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Abstract 
Somatic mutations are an inevitable component of ageing and the most 
important cause of cancer.  The rates and types of somatic mutation vary 
across individuals, but relatively few inherited influences on mutation processes 
are known. We performed a comprehensive gene-based rare variant 
association study with diverse mutational processes, using human cancer 
genomes from over 11,000 individuals of European ancestry. By combining 
burden and variance tests, we identify 207 associations involving 15 somatic 
mutational phenotypes and 42 genes that replicated in an independent data set 
at a FDR of 1%. We associated rare inherited deleterious variants in novel 
genes such as MSH3, EXO1, SETD2, and MTOR with two different forms of 
DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, 
and WRN with deficiency in homologous recombination repair. In addition, we 
identified associations with other mutational processes, such as APEX1 with 
APOBEC-signature mutagenesis. Many of the novel genes interact with each 
other and with known mutator genes within cellular sub-networks. Considered 
collectively, damaging variants in the newly-identified genes are prevalent in the 
population. We suggest that rare germline variation in diverse genes commonly 
impacts mutational processes in somatic cells.   
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Introduction 
Cancer is primarily a disease of mutations, alterations in the DNA sequence 
which result from replication errors and/or exogenous or endogenous DNA 
damaging agents1. Genomic instability via an increased rate of mutagenesis is 
a major enabling mechanism of cancer2, because it decreases the time needed 
to accrue the typically 2–10 somatic mutations in driver genes that are needed 
to initiate tumorigenesis3,4. Thus, identifying genetic determinants of the 
variability of somatic mutation rates is important for understanding and 
predicting variation in cancer risk among individuals as well as for determining 
the mechanisms responsible for tumorigenesis. Moreover, many of the most 
effective cancer therapies target vulnerabilities associated with defects in 
specific repair pathways or mutation processes and many widely used 
therapeutics are themselves highly mutagenic5–7.  
 
During the last decade, large-scale sequencing efforts have greatly enabled the 
analysis of somatic mutations in tumor genomes, both via whole-exome8 and 
whole-genome sequencing, either from primary9 or metastatic tumors10. These 
studies have identified driver genes and mutations4,11,12,13 and also highlighted 
the abundance of ‘passenger’ mutations. Passenger mutations do not confer a 
selective advantage to the cancer cell and can be used to infer the sources of 
mutations in that particular individual and their tumor1,14, either exogenous 
(chemicals, radiation) or endogenous (e.g. DNA replication errors, spontaneous 
deamination of cytosine)15.  
 
Diverse mutation types have been analyzed in cancer genomes14,16 including 
single base substitutions (SBS)17,18 and the trinucleotide they are embedded 
in17,18, double base substitutions (DBS)19, small deletions and indels (indels)19, 
copy number alterations (CNAs)20 and other structural variants (SVs)21. The 
extracted mutational patterns (often referred to as “mutational signatures”) 
capture biological, technical, and, in many cases, unknown sources of 
variation14,21. In addition to the number and type of mutations, the regional 
distribution of mutations can also be informative about the activity of mutational 
processes16. For instance, in tumor genomes in which DNA mismatch repair 
(MMR) is impaired, there is reduced enrichment of mutations in late replicating 
regions (where presumably this pathway is normally less active or 
accurate)16,22. Besides replication timing, the distribution of mutations also 
associate with locations of chromatin marks (e.g. H3K36me323,24 and 
H3K9me325, the direction of DNA replication (leading vs lagging strand)26,27, the 
direction of transcription (transcribed vs. untranscribed strand)26, chromatin 
accessibility (e.g. DNase I hypersensitive sites)28, CTCF/cohesin binding 
sites29,30, and the inactive X-chromosome31. Moreover, the mitochondrial 
genome carries mutational patterns which differ from those in the nuclear 
genome32,33. 
 
While the catalogues of variation in somatic mutational patterns and rates 
between individuals are substantial18,19,24,26,34,35, the extent to which this is 
determined by inherited genetic variants is less well understood. Examples of 
inherited variants that influence mutation processes include variants that cause 
familial cancer syndromes36. These include rare damaging germline variants 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.14.468508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468508
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

(RDGVs) in the MMR genes MSH2, MSH6, PMS2, and MLH1 that predispose 
to early-onset cancer of the colorectum and other organs (Lynch syndrome)37. 
Variants causing Lynch syndrome have been associated with several somatic 
mutational patterns38, most prominently short indels at microsatellite regions19, 
but also a relative enrichment of mutations in early replicating regions22, a 
replicative strand asymmetry39, and an increased number of mutations in 
several SNV-based cancer signatures18 due to the inefficient repair of base-
base mismatches and smaller DNA loops. In addition, individuals with damaging 
variants in the genes BRCA1, BRCA2, PALB2, and RAD51C have an increased 
risk of breast, ovarian, pancreatic, and prostate cancer, and have distinct 
somatic mutational patterns40,41 such as SBS Signature 3 mutations17, deletions 
at microhomology-flanked sites17, a copy number signature20 and several 
rearrangement based signatures21,42. The products of these genes function in 
the repair of DNA double-strand breaks (DSBs) via homologous recombination, 
and impairment of this pathway necessitates repair via other, more error-prone 
mechanisms such as microhomology-mediated end joining, which create certain 
mutational patterns43. Finally, tumor genomes from individuals born with 
pathogenic variants in TP53 frequently have complex chromosomal 
rearrangements (so-called chromothripsis)44.  
 
These known examples illustrate how rare inherited variants can affect somatic 
mutation rates in humans38, and have motivated recent analyses aiming to 
identify additional variants associated with specific somatic mutational patterns. 
In a whole-genome pan-cancer association study9, a previously reported 
association45,46 of a common deletion polymorphism in the coding region of 
APOBEC3B, altering APOBEC-signature mutagenesis, was replicated, and 
another nearby QTL locus associating with APOBEC burden was seen9. Known 
associations of rare variants in BRCA1 and BRCA2 with somatic CNA 
phenotypes were recapitulated9. In addition, an association between RDGVs in 
the DNA glycosylase MBD4 with an increase of C>T mutations at CpG sites 
was reported9, which was also found in several independent studies47,48. 
Furthermore, in a breast-cancer-specific study, the association of RDGVs with 
APOBEC and deficient homologous recombination (dHR) SNV signatures was 
investigated across ancestries, without detecting hits significant in both 
ancestries49.  
 
These examples illustrate how genome-wide analyses can in principle be used 
to discover new germline determinants of human somatic mutation processes.  
In model organisms, genetic screens have revealed that mutations in many 
different genes influence mutation processes50,51.  
 
Here, we perform a comprehensive rare variant association study using 
sequencing data from three large-scale projects and identifiy novel genes 
associating with diverse somatic mutational processes. We use a gene-based 
testing approach combining a burden test and a variance test, two 
dimensionality reduction methods to define mutational phenotypes, considered 
multiple models of inheritance and multiple in silico variant prediction tools. We 
report 207 replicating associations involving 15 somatic mutational phenotypes 
and 42 genes, and an additional 149 associations involving 24 phenotypes and 
44 genes at a more permissive false discovery rate.  Rare inherited variants in a 
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diverse set of genes therefore contribute to inter-individual differences in 
somatic mutation accumulation.  

Results 

Somatic mutation phenotypes in 15,000 human tumors 

To capture inter-individual variation in somatic mutation processes, we 
extracted 56 mutational features from ~15,000 tumor genomes analyzed as part 
of the Cancer Genome Atlas Program (TCGA)8, the Pan-Cancer Analysis of 
Whole Genomes (PCAWG)9 and the Hartwig Medical Foundation (Hartwig) 
study10. These features included different types of mutational signatures based 
on SBS, DBS, indels, and CNAs. Additionally we considered the distribution of 
SBS density across the genome with respect to transcription, gene expression, 
DNA replication (both the location and timing), chromatin state (accessibility via 
DNAse hypersensitivity, presence of active chromatin mark H3K36me3), CTCF 
binding sites, as well as localization on the X chromosome or in the 
mitochondrial genome; all of these were previously associated with local 
mutation rate variability (see Methods). (Fig. 1a).  
 
To remove the redundancy in these features, we used two different 
dimensionality reduction techniques – independent component analysis (ICA) 
and variational autoencoder (VAE) neural network – to deconvolve the (often 
correlated) mutation features into mutational ‘components’.  These components 
should both better reflect underlying causal mechanisms and increase the 
statistical power to detect genetic associations by reducing the multiple testing 
burden. 15 components were derived from the ICA and 14 components from 
the VAE (see Methods). Thirteen of the 29 components capture known 
mutagenic mechanisms (Fig. 1c), including UV radiation exposure (UVICA and 
UVVAE, including CC>TT substitutions), tobacco smoking (SmokingICA and 
SmokingVAE), deficiencies in MMR (dMMR; dMMRICA, dMMRVAE1, and 
dMMRVAE2), deficiency in the repair of DSBs via homologous recombination 
(dHR; dHRICA, dHRVAE1, and dHRVAE2), and APOBEC-directed mutagenesis 
(APOBECICA, APOBECVAE1, and APOBECVAE2). Many of the components 
combined different classes of mutational features. For instance, dMMRVAE2, has 
a high correlation with the SNV signature RefSig MMR152, several types of 
short indels at microsatellite loci and the relative mutation rate with respect to 
replication timing. The remaining 16 components do not have a known 
mechanistic cause but can be further described via the features with which they 
are strongly correlated. For instance, we extracted components covering X-
chromosomal hypermutation (X-hypermutation), a component covering 
mitochondrial SNVs (Mitochondria), and two components related to SNV-
signature 5 mutations (Sig.5ICA and Sig.5VAE).  
 

Rare variant association with a combined burden and variance test  

To identify genes with rare germline variants that impact somatic mutational 
processes (Fig. 2a), we defined five different sets of RDGVs using varying 
approaches and stringency criteria for identifying causal variants, and tested 
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three models of inheritance by also considering RDGVs in combination with 
somatic loss-of-heterozygosity (LOH)53. In total, 15 different models were tested 
(Fig. 2b top). To increase statistical power, we restricted testing to a set of 892 
genes constituting known cancer predisposition genes, DNA repair genes and 
chromatin modifiers. The combined test SKAT-O54, which unifies burden testing 
and the SKAT variance test55,56, was utilized for testing (Fig. 2b bottom). In 
brief, the test statistic in SKAT-O is the weighted sum of the test statistic from a 
burden test and a SKAT test. While in burden testing the variants are 
aggregated first and then jointly regressed against a phenotype, in SKAT the 
individual variants in a gene are regressed against the phenotype, and then the 
distribution of the individual variant score statistics is tested. Importantly, the 
burden test is more powerful when all RDGVs in a gene are causal, while SKAT 
is more powerful when some RDGVs are not causal or when RDGVs are causal 
but with effects in opposite directions54. In SKAT-O the parameter ρ controls the 
contribution of the two tests and corresponds to the smallest reported p-value54, 
indicating whether the burden or the variance test was used to identify the 
association.  
 

42 genes robustly associated with somatic mutation phenotypes  

Testing was performed in the discovery cohort (TCGA) across 6,799 individuals 
of European ancestry and 12 different cancer types as well as in a pan-cancer 
analysis (“pancan”) for all 15 models. Genes were only tested via the dominant 
or additive model when at least 2 individuals carried a RDGV in that gene. For 
the recessive model, genes were only tested when the gene was biallelically 
affected in at least 2 samples either by a biallelic RDGV or via a RDGV + LOH 
(see Methods). In total 594,462 tests were conducted. The tests showed little 
evidence of inflation when considering models in which at least 100 genes were 
tested. Overall there was slight deflation (median: 0.78; 1st quartile: 0.55; 3rd 
quartile: 0.97; max: 2.27) (Extended Data Fig. 1), suggesting conservatively 

biased test results. Inflated cases were discarded (cut-off at lambda ≥ 1.5; 19 
out of 1,909 discarded). We further estimated false discovery rates (FDRs) by 
randomization. The link between somatic components and individuals was 
broken down by randomly shuffling the somatic component estimates of the 
individuals within each cancer type. Empirical FDRs were estimated by 
comparing the observed p-value distribution against the random one (see 
Methods and Extended Data Fig. 2). As an additional negative control, we 
considered a random set of genes, comparing the number of replicated hits at a 
certain empirical FDR with the random gene set to the number with our 
candidate gene list (Extended Data Fig. 2). It should be noted that this yields a 
conservative upper limit since the random gene lists may also include genes 
which affect somatic mutation processes.  
 
