These include the overexpression of 
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LMO1 (overexpressed in T lymphocytes from lymphoblastic leukemia)58, CNPY1 and ACSBG2 

in the NK-killing group, which has not been described in NK cells till today. 

Currently, it is difficult to co-incubate single cells in a controlled environment that 

simultaneously allows study of physical interactions between live cells and its effect on gene 

expression59 . Here we report a cell-cell interaction study using an automated environment that 

precisely controls temperature, humidity, gas composition and media exchange to continuously 

monitor and measure the distance between cells. By processing the doublets on-IFC (in the same 

chambers) for cell lysis, reverse transcription, and cDNA amplification using a microfluidic 

multi-step chemistry, proximity measurements can be directly linked to downstream 

transcriptomics changes.  

The use of this microfluidic system enabled the identification of unique features of NK cells’ 

anti-cancer activities.  Highly coordinated gene expression profiles were identified as a result of 

dynamic changes in the physical distance of interacting NK and cancer cells, reinforcing 

transcriptional memory as a key regulatory strategy of cells. We could also trace increased 

coordination among some specific ligand-protein pairs, manifested through gene expression 

readouts. In the future, this microfluidic workflow could provide new leads when studying 

immuno-oncology cellular interactions. which may be considered while developing and 

administering NK cell-based immunotherapies . 

Data Availability 

All raw and processed sequencing data generated in this study have been submitted to the NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE181591 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181591) 
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Material & Methods 

Standardization of NK cell activation 

The activation of NK cells was established, in principle, by the evaluation of cell lines NK-92MI 

and MDA-MB-231. Activation was assessed after 24 and 48 hours of cell incubation in a 

proportion of 3 NK cells for each MDA-MB-231 by evaluating the markers (CD25, CD69, and 

CD314) expressed from cell-cell contact, using flow cytometry (Sony SH800S). 

Culturing MDA-MB-231 and NK-92MI 

MDA-MB-231 cells (triple-negative breast carcinoma, ATCC® HTB-26 ™) were cultured using 

the DMEM (high modified) culture medium supplemented with 10% inactivated fetal bovine 

serum and 1% penicillin/streptomycin, replicating the culture every three days, keeping the 

culture at a confluence of 40% at the time of passage, at 37°C in a humid atmosphere at 5% 

CO2. The adherent cells were dissociated with the TrypLE reagent (Gibco) and resuspended in 

the complete culture medium. 

NK-92MI cells (human NK cells genetically modified to produce interleukin 2, ATCC® CRL-

2408) were cultured using the AMEM (Alpha Minimum Essential medium) culture medium, 

plus 0.2 mM inositol, 0.1 mM mercaptoethanol, 0.02 mM folic acid, 12.5% fetal bovine serum 

and 12.5% horse serum. The cells were homogenized to separate the clusters of NKs prior to the 

replication of the culture into a new 25 cm² flask (1mL of cells cultured previously + 9mL new 

culture medium). Both cell lines were cultured separately for the subsequent cell-cell interaction 

experiment using the Polaris system. 

Selection and incubation using the Polaris system (Fluidigm) 

The first step is to prime the IFC with beads that will allow the adhesion of the cells to be 

incubated in the microchambers. After treatment, reagents and cells already labeled using 

specific markers to differentiate cell types (for NK cells, celltracker far red, and celltracker 

orange for cancer cells) and viability (calcein AM) were pipetted into the IFC. The selection of 

the cells to be incubated was performed on the Polaris system. It was configured for NKs and 

cancer cells to select positive cells for celltracker far red and calcein AM. 
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Some IFC wells were maintained with only one cell for later comparison of the gene expression 

of single cells with the gene expression obtained when the cell was incubated in doublets (NK 

cells + breast cancer cell lineage). After selection, the equipment was programmed to keep the 

cells in incubation for 16 hours, performing the replacement of culture medium (20% DMEM + 

80% AMEM) every 5 hours, and time-lapse images every hour. Images were captured 

immediately before and after culture medium change. 

71 single cancer cells, 77 single NK cells, and 132 cells in doublets (NK + cancer cells) were 

incubated, followed by the cell lysis, reverse transcription, and cDNA amplification. 

Subsequently, sequencing of the single-cell RNA, using NextSeq (Illumina) was performed.  

Distance measurement between cells 

The distance shown in our study is the shortest distance between the membrane of MDA-MB-

231 cell and NK cell on IFC within the doublets (NK + cancer cells) group. The distance has 

been measured for 13 time points. To analyze the videos frame by frame to yield the distance 

data, we used ImageJ, a public domain Java-based image processing software developed at the 

National Institutes of Health60. 