In total, we identified 6,488 associations (out of 591,302 tests) in the discovery 
phase at an empirical (randomization-based) FDR of 1% (Extended Data Fig. 
3). Out of the 6,488 hits, 3,807 had a sufficient number of RDGVs in the 
matching cancer type (see Methods) to allow re-testing in an independent 
validation cohort (merged PCAWG and Hartwig) in the matching cancer type, 
consisting of 4,683 patients of European ancestry. 207 associations replicated 
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in the validation cohort at an empirical FDR of 1 %, covering 42 individual 
genes, 15 mutational components, 46 unique gene-cancer type pairs, and 65 
unique gene-cancer type-component combinations (Fig. 3). We also checked 
the number of replicated associations at a more permissive FDR of 2 %. At an 
FDR of 2 %, 12,480 hits were detected in the discovery cohort, 7,290 hits were 
re-tested in the validation cohort, out of which 356 associations were replicated 
covering 86 individual genes, 24 mutational components, 105 unique gene-
cancer type pairs, and 140 unique gene-cancer type-component combinations 
(Extended Data Fig. 4). Notably, 7 genes associated across more than one 
cancer type, of which 3 (BRCA1, EP300, MTOR) associated with the same 
somatic mutational component across two different cancer types (Extended 
Data Fig. 5). 
 
At an FDR of 1%, most of the replicated hits were identified in the pan-cancer 
analysis (57 %), followed by breast cancer (24 %), skin cancer (7%), and 
prostate cancer (4 %) (Fig. 2c), reflecting differential sample sizes between 
cancer types (Extended Data Fig. 3e). Furthermore, approximately half of the 
components (15 out of 29) were associated with at least one gene-cancer type 
pair (Fig. 2d). Many replicated hits were associated with features related with 
dHR (dHRICA: 21 %, dHRVAE1: 17 %; dHRVAE2: 16 %), followed by dMMR 
(dMMRICA: 11 %; dMMRVAE1: 7 %), consistent with well-established roles of HR 
and MMR failures in accelerating mutation rates in tumors38. Notably, 25 genes 
were only identified via an ICA derived component, while 8 genes were only 
identified via a VAE derived component (Fig. 2e), suggesting a complementary 
role of the two approaches to summarize mutation processes.  
 
Many of the replicated associations were identified via the dominant (42 %) and 
(39 %) additive model (Fig. 2f), suggesting that heterozygous variants can alter 
mutation rates in humans, as was suggested for a model organism50. The 
comparatively lower number of replicated hits of the recessive model can be 
largely attributed to the fact that RDGV combined with somatic LOH events are 
considerably less frequent and thus associations could not be tested for many 
genes (only 4 % of the 591,302 tests performed in the discovery phase came 
from the recessive model). Considering the proportion of replicated hits to the 
number of re-tested hits, the validation rate was ~2.5 times higher via the 
recessive model (Extended Data Fig. 3e), which was expected since many DNA 
repair genes are believed to be haplosufficient57.  
 
We further considered the number of replicated associations using different 
approaches and stringency thresholds for declaring a variant to be pathogenic. 
The highest number of hits replicated using the more permissive thresholds, 

using protein-truncating variants (PTVs) + missense variants at a CADD58 score 

≥ 15 (79/207, 38%), followed by PTVs + missense variants at a CADD score ≥ 

25 (62/207, 30%) and PTVs only (50/207, 24 %) (Fig. 2g). This suggests that 
some missense variants that were assigned a lower pathogenicity score – likely 
due to difficulties in assessing variant pathogenicity in silico59– can nonetheless 
bear on somatic mutation phenotypes.  We further tested by only considering 
RDGVs in conserved gene segments (via “constrained coding regions”60 and 
“missense tolerance ratio”61 methods), however this yielded few replicated hits 
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(Fig. 2g). It should be noted, however, that some hits were only identified when 
using the PTV-only set and were not recovered in more permissive RDGV sets. 
  
In summary, with regards to the model of inheritance, RDGV set, and 
component (mutational process) extraction method, there was no single best 
model and most models added unique associations to the results.  
 

More permissive thresholds for variant pathogenicity increase the utility 
of a variance test over a burden test 

The SKAT-O test we employed combines burden testing and a variance test 
component (SKAT)54. Examining the SKAT-O parameter ρ for the 207 validated 
hits, in both the discovery and the validation cohort, revealed that most hits 
replicated via the variance test (ρ < 0.5 in 393/414 tests) (Fig. 2h). The variance 
test is the more powerful test of the two when many variants in the tested set 
are not causal54. We hypothesized that a common reason why allegedly 
pathogenic RDGVs would not be causal is because of inaccurate prediction of 
damaging variants by in silico predictors62.  If so, at the more stringent settings 
more hits would replicate via the burden test (which has higher power when 
many variants in the set are causal), while at the less stringent settings more 
hits would replicate via the variance test (which is robust to inclusion of non-
causal variants). Indeed, several hits replicated via the burden test when using 
the most stringent RDGV set (PTVs only; Fig. 2i), including MLH1, BRCA1, and 

BRCA2. For the more permissive RDGV sets, the number of hits replicating via 

the burden test decreased and all of the replicated hits had a ρ lower than 0.25 

(meaning, they used nearly exclusively the variance component) for the RDGV 

set including missense variants at CADD ≥ 15. The positive control genes 

BRCA1 and BRCA2 still replicated in the PTV+missense CADD ≥ 15 RDGV set, 

but with a ρ of 0 (variance test exclusively used), suggesting that this variant set 

included many non-causal variants.  
 
In summary, many hits were recovered even with more permissive RDGV sets 
by utilizing the combined testing approach of the SKAT-O method, suggesting 
the variance (SKAT) component can partially compensate for the inaccuracy of 
the in silico predictors. Most of the replicated hits would not have been identified 
by use of classical burden testing in a data set of this size. 
 

Novel genes associating with defects in homologous recombination  

Within the set of 207 replicated associations at an FDR of 1%, 117 (57 %) 
involved associations of BRCA1, BRCA2, and PALB2 with various mutational 
components associated with dHR (Fig. 3), consistent with the known role of 
these genes in the error-free repair of DSBs. All three genes associated with 
features of defective HR, such as deletions at microhomology-flanked sites 
(dHRICA and dHRVAE2) and SNV signature 3 mutations (dHRVAE1). In addition, 
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BRCA1, but not BRCA2, associated with component Sig.MMR2+ampli., 
reflecting an increased number of amplification events. This is in accordance 
with a recent report, in which BRCA1-type dHR vs. BRCA2-type dHR were 
differentiated via the presence of duplication events40.  
 
We also detected additional genes associating with these dHR mutational 
components. In skin cancer, PAXIP1, EXO1, and RIF1 associated with 
dHRVAE1, the component correlating with SNV signature 3 mutations. In support 
of this, PAXIP1 and RIF1 have been implicated in the repair of DNA DSBs63–65 
and interact with each other66. Thus, these associations suggest that individuals 
carrying damaging variants in either gene have an increase in signature 3 
mutations, potentially reflecting a downstream effect of disrupted DSB repair. 
Additionally, EXO1 knockout in a cell line model67 was reported to result in a 
mutational signature correlating with signatures 3 (Pearson R=0.71) and 5 
(R=0.71), supporting our association observed in tumors. 
 
Furthermore, we identified pan-cancer replicated associations of APEX1, 
RECQL, and DNMT1 with dHRICA (with DNMT1 additionally associating with 
dHRVAE2). These associations with a microhomology deletion mutation 
phenotype are diagnostic of an increased activity of the microhomology-
mediated end joining (MMEJ), a highly error-prone DSB repair pathway, 
suggesting that variants in these genes may disrupt normal functioning of the 
less error-prone HR and/or NHEJ pathways. 
 
Five additional genes (ATR, JADE2, SMARCAL1, TIMELESS, and WRN) were 
identified at a more permissive threshold, associating with at least one dHR-
related component (dHRICA and/or dHRVAE2). Notably, ATR and WRN physically 
interact with BRCA1 (Fig. 4e) and play known roles in repair of DSBs68–70, 
which would support these associations. In particular, pathogenic recessive 
variants in WRN cause Werner syndrome71 and it has been suggested that the 
WRN helicase is crucial for the repair of MMR-induced DSBs72,73. Additionally, 
SMARCAL1 and TIMELESS directly interact with ATR (Fig. 4e). 
  
Our analyses therefore replicate well-known associations between rare 
inherited variants in HR genes and somatic mutational components, as well as 
identifying new associations with additional genes.  
 

MTOR and interacting protein variants associate with mismatch repair 
phenotypes  

In the context of Lynch syndrome, germline variants in MLH1, MSH2, MSH6 
and PMS274 affect somatic mutation patterns via impairment of the DNA 
mismatch repair pathway, observed as microsatellite instability (MSI, indels at 
simple DNA repeats)75,76. MSI was also later associated with mutational 
signatures derived from SNVs18, as well as with a ‘redistribution’ of mutations 
across replication timing domains22. In accordance with this, we detected 
associations of RDGVs in MLH1 and MSH2 with multiple dMMR-related 
components i.e. those having a high contribution of small indels at microsatellite 
regions (dMMRICA and dMMRVAE1), and with SNV-derived signature MMR1 
mutations and replication timing (dMMRVAE2; for MLH1).  
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Beyond the known Lynch Syndrome genes, we also discovered associations 
between variation in EXO1, which has an established role in MMR77 and 
increases the frequency of 1 bp indels when inactivated in cultured cells78, and 
dMMRVAE1 and dMMRVAE2. However, EXO1 also associated with dHR-related 
components, suggesting a more pleiotropic role for the encoded exonuclease in 
shaping somatic mutational processes in human tumors.  Consistent with the 
association with dHR components, it was reported in yeast as well as human 
cell lines that EXO1 processes DSB ends79 and is required for the repair of 
DSBs via HR80. 
 
Multiple other genes were associated with dMMR-directed phenotypes (all 
associated with dMMRICA and dMMRVAE1), including the chromatin modifying 
enzyme genes TRAAP in ovarian and SETD1A in breast, and the major growth 
signalling gene MTOR in prostate cancer (and in stomach+esophagus cancer 
with dMMRVAE1 only at a FDR of 2 %).  Additionally, TTI2 in prostate, APC in 
breast, MAD2L2 in pan-cancer, HERC2 in prostate, and MDN1 in brain cancer 
associated with mutation component dMMRICA. There is additional evidence 
supporting these associations for some of these genes from prior studies. 
MTOR was identified as one of four genes that regulate MSH2 protein 
stability81. Thus, a possible mechanism explaining the identified association of 
MTOR with dMMR-linked components could be a decreased stability of MSH2 
leading to dMMR and consequently, an increased number of indels. A similar 
mechanism could be speculated for TTI2, which binds MTOR via the TTT 
complex (TELO2-TTI1-TTI2) and is important for mTOR maturation82. This 
hypothesis is further supported by TELO2 associating with the same component 
(dMMRICA) in kidney cancer at a more permissive FDR of 2% (Extended Data 
Fig. 4). Furthermore, SETD2 associated in colorectal cancer with dMMRVAE1 at 
a FDR of 2 %. It has been shown in previous studies23, including in cancer 
genomes24, that the encoded methyltransferase SETD2 regulates MMR activity 
by recruiting the MSH2-MSH6 complex to H3K36me3 marked regions. 
 
Taken together, we recovered known associations of MMR genes with somatic 
mutational patterns and identified additional genes where germline variants are 
associated with MMR phenotypes, suggesting that a broad network of genes 
cooperates to maintain MMR efficiency in human cells. 
 

MSH3 and additional genes associate with a distinct dMMR phenotype  

Interestingly, we identified associations between RDGVs in several genes and a 
somatic mutational component (Small indels 2 bp) that reflects indels of a size 
of 2 bp and longer, which is in contrast to the predominantly 1 bp long indels 
caused by dMMR. Furthermore, this component does not have any contribution 
from SNV features, indicating that it is specifically capturing indels (Fig. 1c and 
Supplementary Fig. 6). Among others, the MMR gene MSH3 associated with 
this component in the pan-cancer analysis. In contrast to the DNA mismatch 
repair genes PMS2, MLH1, MSH2, and MSH6, germline variants in MSH3 have 
not been identified in patients with Lynch syndrome, even though they were 
reported to increase cancer risk37. The MSH2-MSH3 complex has a role in 
repairing insertion/deletion loops rather than for base-base mismatches83,8485. 
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This is in contrast to the MSH2-MSH6 complex, which repairs base-base 
mismatches and indels shorter than 2 nucleotides86,87. These prior mechanistic 
studies support our association and suggest that loss of MSH3 in cancer cells 
results in an increased rate of accumulation of indels of 2 bp and longer. Other 
genes associating with this component were CHD3 in bladder cancer, HERC2 
in ovary cancer, PIK3C2B in lung squamous cell cancer, EP300 in skin cancer 
(and breast cancer at a FDR of 2 %), RBBP5 in pancan, and SMC1B in pancan. 
Additionally, MLH3 associated with the same component at an FDR of 2 %. The 
MLH3 protein is a paralog of MLH1 that interacts with other MMR proteins (Fig. 
4e) and was previously associated with microsatellite instability88. 
 
Overall, we detected associations between germline variants in MSH3 and 
several other genes and somatic indels of at least 2 bp, suggesting a causal 
role for MSH3 variants in a specific subtype of MMR failure which does not 
markedly increase SNV rates. 
 

Genes associating with a somatic feature enriched in brain and liver 
cancer 

Beyond the dHR and dMMR-related components, the component associated 
with the largest number of genes was component Sig.11+19, which is enriched 
for SNV signatures RefSig 11 and 1952 (Fig. 2d).  This component is enriched in 
brain and liver cancers (Supplementary Fig. 7). Signature 11 has been reported 
to be enriched in brain cancers, associated with temozolomide treatment18, and 
is similar to the signature which results from the treatment with the DNA 
methylating agent 1,2-Dimethylhydrazine89. The cause of signature 19 is 
unknown and it has been mostly identified in brain, liver and blood cancers52. At 
a FDR of 1 %, the genes ASCC2, FANCC, NCAPG2 and POT1 associated with 
this component in the pan-cancer analysis, as do NUDT7, PIF1, and SOS1 at a 
more permissive 2% FDR. POT1 and PIF1 interact with each other90 (Extended 
Data Fig. 6e) and both have functions in telomere maintenance91,92, but we did 
not detect any correlation between this component and reported telomere 
features93 (Supplementary Fig. 16).  
 

Variants in APEX1 associate with increased level of APOBEC-directed 
mutagenesis 

We discovered and replicated associations between APEX1 and three different 
somatic components. APEX1 encodes for a purinic/apyrimidinic (AP) 
endonuclease that cleaves at abasic sites, which can be formed spontaneously 
or during base excision repair pathway by a DNA glycosylase94. At a FDR of 1 
%, APEX1 associated with dHRICA, in pancan and at a FDR of 2 % it associated 
with dHRVAE2 in pancan and with APOBECVAE2 in stomach/esophagus cancer.. 
The somatic components dHRICA and dHRVAE2 are enriched for deletions at 
microhomology-flanked regions. Prior studies showed that the encoded protein 
APE1 protein plays a role in the repair of DSBs and that depletion of APE1 
leads to an decrease of HR-directed repair95, suggesting a higher reliance on 
alternative pathways.  
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The APOBECVAE2 component is enriched for SNV signature 13 (C>G) 
mutations18. These can be formed when the APOBEC-induced uracil is excised 
via the uracil-DNA glycosylase UNG and a cytosine is inserted opposite the 
abasic site by the mutagenic translesion polymerase REV196. Conceivably, a 
mechanism underlying the higher burden of C>G mutations in tumors of 
individuals with inherited damaging variants in APEX1 could be due to a 
decreased activity leading to a slower repair of the abasic site and 
consequently, a preference for lesion bypass via the error-prone REV1. 
 

Network analysis reinforces the role of rare germline variants in somatic 
mutation processes 

The previously known dHR genes encode proteins that physically interact as 
part of the same protein complexes97. Similarly, the products of the known 
dMMR genes also physically interact98. We used protein-protein interactions 
curated in the STRING99 database to test whether the genes identified as 
having rare germline variants associating with somatic mutational phenotypes 
also encode physically interacting proteins.  Such ‘guilt by association’ network 
analysis has been used to support associations between somatic mutations and 
cancer100,101 and between common variants and disease phenotypes102 but has 
not yet been widely adopted for the analysis of rare variants.    
 
We first considered genes associated with somatic mutation phenotypes at a 
FDR of 1%. These genes are strongly enriched for encoding proteins with 
physical interactions (Fig. 4a; median difference=17 and P=0.002 by 
randomisation, controlling for interaction node degree). This also held true after 
removing genes with previously reported associations (Fig. 4c; median 
difference=7 and P=0.032 by randomisation). 
 
Secondly, we considered the 44 genes with moderate statistical support of 
association with somatic mutation phenotypes (those replicating at a FDR of 
2%).  21 of the encoded proteins interact with at least one of the proteins 
encoded by the more stringent FDR 1% genes. This is again higher than 
expected by chance (Fig. 4b; median difference=6 and P=0.021 by 
randomisation), further prioritising these 21 genes for additional study. This also 
held true after removing previously known genes (Fig. 4d; median difference=5 
and P=0.033 by randomisation). Similar results were seen using the HumanNet 
gene network90 that incorporates many data sources to predict functionally-
related genes (Extended Data Fig. 6). 
 
Thus, genes with replicated associations with somatic mutation phenotypes 
preferentially encode proteins that physically interact in cellular networks with 
genes replicating at a more permissive FDR also often connected to the same 
sub-networks, illustrating the potential for network-based analyses to provide 
supporting evidence in rare variant association studies. 
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Prevalence of damaging germline variants in genes associated with 
somatic mutational phenotypes 

To better estimate the contribution of RDGVs to differences in somatic 
mutational processes, we counted how many individuals in our dataset had 
certain RDGVs and compared this to randomly selected protein-coding genes 
while controlling for covered gene length (Fig. 5). Considering known mutator 
genes, 44 individuals (0.6 %) had PTVs in Lynch syndrome dMMR genes 
(MSH2, MLH1, MSH6, PMS2), and 100 (1.5 %) had PTVs in in dHR genes 
(BRCA1, BRCA2, PALB2, RAD51C) in the discovery cohort (TCGA). 
Considering only the newly associated genes, 107 individuals (1.6 %) had a 
PTV in genes that replicated at a FDR of 1 %, and 166 (2.4 %) in genes which 
replicated at a FDR of 2 %. A similarly high prevalence of damaging variants in 
newly-discovered genes, relative to known mutator genes, was seen in 

prioritized missense variants, via the CADD score at stringent (≥ 25) and 

permissive thresholds (≥ 15; Fig. 5). Additionally, when comparing this with 

prevalence of deleterious variants in control sets of length-matched genes, 
there is an excess of damaging missense variants in the known dHR and 
dMMR genes as well as in the newly-discovered genes at 1% and 2% FDR 
thresholds (Fig. 5). 
 
Taken together, these results suggest that the novel candidate mutator genes 
are affected by deleterious variants in a higher fraction of the population of 
cancer patients than the known human germline dMMR and dHR genes. 

Discussion 
We have shown here that rare inherited variants in diverse genes associate with 
different mutational processes. Our approach incorporated a variance-based 
test via SKAT-O54, two different dimensionality reduction algorithms to extract 
somatic mutation patterns, the usage of different in silico variant prioritization 
tools58,60,61, and the use of different models of inheritance for association 
testing.  This experimental design allowed us to identify multiple new replicating 
associations between genes and somatic mutation phenotypes.  
 
Most of the associations we identified were replicated only via the variance-
based test SKAT, which suggests that variants predicted to be damaging still 
contain many non-causal variants. More accurate variant effect prediction tools 
should further increase the power of these kinds of analyses62,103,104. We also 
found that using  two techniques to derive informative somatic mutation 
components identified more replicated associations than using either approach 
alone. This is consistent with findings in other fields, where different algorithms 
have also been found to capture complementary information, for example in 
gene expression analysis105 and identifying genetic variants from genomic 
data106. 
  
We identified novel genes associating with dHR-related repair (e.g. RIF1, 
PAXIP1, WRN, EXO1, and ATR) and with components connected to dMMR 
(e.g. MTOR, TTI2, SETD2, EXO1, MSH3, and MLH3). Several novel 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.14.468508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468508
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

associations are supported by strong evidence from prior studies such as EXO1 
with dHR79,80 and dMMR67,77,78, SETD2 with dMMR23,24 and MSH3 with a 
different form of dMMR78,83,84 On top of the associations with dHR- and dMMR-
related components, we also identified an association of APEX1 with APOBEC-
directed mutagenesis (as well as dHR), and additionally several genes 
associating with a component enriched in brain and liver cancers with an 
unknown underlying mechanism. ‘Guilt by association’ network analysis has not 
yet been widely adopted in rare variant association studies but we found that it 
was useful for both connecting high stringency replicating genes to each other 
and for connecting lower confidence hits to the high confidence genes. These 
interactions are useful for prioritising the newly associated genes and provide 
specific hypotheses connecting them to known germline mutator genes.  
 
Interestingly, the genetic associations distinguish between two different dMMR 
mutational phenotypes. Firstly, the common dMMR signature, enriched for 1 bp 
indels and the SNV-signature MMR1; these associations involved e.g. the 
Lynch syndrome genes MSH2 and MLH1, and some additional genes e.g. 
MTOR, and SETD2. Secondly, a distinct set of associations involved a 
mutational component enriched for 2 bp and longer indels, but did not 
encompass a notable increase in SNVs, e.g. involving the core MMR gene 
MSH3, and additionally MLH3, EP300, and PIK3C2B.  
 
This study has some limitations resulting from technical factors. The design is 
likely to result in a conservative bias in the number of replicated hits, because 
the discovery and validation cohorts were based on different sequencing 
technologies (WES versus WGS, respectively). WES data yields more noisy 
somatic mutation features, as it covers ~2 % of the genome and some features 
(e.g. replicative strand asymmetry, mutations at CTCF/cohesin binding sites) 
are measurable at few loci and so enrichments are difficult to estimate due to 
low mutation counts. Moreover the power to call germline variants at certain loci 
may be different for WGS and WES data. The TCGA WES data also has batch 
effects stemming from the different sequencing centers and sequencing 
technologies107,108. To offset this risk, we only extracted germline variants from 
regions with enough coverage in each of three sequencing centers as 
previously53. This limited the number of RDGVs extracted, and thus potentially 
also the number of discoveries. 
 
In order to increase the sample size and thus power, we combined the cancer 
cohorts that contained both primary and metastatic cancers, as well as 
treatment-naïve and pretreated. Similarly, in the pan-cancer analyses, we 
aggregated data from all cancer types, with the result that the distribution of 
cancer types between the discovery and validation cohort was somewhat 
different. It is possible that some hits did not replicate due to these differences 
in cancer type composition.  
 
Our initial set of somatic mutational features was largely motivated by recent 
reports14,16–19,22,23,26–29,31,32,39,40,42.  Consideration of additional, complementary 
features could identify additional associations in future studies. Lastly, our 
analysis was performed on samples with European ancestry since this was the 
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most numerous group and including sequencing data from more diverse 
populations is also likely to identify additional associations. 
 
In conclusion, our findings highlight the role of rare inherited germline variants 
in shaping the mutation landscape in human somatic cells, leading to variability 
in somatic mutagenesis between individuals. The results support observations 
from genetic screens in model organisms suggesting that mutational processes 
can be affected by variation in diverse genes 50,51and suggest that low mutation 
rates in human somatic cells are hard to maintain. Cooperation between many 
genes is required to guard against genomic instability: the canonical mutator 
genes (particularly MMR, HR genes) are embedded in a network of regulators 
and supporting genes required for optimal functioning of the DNA repair 
systems.   
 