Data preprocessing 

In total, we obtained expression profiles of 340 cells. The cells can be classified as follows. 1. 

Single NK cells (n = 77); 2. single tumor cells (n = 71); CIDs throughout all time points (n 

=132), and CIDs that were left with NK cells alone at the terminal time point (n=10). Out of the 

340 cells, we removed 50 expression profiles. The cells discarded include — 1. 2 bulk RNA-Seq 

replicates of each of the NK-92MI and 2 MDA-MB-231 cell-lines; 4 empty chambers (no cells 

could be traced in the chambers from the start to the end); 8 empty chambers that initially 

contained tumor cells; 10 empty chambers that initially contained NK cells; 2 CIDs that started 

with single NK cells; 22 tumor cells that started as CIDs.  After removal of these transcriptomes, 

we were left with 290 cells/doublets. Further, we discarded cells having less than 2000 expressed 

genes (non-zero RNA-seq by Expectation Maximization (RSEM) expression value61). Next, we 

retained genes having RSEM expression >5 in at least 10 cells. After these filtering steps, we 

were left with an expression matrix constituting 290 cells and protein-coding 8907 genes. 
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Batch correction, clustering, and visualization of the single cells  

The matrix obtained after performing the basic pre-processing steps was used as input for the 

Seurat, single cell analysis R package, as well as for other downstream analyses. We used 

Seurat’s data integration workflow to process the data with the genes detected in at least 5 cells, 

further employing the standard routines for log-normalization, variance stabilizing 

transformation for identification of highly variable genes using NormalizeData() and 

FindVariableFeatures() with default parameter settings. The cells used in this study originated 

from two independent runs. For integration and batch correction, we used the 

FinIntegrationAnchors() with k.filter=100 for identification of anchor cells that represent 

matching cell pairs across the two datasets  in order to project the transcriptomes into a shared 

space and IntegrateData() function was used for integrating these anchors, which involve 

Canonical Correlation Analysis (CCA). These steps provided the batch corrected matrix. 2-D 

map of the cells was created using the RunUMAP() function. 

Differential gene expression analysis 

Limma-voom62 was used to identify differentially expressed genes (DEGs) among the cell-

groups. Top DEGs that qualified adjusted P-value cutoff of 0.05 and absolute log2 fold change 

cutoff of 1 were further analyzed for their biological significance.  

Survival analysis based on the upregulated genes governing NK cell antitumor activity 

PROGgeneV236 was used for gene signature based (based on a gene list) overall survival 

analysis combined gene signature analysis functionality using the TCGA-BRCA dataset, 

containing survival information for  594 patients. Out of 187 upregulated genes in NK cells 

showing antitumor activity, 164 genes were found overlapping with the TCGA-BRCA dataset. 

PROGgeneV2 produced a Kaplan-Meir plot, segregating the patients into high and low risk 

groups using the median value of the combined gene expression signature as cut-off. 

Regulation of cell-cell distance and transcriptional memory 

We considered two matrices to track the association between temporally recorded cell-cell 

distance and terminally profiled gene expression. First, the processed gene expression matrix of 

dimensions |G| ×|C|, where |G|, and |C| denote the number of genes and the number of CIDs, 
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respectively. Second, the cell-cell distance matrix of dimensions |C| ×|T|, where |T|denotes the 

time points when the cell-cell distance measurements were recorded. We used these two matrices 

to compute the third matrix of dimensions |G| ×|T| containing the Pearson’s correlation 

coefficients 〖ρ〗_ g,tfor each gene-time point pairs {(g,t) | t∈T,g∈G}. Notably, 

|G|=2000,|C|=102,and |T|=13. We retained 90 genes with 〖|ρ〗_ g,t|≥0.25for at least one time 

point for further analysis. These 90 genes were subjected to hierarchical clustering based on the 

computed correlation values. 4 gene modules were retrieved using cutree(). For each of these 

modules, motif enrichment and transcription factor activity analyses were performed using 

RcisTarget35 and ShinyGO34, respectively. RcisTarget discerned enriched TF binding motifs and 

reported a module-specific list of TFs, using the hg19-tss-centered-10kb-7species.mc9nr.feather 

database containing genome-wide ranking for the motifs. Gene regulatory networks were 

constructed using igraph63. 