In the future, larger sample sizes with WGS data and better variant 
pathogenicity prediction tools will enable higher-powered association studies, 
further elucidating the potentially very numerous set of genes which determine 
human somatic mutation rates. The identification of additional genes altering 
human mutation processes may have important implications for understanding, 
preventing and treating cancer and other somatic mutation-associated 
disorders. 
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Fig. 1. Somatic mutation phenotypes in 15,000 human tumors. a, Somatic 
mutations were extracted from approximately 9,300 whole-exome and 5,500 whole-
genome sequenced cancer genomes. b, 56 different somatic mutation features were 
estimated in each cancer genome, covering different types of mutations. c, Final set of 
somatic components was extracted by applying two methods to the input matrix 
(samples as rows and somatic input features as columns): independent component 
analysis (ICA) and a variational autoencoder (VAE). 15 ICA-derived and 14 VAE-
derived components were extracted. d, Overview of extracted somatic components (x-
axis) and their Pearson correlation (color code) with the input somatic features (y-axis). 
Grey strip at the bottom displays whether the component was extracted via ICA or 
VAE. Components were named based on the underlying mutational process or 
strongest correlating input feature(s).  
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Fig. 2. Discovery and validation of rare damaging germline variants (RDGVs) 
associating with somatic components via a gene-based combined burden and 
variance test. a, Associations were identified in the discovery cohort (TCGA WES) 
and replicated in the validation cohort (PCAWG + Hartwig WGS). b, Associations were 
tested via 15 models in total, by utilizing 3 models of inheritance and 5 (differently 
prioritized) SNP sets of rare variants (all with population allele frequency < 0.1 %) (top). 
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The combined test SKAT-O was applied, which calculates a weighted sum between a 
burden test statistic and the SKAT variance test statistic. When ρ=1, the test reduces to 
a burden test, and when ρ=0, the test reduces to the variance (SKAT) test. SKAT is 
more powerful when a fraction of the variants in the SNP set are non-causal, while the 
burden test has higher power when all variants are causal. c,  Number of replicated 
hits at a FDR of 1 % and 2 % across cancer types and d, across somatic mutational 
components. e, Overlap of number of genes replicating at a FDR of 1 % and 2 % via 
the two different dimensionality reduction methods. f, Number of replicated hits at a 
FDR of 1 % and 2 % across models of inheritance (left) and overlap of replicated hits 
between models at a FDR of 1 % (right). g, Number of replicated hits at a FDR of 1 % 
and 2 % across RDGVs sets (left) and overlap of replicated hits between RDGV sets at 
a FDR of 1 % (right). h, Distribution of ρ values from SKAT-O test (x-axis) for the 207 
hits, which replicated at a FDR of 1 %, in the discovery (grey) and validation cohort 
(red). i, Distribution of ρ values from SKAT-O test (y-axis) for the 207 hits, which 
replicated at a FDR of 1 %, in the discovery (top row) and validation cohort (bottom 
row), across models of inheritance (columns) and RDGV sets (x-axis).  
 

 
Fig. 3. Overview of replicated hits at a FDR of 1%. 
Showing gene-cancer type pairs (x-axis), the corresponding somatic mutational 
component (y-axis), and the number of times they replicated at a FDR of 1 % 
(maximum of 15 models for each gene-cancer type-somatic component tuple). Color 
represents the mean estimate of the regression coefficient from burden test for all 
replicated hits at a FDR of 1 %, for the respective gene-cancer type-somatic 
component combination. Previously associated dHR genes in orange and dMMR 
genes in pink. Genes on the x-axis were ordered based on hierarchical clustering 
results using DepMap CRISPR-derived genetic fitness (Chronos) scores (see 
Supplementary). 
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Fig. 4. Network analysis supports the role of rare germline variation in somatic 
mutational processes. All panels in this figure were generated using physical 

interactions from the STRING database having a combined score ≥ 80%. a, Number of 
physical interactions in a random subset of the tested gene set (controlled for 
interaction node degree) (x-axis). Red line shows the number of interactions within 
genes which replicated at a FDR of 1 %. b, Number of randomly selected genes from 
the tested gene set interacting with at least one gene, which replicated at a FDR of 1 % 
(x-axis), (controlled for interaction node degree). Red line shows the number of genes, 
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out of the ones which additionally replicated at a FDR of 2 %, interacting with at least 
one gene replicating at a FDR of 1 %.  c, Same as in panel a, after excluding known 
genes from the analysis (BRCA1, BRCA2, PALB2, MSH2, and MLH1). d, Same as in b 
after excluding known genes from the analysis (BRCA1, BRCA2, PALB2, MSH2, and 
MLH1). e, Visualisation of physical interactions between proteins for genes replicating 
at a FDR of 1 % (square) and genes replicating at a FDR of 2 % (ellipse). Color code in 
pie chart shows the somatic components the corresponding gene was associated with 
(bottom panel). Line width corresponds to combined (experimental, database, and text 
mining) STRING physical interaction score. 
 
 

 
 
Fig. 5. Frequency of RDGVs across cohorts. 
Showing the frequencies of RDGVs within the individuals (y-axis) of the discovery 
cohort (TCGA-WES) and validation cohort (PCAWG+Hartwig-WGS) (rows) across 
different RDGV sets (columns) for different gene sets (x-axis). Known dHR gene set 
includes BRCA1, BRCA2, PALB2, and RAD51C, known dMMR gene set includes 
MSH2, MSH6, MLH1, and PMS2, the replicated 1 % FDR set includes all genes 
replicating at a FDR of 1 % after excluding known dMMR and dHR genes, and the 
replicated 2 % FDR only set includes all additional genes which replicated at a FDR of 
2 %. Color code for the real gene sets (blue) and length-matched, randomly selected 
protein-coding gene sets (red). Random selection for length-matched protein-coding 
genes was performed 10 times, and distribution shown in boxplot.  
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Extended Data Fig. 1. Inflation analysis. 
Overview of inflation factors (y-axis) across RDGV sets (x-axis), across cancer types 
(rows), and across models of inheritance (columns). Color code for box plots illustrates 
the number of tested genes for the respective scenario. Inflation factors were only 

calculated when at least 100 genes were tested, and inflation factors ≥ 1.5 were 

discarded (red point). Each data point represents the calculated inflation factor for one 

somatic component. 
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Extended Data Fig. 2. Estimation of false discovery rates. 
Schematic illustration of the approach. Firstly, testing was performed using the pre-
selected 874 genes. Then, randomization was performed shuffling the rows within 
cancer types, effectively breaking down the link between individuals and somatic 
components. Testing was performed with the randomized somatic component matrix 
as well and empirical FDRs were calculated based on the randomization for each 
cancer type (top half of plot). The same approach was repeated with a random set of 
1,000 genes after excluding the pre-selected gene list and any gene interacting with a 
gene from the pre-selected gene list (bottom half of plot). The number of genes 
replicating via the randomly selected list of genes at a specific FDR was divided by the 
number of genes replicating with the pre-selected list to get a conservative FDR 
estimate. 
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Extended Data Fig. 3. Overview of number of discovered and validated hits. 
a, Number of discovered hits, number of replicated hits at a FDR of 1 % and number 
replicated hits at a FDR of 2 % across RDGV sets, b, somatic components, c, models 
of inheritance, and d, cancer types. Log2 counts shown on the y-axis for panels a-d. e, 
Amount of replicated hits out the re-tested discovered hits at a FDR of 1 % across 
different models of inheritance. f, Number of replicated hits (y-axis) versus sample 
sizes of the corresponding cancer types in which they replicated (x-axis). Columns 
represent the two cohorts, and rows the applied FDR. Color code for the different 
cancer types. Pearson correlation shown on the top left corner in red and linear 
regression fitted through each plot (blue line). Shaded band illustrating 95 % 
confidence interval. Pancan analysis was excluded. 
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Extended Data Fig. 4. Overview of replicated hits at a FDR of 2%. 
Showing gene-cancer type pairs (x-axis), the corresponding somatic component (y-
axis), and the number of times they replicated at a FDR of 2 % (maximum of 15 models 
for each gene-cancer type-somatic component tuple). Color code represents the mean 
estimate of the regression coefficient from burden test for all replicated hits at a FDR of 
2 % for the respective gene-cancer type-somatic component tuple. Previously 
associated dHR genes in orange and dMMR genes in pink. Genes on the x-axis were 
ordered based on hierarchical clustering results using DepMap CRISPR-derived 
genetic fitness (Chronos) scores (see Supplementary). 
 
 

 
Extended Data Fig. 5. Seven genes associated with a somatic component in ≥ 1 

cancer type. 
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Showing gene-cancer type pairs (x-axis) and the corresponding somatic component 
they associated with at a FDR of 2 % (y-axis). Color code for each gene. Results from 
pancan analysis excluded.  
 
 

 
 
Extended Data Fig. 6. Network analysis (HumanNet) supports the role of rare 
germline variation in somatic mutational processes. 
All panels in this figure were generated using the functional gene network from 
HumanNet. a, Number of physical interactions in a random subset of the tested gene 
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set (controlled for interaction node degree) (x-axis). Red line shows the number of 
interactions within genes which replicated at a FDR of 1 %. b, Number of randomly 
selected genes from the tested gene set interacting with at least one gene, which 
replicated at a FDR of 1 % (x-axis), (controlled for interaction node degree). 
Randomization performed 1,000 times. Red line shows the number of genes, out of the 
ones which additionally replicated at a FDR of 2 %, interacting with at least one gene 
replicating at a FDR of 1 %.  c, Same as in a after excluding known genes from the 
analysis (BRCA1, BRCA2, PALB2, MSH2, and MLH1). d, Same as in b after excluding 
known genes from the analysis (BRCA1, BRCA2, PALB2, MSH2, and MLH1). e, 
Visualisation of interactions between proteins for genes replicating at a FDR of 1 % 
(square) and genes replicating at a FDR of 2 % (ellipse). Color code in pie chart 
showing the somatic components the corresponding gene associated with. Line width 
corresponding to interaction score. 
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Methods 

Study Design 

In this study, the effects of rare damaging germline variants (RDGVs) on 
different somatic mutational components from cancer genomes were 
comprehensively analyzed. We utilized genomic sequencing data from three 
large-scale projects: the Cancer Genome Atlas Program (TCGA)8, the Pan-
Cancer Analysis of Whole Genomes (PCAWG)9, and the Hartwig Medical 
Foundation (Hartwig)10. Associations between RDGVs and somatic features 
were initially detected in the discovery cohort and hits reaching significance 
were re-tested in the validation cohort. TCGA WES samples were used as the 
discovery cohort due to the bigger sample size and WGS samples from 
PCAWG and Hartwig were aggregated and utilized as the validation cohort. 
 

Extraction of Somatic Mutational Features and Somatic Components 

Data Sources in the Discovery Cohort.  
For the somatic features which were based on SNVs, DNVs, and indels, the 
somatic calls from the MC3 Project109 were used. For the somatic features 
based on CNVs, TCGA exome data was downloaded from the GDC Data 
Portal110 and processed as described in ref111. Copy numbers were identified 
with the tool FACETS112. The tool used as input data the BAM file of the tumor 
sample, the BAM file of the sample-matched normal sample, and a vcf file of 
common human SNPs. Furthermore, 93 individuals, which were reported to be 
positive for human papillomaviruses in head and neck cancer samples113, were 
excluded from the analysis. In total, this yielded somatic calls from 10,033 
individuals. 
 
Data Sources in the Validation Cohort 
Mutation calls for PCAWG were obtained from the ICGC data portal. Somatic 
mutation calls and copy number calls were obtained from the DKFZ/EMBL 
variant call pipeline. All samples were downloaded except for ESAD-UK, MELA- 
AU and all project id’s ending with ‘-US’ in order to prevent an overlap with the 
discovery cohort. In total, samples from 1,662 donors were downloaded. In 
short, single nucleotide variants were called via samtools114 and bcftools 
0.1.19115 , and indels were called via Platypus 0.7.4116. Copy number alterations 
were estimated with ACEseq v1.0.189117 (Supplementary information in 
PCAWG flagship paper9). Data access to the estimated somatic nucleotide 
variants and copy number variants from Hartwig were acquired as well 
(https://www.hartwigmedicalfoundation.nl/en/), making up 3,613 samples in 
total. In Hartwig nucleotide variants were called with Strelka118 1.0.14 and copy 
number alteration with the Purple tool10. BAM files for the melanoma dataset 
MELA-AU (dataset ID: EGAD00001003388; 183 individuals) and the 
esophagus dataset ESAD-UK (dataset ID: EGAD00001003580; 303 individuals) 
were downloaded from the European Genome-Phenome Archive (EGA). 
Somatic mutations were called via Strelka119 2.9.10 and copy number 
alterations were extracted as described above with the tool FACETS112. 
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Further processing of somatic calls 
For all datasets, regions which are known to be difficult to be aligned were 
excluded as well as regions which have been blacklisted by the UCSC Genome 
Browser120. As described previously22,24 blacklisted regions by Duke and DAC 
were removed and the CRG75 alignability track was applied to only keep 
regions, where 75-mers in the genome can be uniquely aligned in the human 
reference genome hg19. 
 
Single Nucleotide Variants - Total Mutation Counts 
Based on the number of SNVs in the nuclear genome, 8 different somatic 
mutational somatic features were estimated: the total number of SNVs, the 
number of C>A substitutions, the number of C>G substitutions, the number C>T 
substitutions in regions where the 3’ flanking site was not a G (non CpGs), the 
number of C>T substitutions in regions where the 3’ flanking site was a G 
(CpGs), the number of T>A substitutions, the number of T>C substitutions and 
the number of T>G substitutions. The number of C>T substitutions was divided 
into two groups (at CpG sites vs. non-CpGs sites) due to the effect of CpG sites 
on mutation rates (due to DNA methylation)121. A pseudocount of 1 was added 
to each somatic mutational feature and all features were log transformed to the 
base 2. 
 
Single Nucleotide Variants in Mitochondrial DNA - Total Mutation Counts 
As other studies have pointed out, WES data can be used to extract mutations 
occurring in the mitochondrial DNA, due to the large amount of off-target 
reads32,122. The coverage file of each sample was used to estimate to which 
extent the mitochondrial genome in each sample was sequenced. Only samples 
in which at least 50 % of the mitochondrial genome were covered by at least 4 
reads were kept for further analysis. Furthermore, following a previous study32, 
only variants were kept which had an allele frequency of at least 3 % to remove 
potential false-positive calls. For the cancer cohorts Hartwig, ESAD-UK and 
MELA-AU, which were all based on WGS data, somatic variants in the mtDNA 
with a frequency of less than 3 % were filtered out as well. After filtering, the 
total number of SNVs in the mtDNA in each sample was calculated. For 
PCAWG, mutation calls on the mitochondrial genome were downloaded from 
the respective study (https://ibl.mdanderson.org/tcma/mutation.html)32,33. At last, 
a pseudocount of 1 was added to each individual and the feature was log 
transformed to the base 2. 
 
Single Nucleotide Variants - NMF-derived Organ-specific Signatures 
First of all, the python tool SigProfilerMatrixGenerator123 was used to generate 
for each dataset a matrix counting all mutations in the 96 possible trinucleotide 
contexts by considering the adjacent 5’ and 3’ base of the somatic variant (16 
trinucleotides for each SNV). Next, the organ-specific signatures, which were 
derived in the work of Degasperi et al.52, were fit to each sample. For this step, 
organ-specific signature exposures were estimated by selecting for each 
sample the respective organ-specific signature set based on the tissue it was 
derived from. In cases in which no organ-specific signature set was existing due 
to its low sample size (e.g. mesothelioma, thymoma, penile, and vulva), the 
reference mutational signature set was used. In short, this aims to only fit 
signatures to a sample which were also identified in the according tissue. The 
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tool uses a bootstrap-based method to only assign signatures to a sample when 
they reach a specific threshold (p < 0.05), otherwise they are set to 0. The goal 
of this approach is to decrease the probability of overfitting and miss-
assignment of signatures52. In the discovery cohort the median fraction of 
unassigned mutations was 47% and in the validation cohort 15%, which is likely 
due to the low number of somatic mutations in the discovery cohort. To have a 
common set of signatures, all signature exposures were then converted to the 
reference signature set via the conversion matrix provided in ref52. For further 
analysis we only kept 17 signatures, which had in the discovery and in the 
validation cohort an activity of > 5 % in at least one matching cancer type or in 
the pancan analysis: Ref.Sig.1, Ref.Sig.2, Ref.Sig.3, Ref.Sig.4, Ref.Sig.5, 
Ref.Sig.7, Ref.Sig.8, Ref.Sig.11, Ref.Sig.13, Ref.Sig.17, Ref.Sig.18, Ref.Sig.19, 
Ref.Sig.22, Ref.Sig.30, Ref.Sig.33, Ref.Sig.MMR1 and Ref.Sig.MMR2. A 
pseudocount of 1 was added and each estimated signature count was log 
transformed to the base 2. 
 
Single Nucleotide Variants - Transcriptive Strand Bias 
To estimate the transcriptive strand bias, the number of mutations occurring on 
the untranscribed strand and on the transcribed strand were calculated. This 
was performed by the python tool SigProfilerMatrixGenerator123. Based on the 
six possible base substitutions, six different somatic features were generated 
(C>A, C>T, C>G, T>A, T>C, T>G). For each one, the number of base 
substitutions occurring on the untranscribed strand were divided by the number 
of mutations occurring on the transcribed strand. A pseudocount of 1 was 
added to the numerator and denominator before division and the resulting 
quotient was log transformed to the base 2. 
 
Single Nucleotide Variants - Replicative Strand Bias 
To estimate the replicative strand bias, replication timing data from 
lymphoblastoid cell lines was downloaded (http://mccarrolllab.org/resources/)124. 
The fork polarity, which is a derivative of the replication timing estimate, was 
estimated as described by Seplyarskiy et al.125. In brief, the slope/derivative at 
each coordinate of the replication timing landscape was calculated by 
considering the region approximately ± 5 kb of the coordinate. The fork polarity 
value reflects whether the reference strand is more likely to be replicated as the 
leading strand (fork polarity > 0) or as the lagging strand (fork polarity < 0). 
Next, the genome was divided into equal sized bins of the length of 10 kb and 
the average fork polarity in each bin was calculated. Further, the whole genome 
was split into 10 equal sized bins based on the fork polarity estimate. To 
calculate the replicative strand bias, we only considered the two lowest bins 
(reference strand more frequently replicated as the lagging strand) and the two 
highest bins (reference strand more frequently replicated as the leading strand). 
From the perspective of the reference strand, we divided the total number of 
T>C, T>G, G>A, and C>A mutations occurring on the leading strand by the total 
number of T>C, T>G, G>A, and C>A mutations occurring on the lagging strand. 
This would mean for instance that a A>G mutation occurring on the leading 
strand was counted as a mutation occurring on the lagging strand (since T>C 
on the other strand). We focused on these four mutation types since replicative 
strand biases have been previously reported for these in connection with a 
deficiency in DNA mismatch repair39. This feature was only calculated in 
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samples, in which at least 20 of the 4 single substitutions types were counted 
within the covered region. The estimated values were log transformed to the 
base 2. 
 
Single Nucleotide Variants - X-Chromosomal Hypermutation 
For generating a somatic mutational feature for X-Chromosomal 
hypermutation31, first of all the total number of single nucleotide variants per 
megabases (MB) on each chromosome was counted. Next, the number of 
mutations per MB occurring on the X chromosome was divided by the average 
number of mutations per MB occurring on the autosomes. A pseudocount of 0.1 
was added to the numerator and denominator before division and the resulting 
quotient was log transformed to the base 2. 
 
Single Nucleotide Variants - CTCF/Cohesin Binding Sites 
CTCF/cohesin binding sites are often mutated in cancer29,30. To capture this 
somatic mutational feature, we counted the number of single nucleotide variants 
occurring in CTCF/cohesin binding site and divided them by the number of 
mutations occurring in the flanking site (± 500 bp) of the binding site. 
CTCF/cohesin binding sites were obtained from Roadmap126 and averaged 
over 8 cell types. Genomic regions, that were bound by CTCF in at least one 
cell type and by cohesin in at least two cell types were set as CTCF/cohesin 
binding sites. All sites ± 500 bp of the sites that were bound by CTCF in at least 
one cell type were set as the flanking site. Length of covered genomic regions 
can be found in Supplementary Table 1. This somatic feature was only 
estimated in samples which had at least 10 SNVs counted in total within the 
CTCF/cohesin binding and/or flanking site. At last, we were able to calculate the 
CTCF somatic feature for 38 % of the samples in the discovery cohort and 98 % 
of the samples in the validation cohort. The ratio was log transformed to the 
base 2. 
 
Extraction of Genomic Region Densities of Expression, Histone Mark 
H3K36me3, Replication Timing and DNase I Hypersensitive Sites 
Features measuring mutation rate variation with regards to expression, histone 
mark H3K36me3, replication timing, and DNase I hypersensitive sites were 
calculated using negative binomial regression to reduce the correlation of these 
features with each other and to control for mutation substitution types. For this 
purpose, regional data from a previously published study was used24. In brief, 
levels of histone mark H3K36me3 (averaged over 8 cell types) and DNase I 
hypersensitive sites were downloaded from Roadmap Epigenomics126. Genomic 
regions with no signal for the corresponding feature were set as ‘bin 0’ and the 
remaining genomic regions were split into 5 equal sized bins with increasing 
signal. In this way, genomic regions with the highest amount of histone mark 
H3K36me3 were put into bin 5, regions with the lowest amount into bin 1 and 
regions with no signal into bin 0. Replication timing information was derived 
from the ENCODE project using the average over 8 cell lines. Genomic regions 
were split into 6 equal sized bins, where bin 1 corresponded to the latest 
replicating region and bin 6 to the earliest replicating region. Expression levels 
were based on RNA-seq data, which was obtained from Roadmap126 and 
averaged over 8 cell types as well. Bin 0 represented regions with no 
expression (RPKM = 0) and the remaining 5 bins were split equally by 
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increasing expression levels. All these genomic masks from ref24 were further 
processed by applying the CRG75 alignability track. For WES data specifically, 
the masks were intersected with the coverage mask from the MC3 project109, 
since the somatic WES mutation calls were derived from there. Furthermore, 
the 4 masks (expression, histone mark H3K36me3, replication timing, and 
DNase I hypersensitive sites) were intersected with each other for the 
subsequent regression. Several bins extracted from the whole exome mask 
covered only a small region in the genome (< 5 MB), which was expected since 
the exonic regions in the genome are known to be enriched for early replicating 
regions and histone mark H3K36me3. Since we observed that the regression 
often failed when bin sizes were too small, some bins were merged: replicating 
timing bins 1 and 2, histone mark H3K36me3 bins 1 and 2, expression bins 0 
and 1, and DNaseI hypersensitive site bins 1 and 2. This step was not 
performed for the whole-genome masks since the covered regions for each bin 
were big enough. Length of covered genomic regions can be found in 
Supplementary Table 1. 
 