Cell-cell signaling among CIDs 

We used iTALK R package featuring information on 2,648 cancer-specific ligand-receptor 

interactions. We applied the rawParse() function to select the top 50% highly expressed genes 

from our processed gene expression matrix (constituting 290 cells and 8907 genes), using mean 

as a method of choice. This identified 230 ligand-receptor pairs using the FindLR() function. We 

computed Pearson’s correlation coefficient between expression values associated with the 

selected ligand-receptor pairs across CIDs (TU-NK/TU-NK, TU-NK/NK) and qualified ones that 

exhibited Pearson's correlation coefficient > 0.4. To rule out the possibility that the co-expression 

stems solely from either NK or Tumor cells alone, we tracked Pearson's correlation coefficient 

among NK/NK and TU/TU cases as well. With these criteria, 20 ligand-receptor pairs were 

selected, and three of these were found directly involved in breast cancer signaling.  
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Figures 

 

Fig 1. (A) Schematic workflow for cell interaction studies. The workflow involves cancer and NK cells propagated
in culture and stained off-chip, which are then captured as live single cells and doublets, incubated/co-incubated and
imaged over time. Inset shows a microscopic image of a chamber on the microfluidic Integrated Fluidic Circuit
(IFC) containing an MDA-MB-231 (Blue) and NK cell (Red) doublet. The cells are then lysed, reverse transcribed,
and the cDNA amplified in-situ within the chambers; down-stream library preparation, sample barcoding, and
sequencing are performed off-chip using the Illumina NextSeq system. (B) Heatmap plotted using SCANPY
showing average expression of marker genes for single NK and cancer cells, confirming their lineage identity. (C)
UMAP-based visualization of the cells shows two separate clusters mainly due to tumor cell line heterogeneity
(tumor cells in purple). A further dimension reduction of cluster 1 using PCA shows the separation of tumor (purple)
and NK cells (red). Legend key indicates cell status at the beginning and the end of the time-course tracking (e.g.,
TU-NK/NK denotes interactions which initially consisted of both tumor and the NK cells in a chamber, and
subsequently the NK cell remained in the chamber after co-incubation due to a cell killing event). (D) Boxplots
showing selected differentially expressed genes distinguishing killing vs non-killing events. 
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Fig 2. (A)  Schematic workflow to estimate the correlation between cancer cell-NK cell (CIDs) distance and
terminal expression profile of CIDs. This takes two matrices as input - the first one, containing cell-cell distance
across different time points, and the second one contains the gene expression measurements across the CIDs. (B)
Heatmap shows correlation between cell-cell distances and terminal CID gene expression profiles. Genes showing
strong association with the cell-cell distances are clustered into four groups based on the correlation patterns (M1 to
M4). The heatmap reveals that physical distances between NK and cancer cells effect gene expression profiles that
gets carried forward to define future cellular states. The time point of first cell culture medium exchange is shown in
red arrow (C) Transcription Factor binding motif Enrichment Analysis of M1 specific genes and annotations of
these motifs to TFs using RcisTarget identifies THAP1 and YY1 as potential transcriptional regulators. 
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Fig 3. Kaplan-Meier overall survival plot for TCGA breast cancer (BRCA) cohort generated using PROGgeneV2. A
gene signature associated with NK-killing cells event was averaged. To get gene signature value for each case
patients were classified into the low and high expression groups of the gene signature based on a median value with
a P-value of 0.045 (Logrank test). 

 

 

Fig 4. Impact of cell-cell signaling. Barplots showing an increased correlation in the CIDs for the three molecular
pairs ANXA1/EGFR, HSP90AA1/EGFR, and CD24/SIGLEC10. NK = Natural Killer Cells; TU = Cancer/Tumor
Cells. Legend key indicates cell status at the beginning and the end of the time-course tracking. 
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Supplementary Figures: 

 

 

 

Fig S1. Single-cell or doublets culture and monitoring workflow.  At the beginning of the experiment (T0), the NK
cells and cancer cells were captured and imaged on the Polaris integrated fluidic circuit (IFC). The representative T0
figure shows cell culture chamber 1-12 out of 48 wells on one IFC. The cells were then incubated and monitored
using Polaris system for 13 hours. Automated images were taken by Polaris system at one-hour interval (T1, T2,
...T13). The NK-92MI cells are shown is pseudo red color, and MDA-MB-231 cells are shown in blue color. These
time-lapse images were used for cell-cell distance measurement. The culture media were replenished every five
hours automatically on the Polaris system. Before single cell RNA seq library preparation, high-resolution images
were collected for each cell culture chamber using a Leica microscope system for viability test. The NK-92MI cells
are color-coded in pink, and MDA-MB-231 cells are color-coded in red for the microscopic image. 
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Fig S2. Scatterplot shows z-score normalized fluorescence intensities of NK and tumor imaging channels, and as per 
the grouping of cells, these corroborate with the original cell type annotations.   

 

 

 

 

Fig S3(A) UMAP based visualization of single tumor cells showing heterogeneous populations of tumor cell lines. 
(B) Heatmap showing differential genes between two tumor cell line clusters. 
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