Single Nucleotide Variants - Mutation Enrichment Calculations with regards to 
Expression, Histone Mark H3K36me3, Replication Timing and DNase I 
Hypersensitive Sites 
The individual features corresponding to the enrichment of mutations in a 
particular genomic region were calculated via negative binomial regression 
using the function glm.nb from the R package MASS (version 7.3_53.1) in R 
3.5.0. The regression was performed for the different features in each tumor 
sample as follows: 
 

I. mutation count ∼ replication timing + mutation type + offset 

II. mutation count ∼ replication timing + DNase + mutation type + offset 

III. mutation count ∼ replication timing + expression + mutation type + offset 

IV. mutation count ∼ replication timing + H3K36me3 + mutation type + offset 

In the discovery cohort (WES only) the mutation type variable had 7 possible 
encodings (C>A, C>T at CpG sites, C>T at non-CpG sites, C>G, T>A, T>C and 
T>G), and in the validation cohort (WGS only) the mutation type variable 
encompassed all 96 possible substitutions within the trinucleotide context (e.g. 
C>A mutation within ACA context). The offset represents the nucleotide-at-risk 
and is the natural log of the number of nucleotides covering the respective 
region. As described previously24, the coefficients obtained from the regression 
for the different genomic regions represent the log enrichment of mutations in 
each bin in comparison to a reference bin. For replication timing, the latest 
replicating bin was set as the reference, for expression the lowest expressing 
bin was set as the reference and for histone mark H3K36me3 and DNase I 
hypersensitive sites the bins with no signal were set as the reference. This 
would mean that for instance the coefficient obtained from regression IV. for bin 
5 from the histone mark H3K36me3 variable describes the log enrichment of 
mutations in regions with a high signal of this histone mark in comparison to 
regions with no histone mark signal, while controlling for replication timing and 
the mutational context. In this way, we aimed to control for the correlation of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.14.468508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468508
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

expression levels, histone mark H3K36me3 and DNase I hypersensitive sites 
with replication timing and the mutational context. Especially, for WES data this 
approach was limited by the reduced covered genomic region and the 
decreased number of mutations in comparison to WGS data. The regression 
was only performed in samples, which had at least 30 SNVs counted. The 
coefficient obtained in regression I. for the earliest replicating bin was extracted 
for the replication timing feature, the coefficient obtained in regression II. for the 
bin with the highest amount of signal in DNase I hypersensitive sites was 
extracted for the DNase I hypersensitive site (DNase) feature, the coefficient 
obtained in regression III. for the bin with the highest expressing regions was 
extracted for the expression (Expression) feature, and the coefficient obtained 
in regression IV. for the bin with highest amount of signal in histone mark 
H3K36me3 was extracted for the H3K36me3 (H3K36me3) feature. High errors 
in the regression coefficients (standard error > 100) indicated that the 
regression failed to converge for the corresponding coefficient and thus, were 
removed. In the discovery cohort, 7,650 replication timing coefficients, 7,684 
H3K36me3 coefficients, 7,471 DNase coefficients and, 7,664 Expression 
coefficients were extracted in total. In the validation cohort, 5,759 RT 
coefficients, 5,749 H3K36me3 coefficients, 5,752 DNase coefficients and, 5,759 
Expression coefficients were extracted in total. 

Double Nucleotide Variants - NMF-derived Signatures and Fitting 
Double nucleotide variants were extracted with the python tool 
SigProfilerMatrixGenerator123. The tool counted the occurrence of 78 double 
nucleotide variants (AC, AT, CC, CG, CT, GC, TA, TC, TG, or TT to NN). The 
matrix was used as an input to extract Double Base Substitution (DBS) 
signatures using the python tool SigProfilerExtractor19. In brief, the tool uses 
non-negative matrix factorization (NMF) to extract mutation signatures. Since 
the exact number of mutation signatures is not known, the tool extracted 1 to 25 
signatures. For each signature extraction 100 iterations were performed adding 
poisson noise to the samples during each iteration. For the discovery cohort the 
optimal solution was 3 signatures and for the validation cohort 11. Next, the tool 
fitted the established DBS signatures from COSMIC13 v3.2 to the extracted de-
novo signatures. Then, signature exposures were estimated by fitting the 
extracted COMISC signatures to each sample. In the discovery cohort the 
COSMIC13 DBS signatures DBS1, DBS2, DBS4, DBS9 and DBS10 were 
extracted and in the validation cohort the DBS signatures DBS1, DBS2, DBS4, 
DBS5, DBS6, DBS7 and DBS9 were extracted. The 4 DBS signatures which 
were found in both cohorts were kept for association testing: DBS1, DBS2, 
DBS4 and DBS9. Next, a pseudocount of 1 was added to each estimated 
signature exposure and each estimated exposure was log transformed to the 
base 2. 
 
Insertions and Deletions - Total Mutation Counts 
Different insertion and deletion somatic mutational features were generated. 
First of all, the total number of indels occurring in each sample was counted. 
Next, the number of indels in microsatellite (MS) regions was counted due to its 
frequent occurrence in samples with dMMR18,127. For this purpose, the number 
of indels with a length of 1 bp and the number of indels with a length of 2 to 5bp 
were counted within and outside MS regions. MS locations were identified via 
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the tandem repeat search tool Phobos (https://www.ruhr-uni-
bochum.de/ecoevo/cm/cm_phobos.htm). Next, the total number of indels with a 
length of 6 to 10 bp was counted. Due to the low number of indels of this length, 
especially in WES data, this feature was not further split into MS vs non-MS 
regions. Furthermore, since deletions have often been reported to be predictive 
of dHR40, different deletion features were created. The total number of deletions 
with a length of bigger than or equal to 10 bp was created. Also, the number of 
deletions at flanking microhomology sites of either 1 bp or more than 1 bp was 
counted by using the output matrix from the python tool 
SigProfilerMatrixGenerator123. A pseudocount of 1 was added to each feature 
and each feature was log transformed to the base 2.  
 
Insertions and Deletions - NMF-derived Signatures and Fitting 
Small insertion and deletion (ID) signatures were extracted in the same way as 
described for the DBS signatures. For the discovery cohort the optimal solution 
was 4 signatures and for the validation cohort 10. The COSMIC13 ID signatures 
were fit to the de-novo signatures and in the discovery cohort COSMIC13 ID 
signatures ID2, ID3, ID4, ID7, ID8 and ID15 were extracted and in the validation 
cohort ID signatures ID1, ID2, ID3, ID4, ID5, ID6, ID8, ID9, ID10, ID12, ID13 
and ID14 were extracted. The 4 ID signatures which were found in both cohorts 
were kept for further association testing: ID2, ID3, ID4 and ID8. Next, a 
pseudocount of 1 was added to each estimated signature exposure and each 
estimated exposure was log transformed to the base 2. 
 
Copy Number Variants - Total Mutation Counts, Ploidy and Whole Genome 
Duplications 
Copy number based features were generated by splitting amplification and 
deletion events by different sizes. The number of amplifications with a size of 1 
to 10 kb, 10 to 100 kb, 100 to 1000 kb, and bigger than 1000 kb were counted. 
Similarly, the number of deletions with a size of 1 to 10 kb, 10 to 100 kb, and 
bigger than 100 kb were counted. Next, a feature was generated based on the 
estimated ploidy of the tumor sample from the corresponding copy number 
detection tool. The number of whole genome duplication events were calculated 
by dividing the ploidy by 2 via integer division. A pseudocount of 1 was added to 
the amplification and deletion based features, a pseudocount of 0.1 was added 
to the WGD feature and no pseudocount was added to the ploidy feature since 
ploidy can never be 0. At last, each feature was log transformed to the base 2. 
 
Generation of the Input Matrix for ICA and VAE 
For the ICA and VAE all somatic features described above were used except for 
the following 9 somatic features: total number of SNVs, total number of indels 
and total number of the 7 different single mutation substitutions types 
(Supplementary Fig. 1 and 2). These were excluded since they were already 
represented by the different NMF-derived signatures. Further, all samples were 
removed in which more than 20% of the features were not estimated due to low 
mutation counts. Thus, 9,235/9,425 samples were left in the discovery cohort 
and 5,597/5,613 samples were left in the validation cohort. Next, missing values 
were replaced by the median value of the respective columns and each feature 
was centered and standardized to a mean of 0 and standard deviation of 1. This 
step was performed for the somatic features, which were extracted from three 
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different cohorts (TCGA, Hartwig, PCAWG) separately to control for potential 
biases. Then, the three matrices were merged (samples as rows, features as 
columns). 
 
Independent Component Analysis 
The ICA was run on the 56 somatic features using the input matrix as described 
above. Similarly, as for the NMF, the number of ICs needs to be set before 
running the ICA. The methodology to extract the optimal number of components 
was adapted from the methodology applied previously24 to extract the optimal 
number of NMF derived components. For the extraction of ICs the R package 
fastICA (version 1.2.1) in R 3.5.0 was used. The ICA was run by varying the 
number of extracted components from 2 to 30. For each component extraction 
the ICA was run 200 times and the seed for the random number generator was 
changed before every iteration. In each iteration the ICA decomposes the input 
matrix into a loadings matrix (corresponding to the components and their 
attributed weight from each somatic feature) and a scoring matrix (also called 
source matrix; samples projected to new component axes). After 200 iterations, 
the 200 loadings matrices were combined and clustered using k-medoids 
clustering with varying k from 2 to 50. Clustering was performed with the 
function pam from the R package cluster (version 2.0.6). For each clustering the 
average of the mean silhouette indexes of each cluster were saved as well as 
the lowest and second lowest mean silhouette index of a cluster extraction. 
Later, extracted summary silhouette indexes for different extracted IC numbers 
were plotted against the different number of extracted clusters (Supplementary 
Fig. 3). The optimal number of components was decided visually based on the 
broken-stick approach (Supplementary Fig. 4). For a given extracted number of 
ICs, the optimal number of clusters was always times 2 since during each 
iteration, signs flipped randomly and thus, each component always had a 
‘mirrored’ counterpart with opposite signs (Supplementary Fig. 5). In the end, 
always one component of the mirrored pair was kept. For the ICA, 15 unique 
ICs (using 30 clusters) were extracted. Correlations were estimated by 
calculating the Pearson correlation of each input somatic feature with each 
estimated score of each IC. Contributions were calculated by squaring the 
estimated loading matrix and dividing the squared loading by the sum of the 
loadings for the respective IC. Thus, the sum of the contributions (56 somatic 
input features for each IC) for each IC equals 1 (100 %) (Supplementary Fig. 6). 
 
Extraction of Components via a Variational Autoencoder 
The architecture of the VAE was adapted from studies from Way et al.105,128 
(https://github.com/greenelab/tybalt/blob/master/tybalt_vae.ipynb), where they 
applied a VAE to compress gene expression data to extract biologically relevant 
representations. The script was modified for our purposes. In short, it is a 
simple ladder-VAE architecture consisting of one encoding and one decoding 
layer to generate a generalizable representation of the input and to use this 
representation to reconstruct the input. Batch normalization was performed in 
the encoding layer before applying the activation function ReLu. In the encoding 
layer the VAE learned a distribution of means and standard deviations to 
generate the latent space. This latent representation was then decoded in the 
decoding layer by applying the tanh function as the final activation function. 
Weights were initialized via the Glorot uniform initializer. We also tested adding 
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an additional layer between the input and the encoding layer and between the 
latent space and the decoding layer. The extra layer always had 2 times more 
dimensions than the latent space and involved a batch normalization step 
before applying the ReLu activation function. The reconstruction loss was the 
sum of the mean squared error and the KL-divergence loss. To encourage 
learning, the ladder-VAE makes use of a so called warm start, meaning that it 
starts training without the KL divergence loss and linearly increases the 
contribution of the KL divergence loss after each cycle via the parameter beta 
(mean squared error+beta*KL divergence loss). The linear increase of the 
contribution of the KL divergence loss was controlled via the parameter kappa. 

In contrast to a previous VAE architecture105,128, we applied the tanh function in 
the final decoding layer and used the mean squared error as part of the 
reconstruction loss since our input was not binary. To reconstruct the input via 
the tanh function, all the somatic features were transformed to a range of -1 to 1 
prior to running the VAE. The data was split into 90 % training data and 10 % 
validation data and stratified by gender and cancer type. Performance was 
evaluated by checking the mean correlation of the reconstructed validation set 
with the validation input set and by calculating the correlation with selected ICs, 
which were shown to represent biologically relevant components. For this 
purpose, we calculated the maximum correlation of the components from the 
latent space of the VAE to the ICs dMMRICA, dHRICA, SmokingICA and UVICA and 
then calculated the average. To find the optimal hyperparameters we performed 
a grid search testing over 4,300 hyperparameter combinations (Supplementary 
Fig. 8). After finding the optimal hyperparameters, the VAE was run for different 
latent space dimensionalities 5 times with different random initializations 
(Supplementary Fig. 9). In the end, the results from using a latent space with 14 
dimensions was extracted for further downstream analysis using the 
architecture with no extra layer between input and encoder and with no extra 
layer between decoder and output (Supplementary Fig. 10 and 12). 

The VAE was run in a singularity container. A docker file was generated based 
on the docker image tensorflow/tensorflow:1.15.5-gpu-py3-jupyter and the 
python modules scipy, scikit-learn, and seaborn were added. The resulting 
docker image was then uploaded into Docker Hub and run in a singularity 
container. Python version 3.6.9, keras version 2.2.4 and tensorflow version 
1.15.5 were used in this environment. 

Estimation of Tissue Enrichments of Components 
Tissue enrichments of individual components (Supplementary Fig. 7 and 13) 
were calculated as follows. For each component it was tested whether the 
component scores from one cancer type were significantly different to the 
scores of the remaining cancer types via a two-sided Welch’s t-test. In addition, 
Cohen’s d statistic was calculated between the two groups. This test was 
performed for each cancer type and separately for the two cohorts (TCGA and 
PCAWG + Hartwig). Cancer types were then grouped into their corresponding 
tissue of origin and the average Cohen’s d statistic was calculated. 
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Identification of Rare Damaging Germline Variants 

Extraction of Rare Germline Variants in the Discovery Cohort 
TCGA bam files were downloaded as described here111. Strelka119 2.9.7 was 
run on TCGA WES normal and tumor samples to extract germline variants. 
Germline variants called in the tumor samples (will be a mix of germline and 
somatic mutations) were used later in a downstream step to only keep germline 
variants which were identified in the normal and tumor tissue. In this way, we 
aimed to remove potential false-positive germline calls in the normal sample 
and to remove variants which were selected out in the tumor and thus, 
irrelevant for our association analysis. Germline variants which were called in 
the normal sample with the filter PASS were kept as well as variants which were 
called with the filter LowGQX but had a GQX of at least 10. Variants which were 
found inside gnomAD129 with the filter PASS and had a GQX of at least 10 were 
kept as well as variants which were not found inside gnomAD129, but had a 
GQX of at least 20. Next, variants were annotated via ANNOVAR130 (version 
2019-10-24), CADD v.1.6 scoring was added, and only exonic and splicing 
variants were kept. Furthermore, only variants which had allele frequency of 
less than 0.1% in gnomAD129 (overall and in each sub-population) were kept as 
well as variants which were not found inside gnomAD129. Variants with a 
frequency equal to or higher than 1 % within the cohort were removed. 
Additionally, rare germline variants were only kept when they were also found in 
the matching tumor sample. 
 
Generation of a Coverage File for TCGA 
We used the same methodology as described in previous work53 to only extract 
genomic regions with sufficient coverage to be sure that regions in which no 
damaging germline variant was called was not due to lacking coverage. In brief, 
within each sequencing center (BI, WU, and BCM) 100 coverage files were 
randomly selected. Genomic regions which were covered by at least 8 reads in 
90 % of the samples within each sequencing center were kept. Next, the 
coverage masks of the 3 sequencing centers were intersected, making up in 
total a genomic mask of 60 MB in length. Only genomic regions within these 
sites were kept for further analysis. 
 
Extraction of Germline Variants in the Validation Cohort 
Germline variants from PCAWG, Hartwig, ESAD-UK and MELA-AU were all 
processed in the same way if not indicated otherwise. Each cohort was 
processed at the beginning separately due to the different formats. The files 
were combined in the end. While germline calls from PCAWG and Hartwig were 
obtained as described above, germline variants in ESAD-UK and MELA-AU 
were called via Strelka119 2.9.10 (same approach as in TCGA), and derived 
from the same datasets from which the somatic calls were obtained as well. 
Thus, for ESAD-UK and MELA-AU the same approach as for TCGA was 
applied. For PCAWG and Hartwig, germline calls with the filter PASS by the 
respective germline detection tool were kept. Next, variants which were found 
inside gnomAD129 and had the filter PASS were kept as well as variants which 
were not found inside gnomAD129 (rare singletons). Variants were annotated via 
ANNOVAR130 (2019-10- 24). All variants which were found inside gnomAD129 

were required to have an allele frequency of less than 0.1 % (overall and in 
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each subpopulation). Exonic and splicing variants were extracted. Furthermore, 

variants outside the CRG75 alignability mask were filtered out and variants with 

a frequency equal to or higher than 1 % within each cohort were discarded as 

well. The rare germline calls from the different cohorts were combined. Further, 

in all cases in which germline calls were also available for the matching tumor 

sample, variants were filtered out if they were not found in the matching tumor 

sample. Germline calls for matching tumor samples were available for PCAWG, 

∼80% of Hartwig, and not available for ESAD-UK and MELA-AU. 
 
Definition of Rare Damaging Germline Variants 
In this study 5 definitions of Rare Damaging Germline Variants (RDGVs) were 
applied in addition to requiring an allele frequency of < 0.1 % (described above): 
 

I. RDGV= protein truncating variants (PTVs) 

II. RDGV= PTVs + Missense variants with a CADD58 ≥ 25 

III. RDGV= PTVs + Missense variants with a CADD58 ≥ 15 

IV. RDGV= Missense variants with a ’missense tolerance ratio’61 ≤ 25th 
percentile� 

V. RDGV= Missense variants with a ’constrained coding region’60 value ≥ 

90th percentile 

For case I. only PTVs were considered. PTVs comprised in this study frameshift 
deletions, frameshift insertions, stoploss variants, stopgain variants, startloss 
variants and splicing variants. Splicing variants comprise the canonical splice 
variants annotated by ANNOVAR130 (version 2019-10-24) and variants with a 
predicted donor loss or acceptor loss higher than 0.8 by SpliceAI131. Pre-
computed SpliceAI score files were downloaded from Illumina Basespace and 
annotations were added to each variant (hg38 for the discovery cohort and 
hg19 for the validation cohort). For cases II. and III. potentially damaging 
missense SNVs were added on top of PTVs. Deleteriousness was assigned via 
the phred-scaled CADD58 scores. For case IV. we only considered missense 
SNVs with a missense tolerance ratio (MTR)61 lower or equal to the 25th 
percentile and for case V. we only considered missense SNVs with a 
constrained coding region (CCR)60 value equal or bigger than the 90th 
percentile. On top of these variant filtering steps, two additional filtering steps 
were applied to all five RDGV sets in order to discard potential false-positive 
RDGVs: the proportion expressed across transcripts (PEXT) metric132 and the 
terminal truncating exon rule129. 

Filtering out Non-Expressed Variants via the PEXT Metric 
The PEXT132 score was introduced in one of the gnomAD articles and in brief, 
estimates to which extent a variant is expressed in a tissue based on isoform 
transcription levels from RNA-seq data. PEXT scores were estimated using 
over 11,000 tissue samples from GTEx. Thus, PEXT scores were downloaded 
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and added to the variant annotations. Since hg38 was used for the germline 
calls in the discovery cohort, PEXT annotations were first converted from hg19 
to hg38 via the liftover tool from UCSC120 (version021620). This step was not 
necessary for the validation cohort. Variants were only kept when they had a 
PEXT value higher than 0.1 in the matching GTEx tissue. Matching a cancer 
type with the most appropriate GTEx tissue was mostly guided by a previous 
study133. For cases in which no matching GTEx tissue was available for a 
cancer type, the mean PEXT value was used. This filter was applied to all 
variants not affecting splicing since many splicing variants are close to exon 
borders and thus, don’t have a PEXT score. 
 
Exclusion of Terminal Truncating Exon Variants (with exceptions) 
Terminal truncating variants might not have a deleterious loss-of-function effect 
since they can escape nonsense-mediated decay and still be functional. For 
these reasons, they have been also removed in the loss-of-function transcript 
effect estimator (LOFTEE) of gnomAD129. Hence, variants occurring in the 
terminal exon were removed. This filter was not applied in cases in which the 

variant was predicted to have a deleterious effect by CADD58 ≥ 15 or in cases in 
which the variant was predicted to have a splicing effect. In this way, we aimed 
to reduce the risk of losing potentially harmful variants, which as described in 
the gnomAD flagship paper129, can be the case when the C-terminal domain of 
a protein exerts a crucial function. To identify variants occurring in the last exon, 
gene coordinates were downloaded from UCSC120 using the NCBI RefSeq 
track134. Exon coordinates of the last exon of the longest transcript were kept. 
These coordinates were then intersected with the variant coordinates to detect 
variants occurring in terminal exons. 
 

Detecting and Assigning putative Loss of Heterozygosity (LOH) 

Detecting and Assigning putative LOH in the Discovery Cohort TCGA 
To detect LOH, we considered the copy number calls from FACETS112. 
FACETS calls were available for 9,814 samples. We extracted all ’LOH’ and 
’DUP-LOH’ calls and assigned them to genes by intersecting the extracted 
coordinates with gene coordinates from NCBI Refseq134 hg38. We assigned 
LOH to a gene in samples in which LOH was called via FACETS + the variant 
allele frequency of the RDGV was not higher in the normal sample than in the 
tumor sample and the variant allele frequency of the RDGV was not higher than 
0.8 in the tumor and sample-matched normal sample. In this way, we aimed to 
only consider LOH events, when the putative RDGV of interest got enriched in 
the tumor via LOH since this was the tested hypothesis for the recessive and 
additive model. For 441 samples for which we did not have any FACETS calls, 
we assigned LOH to a gene in a sample when the difference in the variant allele 
frequency of the putative RDGV between tumor and normal sample was higher 
than 0.25 and when the variant allele frequency of the putative RDGV was 
higher than 0.8 in the tumor and sample-matched normal sample. 
 
Detecting and Assigning putative LOH in the Validation Cohort 
For PCAWG (excluding ESAD-UK and MELA-AU), CNV calls from ACEseq117 
v1.0.189 were further processed. All passed calls with the assignments ’LOH’, 
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’LOHgain’ or ’cnLOH’ were extracted and genes were assigned to the LOH 
events as before (using NCBI Refseq134 hg37). We excluded LOH calls when 
the corresponding RDGV in the respective gene had a lower allele frequency in 
the tumor than in the sample-matched normal sample and the allele frequency 
was not higher than 0.8 in both tissues. 

For ESAD-UK and MELA-AU, CNV calls were available via FACETS112 and 
LOH was called as described for TCGA. In contrast to the steps performed for 
TCGA, germline calls from the tumor tissue were not available for ESAD-UK 
and MELA-AU. Thus, LOH calls were not further filtered. 

For Hartwig, CNV calls were provided via the tool Purple10. LOH was assigned 
to locations in which the minor allele ploidy was lower than 0.4. LOH calls were 
excluded in cases in which the allele frequency of the RDGV was lower in the 
tumor than in the sample-matched normal tissue and the allele frequency of the 
RDGV was not higher than 0.8 in the normal and tumor tissue. This was only 
applicable to the samples in which germline calls from the tumor genome were 
available (678 samples with germline calls from tumor genomes not available). 
 

Gene-Based Rare Variant Association Testing 

Extraction of Common Germline Variants and Sample-level Quality Control 
Common variants were extracted from the normal samples to apply some 
sample-level quality control as well as to prepare the data to perform a PCA for 
extracting population ancestry. The following steps were performed for the dis- 
covery cohort (TCGA) and the validation cohort (PCAWG and Hartwig) 
separately. Germline variants which were called with the filter PASS were kept. 
Also, in accordance with the extraction of rare germline variants, variants with 

the filter LowGQX but a GQX�� ≥ 10 were kept in the respective cohorts 
(TCGA, ESAD-UK and MELA-AU). Common variants were extracted by only 
keeping variants which were identified inside gnomAD129 with the filter PASS 
and with an allele frequency > 5 % within the overall population. In TCGA all 
variants within the generated genomic mask were retained and in the other 
cohorts all variants within the CRG75 alignability mask were retained. Loci, in 
which more than 2 alleles existed, were removed. The total number of common 
variants inside each sample was calculated and within each cohort (TCGA, 
Hartwig, PCAWG) samples with an altered number of variants 1.5 standard 
deviations away from the mean were discarded (214 samples in TCGA, 212 
samples in Hartwig, 204 samples in PCAWG) (Supplementary Fig. 17a and 
18a). Next, common variants for each cohort were uploaded into 
PLINKv1.90b6.1 and further processed there. Missing genotypes were set as 
homozygous for the reference allele. Only variants with a MAF > 5 % were 
retained and samples with a heterozygosity rate ± 3 standard deviations away 
from the mean were removed (127 samples in TCGA, 54 samples in Hartwig, 
39 samples in PCAWG) (Supplementary Fig. 17b and 18b). For the following 
steps, variants on the sex chromosomes, on the mitochondrial chromosome 
and within regions with high amount of linkage disequilibrium 
(https://github.com/meyer-lab-cshl/plinkQC/tree/master/inst/extdata) were 
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removed. Also, variants extensively deviating from the Hardy-Weinberg-

equilibrium with p < 10−6 were excluded. 
 
Identification of Duplicated or Related Individuals 
The dataset was pruned on the discovery cohort (TCGA) and on the merged 
validation cohort (PCAWG and Hartwig) separately, applying a window size of 
50 bp, a step size of 5 and a r2 threshold of 0.2. The identity-by-state (IBS) 
matrix was calculated for all pairs of individuals within each cohort. Within all 
pairs of individuals with identity-by-descent (IBD) > 0.185 (0.185 would be the 
expected value for individuals between third- and second-degree relatives) one 
individual was removed (542 samples in TCGA, and 479 samples in PCAWG 
and Hartwig) (Supplementary Fig. 17c, 18c, and 18d). 
 
Extraction of European Individuals 
To extract individuals of European ancestry the pruned dataset was used and a 
principal component analysis (PCA) was performed. The PCA was run on the 
discovery cohort and on the merged validation cohort (Supplementary Fig. 19 
and 20). The first ten principal components were used for clustering using the R 
package tclust (version 1.4.2), which trimmed 1 % of the outlying samples as 
described previously53. Individuals were grouped into k = 10 clusters and 
European groups were selected based on the reported TCGA/PCAWG 
annotations. In total 7,864 individuals were retained in the discovery cohort and 
4,691 individuals were retained in the validation cohort. The PCA was repeated 
on the pruned dataset for the individuals of European ancestry in the respective 
cohorts to extract the PCs, which were used as covariates in the association 
testing (Supplementary Fig. 21 and 22). 
 
Gene-Based Rare Variant Burden Testing 
As described above 29 somatic mutational components were extracted from the 
discovery and validation cohort from the tumor genomes. RDGVs were 
extracted from the sample-matched normal samples. Gene-based rare variant 
burden testing was only performed on samples which survived the quality 
control filters (as described above). We limited the analysis to individuals with 
European ancestry due to the bigger sample size. In addition, only samples 
were kept, in which at least 10 SNVs were counted. In total 6,799 samples were 
left in the discovery cohort for testing and 4,683 samples were left in the 
validation cohort for testing. 
 
Gene Set 
For testing, RGDVs occurring in 892 different genes were extracted. The gene 
set covered DNA damage response genes135, known cancer predisposition 
genes36, genes involved in chromatin organization 
(https://pathcards.genecards.org), genes involved in DNA double strand repair 
(https://pathcards.genecards.org), genes which were reported to regulate MSH2 
stability81, and human homologs of genes, in which heterozygous mutations 
were reported to cause genetic instability in Saccharomyces cerevisiae50. 
Effectively, out of the 892 individual genes 746 genes were tested in the most 
permissive RDGV set (set III.) in pancan. The remaining genes were not tested 
in the discovery cohort since not enough RDGVs were identified in these genes 
to test them. 
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Association Testing via SKAT-O 
Association testing was performed in each cancer type separately and with all 
cancer types together (pancan). The effect of a gene on a somatic component 
was only tested when a RDGV in that gene was identified in at least two 
individuals. Testing was performed across 12 cancer types as shown in 
Supplementary Table 5. Accordingly, depending on the cancer type different 
numbers of genes were tested in total. 

Association testing was conducted via the unified testing approach of SKAT-
O54. In short, SKAT-O combines the tests SKAT56 and burden via a weighted 
mean: 

● Qρ =ρ*QB + (1-ρ)QS. 

Here, Qρ is the final statistic from the weighted mean of the burden statistic QB 
and SKAT statistic QS. The parameter ρ influences how strongly each test is 
weighted. SKAT-O testing was performed via the R package SKAT54 2.0.1. For 
testing, the covariates were firstly regressed against the somatic components 
with the function SKAT_Null_Model. When applicable, age of diagnosis, sex, 
ancestry (first 6 PCs) and cancer type were used as covariates. Categorical 
variables were encoded as dummy variables with the R package fastDummies 
1.6.3. Missing age information was imputed by taking the median value in the 
respective cohort. After initializing the null model, SKAT-O was run by using the 
function SKAT and setting the method to SKATO. The function ran SKAT-O 
with 10 different values of ρ (from 0 to 1) and reported the ρ value which led to 
the lowest p-value. 

Three models of inheritance were tested in total and individual variants were 
encoded as follows: 

I. Dominant: no RDGV = 0; RDGV = 1 
II. Additive: no RDGV = 0; RDGV = 1; RDGV + somatic LOH or biallelic 

RDGV=2 
III. Recessive: no RDGV = 0; RDGV + somatic LOH or biallelic RDGV = 1: 

RDGV without somatic LOH = excluded sample. 

Taken together, 3 models of inheritance were tested with 5 different RDGV sets, 
making up in total 15 models to test across 12 different cancer types and 
pancan. In total, 15*12*29 = 5,655 model scenarios could have been tested at 
most. Ultimately, 4,693/5,655 scenarios were tested in the discovery phase. 

Estimation of Effect Sizes via Burden Testing 
Since no effect sizes were reported in SKAT-O, we also performed gene-based 
burden testing (aggregating variants occurring in the same gene) applying the 
same models as above. Association testing was performed via linear regression 
with the lm function of the R base package stats in R 3.5.0 as follows: 
 

● Somatic Component ∼ Gene + Covariates 
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The somatic components were coded as quantitative variables as described 
above. The gene variable was encoded as a binary categorical variable 
depending on the model of inheritance (additive, recessive, dominant). When 
applicable, we controlled for age of diagnosis, sex, cancer type and ancestry 
(first 6 PCs) as covariates. In total, burden testing was performed for each 
scenario which was also tested via SKAT-O. 

Quantile-Quantile Plots for Quality Control 

To check for potential biases in testing, we plotted quantile-quantile plots (QQ- 

plots) for each somatic component tested for each scenario (model of 

inheritance, RDGV set) in the respective cancer type and calculated the 

corresponding inflation factor λ. For the QQ-plots, the expected p-value was 

calculated by ranking all tested genes and dividing the rank of a gene by the 

total number of genes tested. The idea behind the QQ-plots was that most 

genes were expected to not have an effect on a somatic component and thus, 

most p-values would be distributed randomly and fall on a linear line when 

ordered. The inflation factor λ was calculated to check for inflation, which would 

be indicated by λ > 1. The inflation factor λ was estimated by dividing the 

median of the chi-squared test statistic of the p-values by the expected median 

of the chi-squared distribution, which would be a chi-squared distribution with 

one degree of freedom. QQ-plots with no inflation would have an inflation factor 

of λ ≈ 1 and deflated QQ-plots would have an inflation factor of λ < 1. Ultimately, 

we excluded model scenarios in which at least 100 genes were tested and the 

inflation factor was ≥ 1.5 (19 ot ouf 1,909). 
 
Estimation of False Discovery Rates 
We calculated false discovery rates (FDRs) via two approaches: empirical FDR 
and via a randomized set of genes. To estimate the empirical FDR, the somatic 
component matrix (somatic components as columns and sample IDs as rows) 
was randomly shuffled within each cancer type. Importantly, the link between 
individuals and somatic components was broken down, but the correlation 
structure between components was conserved. Then, with the randomized 
somatic component matrix, testing was performed in the same way as it was 
performed before. We calculated empirical FDR thresholds for each cancer type 
(or pancan) separately. For instance, the p-value at which 1 % of the 
associations from the randomized run would have been called as a hit (false 
discovery) corresponds to a FDR of 1 %. 

For our second approach, we repeated the whole analysis using 1,000 random 
genes. We generated a list of genes, which were not in our pre-selected gene 
list of 892 genes and in which RDGVs according to RDGV set III. were identified 
in at least 2 samples. In addition, we discarded all genes which were reported 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.14.468508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468508
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

to have a physical interaction with any gene from our pre-selected gene list 

according to the reported physical interactions from STRING v11.599 with a 

combined score of at least 50 %. Out of 11,408 remaining genes, 1,000 genes 

were randomly selected and used for testing. Next, we performed the same 

steps as it was performed for the pre-selected list of genes, including the 

calculation of empirical FDRs via randomization and the exclusion of model 

scenarios with high inflation factors (31 out of 1,885). Based on the 

conservative hypothesis that there would be no real associations from the 

random list of genes, we calculated FDRs at different empirical FDR thresholds 

by dividing the number of hits, which were detected via the random list of genes 

by the number of genes detected at the same empirical FDR with our pre-

selected list of genes. For instance, at an empirical FDR of 1% we identified 44 

hits with our random list of genes and 207 hits with our pre-selected list of 

genes. Thus, we estimated a FDR of 44/207 ≈ 21 % at our empirical FDR of 1 

%. 

Identification of Associations in the Discovery Cohort and Re-Testing in the 
Validation Cohort 
Hits were identified in the discovery cohort when they were significant either at 
a FDR of 1 % or 2 % based on the estimation of the empirical FDR. These were 
then re-tested in the matching cancer type based on the tissue of origin 
(Supplementary Table 5). In total, for 12 individual cancer types a matching 
cancer type based on the tissue of origin was available in the validation cohort 
with a sample size of at least 50 samples: bladder cancer, brain glioma 
multiforme, low-grade glioma, breast cancer colorectal cancer, kidney cancer, 
lung adenocarcinoma, lung squamous carcinoma, ovary cancer, prostate 
cancer, skin cancer, stomach and esophagus cancer. Hits which were identified 
with all cancer types together (pancan) were re-tested in the validation cohort in 
the same way. We called a hit as replicated when it reached the empirical FDR 
of either 1 % or 2 % and had the same estimate effect direction as in the 
discovery cohort. Effect size directions were extracted from the performed 
burden tests. 
 
Network analysis 
For the network analysis, we downloaded protein network data from STRING 
v11.599 involving only physical links, and from HumanNet90 v3 the functional 
gene network (HumanNet-FN). From STRING we only kept interactions which 
had a combined confidence score (based on experimental, database, and text 
mining) of at least 80%. The following steps were performed for each protein 
network separately. 

Firstly, we extracted all interactions which involved interactions between genes 
from our pre-selected gene list of 892 genes. We calculated the total number of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.14.468508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.14.468508
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

interactions our replicated genes had at an empirical FDR of 1 % with each 
other. It was tested via randomization whether this number was higher than one 
would expect at random. For this purpose, we selected randomly the same 
number of genes and calculated the total number of interactions these genes 
had with each other. We controlled for the total number of interactions each 
gene had, since some genes (e.g. BRCA1) have in general a lot of physical 
interactions, which would confound our results. To control for this, we counted 
the total number of interactions our replicated genes had, split them into 10 
equal sized bins, assigned all our pre-selected genes a bin, and then randomly 
selected the same number of genes from each bin. Randomization was 
performed 1,000 times. 

Next, we counted how many genes, which only replicated at an FDR of 2%, had 
at least one interaction with a gene which replicated at an FDR of 1%. Here, we 
applied the same approach. We counted the total number of interactions each 
gene, which only replicated at an FDR of 2 %, had in total and split the number 
of interactions into 10 equal sized bins. Each gene from our list of genes was 
assigned a bin and then we randomly selected 1,000 times the same number of 
genes from each bin and performed the same calculation. 

Calculation of Frequency of RDGVs in Length Matched Randomly Selected 
Genes 
To calculate the number of RDGVs occuring in a control set of genes, we 
matched each replicated gene randomly with a gene covering the same length. 
For this purpose, we intersected the TCGA coverage file with the reported 
exonic coordinates provided by NCBI RefSeq134 track hg38. We only 
considered protein-coding genes. The covered length of each gene was 
calculated in kilobases and each replicated gene was randomly matched 10 
times with a gene, which covered the same length in our data. Subsequently, 
RDVGs based on different sets were counted in the replicated gene sets as well 
as in the length matched control genes. For the validation cohort 
PCAWG_Hartwig-WGS, the same approach was applied. Here, the coordinates 
from the CRG75 alignability track were intersected with the exonic coordinates 
provided by NCBI RefSeq134 track hg19 to determine the length of the coding 
region for a gene. 

Data Availability 
Data sources used are detailed in the Methods section. 

Code Availability 
Code can be obtained from https://github.com/lehner-lab/RDGVassociation and 
data visualized at https://mischanvp.shinyapps.io/rare_association_shiny/ once 
manuscript is accepted for publication. 
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