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Abstract 57 

 58 

Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., 59 

admixture) between previously separated human groups. While classical and recent work have 60 

shown that studying admixture can yield novel historical insights, the extent to which this process 61 

contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, 62 

specific to admixed populations, that identifies loci under selection while determining whether the 63 

selection likely occurred post-admixture or prior to admixture in one of the ancestral source 64 

populations. Through extensive simulations we show that this method is able to detect selection, 65 

even in recently formed admixed populations, and to accurately differentiate between selection 66 

occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data 67 

of ~4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, 68 

Mexico and Peru. Our approach replicates previous reports of selection in the HLA region that are 69 

consistent with selection post-admixture. We also report novel signals of selection in genomic 70 

regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly-used 71 

local-ancestry-inference approach. These signals include several genes involved in immunity, which 72 

may reflect responses to endemic pathogens of the Americas and to the challenge of infectious 73 

disease brought by European contact. In addition, some of the strongest signals inferred to be under 74 

selection in the Native American ancestral groups of modern Latin Americans overlap with genes 75 

implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary 76 

sources available in the Americas.  77 

 78 

 79 

 80 

  81 

 82 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.467418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.467418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Introduction 83 

 84 

Admixed populations offer a unique opportunity to detect recent selection. In the human lineage, 85 

genomic studies have demonstrated the pervasiveness of admixture events in the history of the vast 86 

majority of human populations (Patterson et al. 2012; Hellenthal et al. 2014; Lazaridis et al. 2014). 87 

By inferring the ancestral origins of particular genetic loci in the genomes of recently admixed 88 

individuals, recent studies have provided evidence that such admixture has facilitated the spread of 89 

adaptative genetic mutations in humans. Notable examples include the transfer of a protective allele 90 

in the Duffy blood group gene likely providing resistance to Plasmodium vivax malaria in Malagasy 91 

and Cape Verdeans from sub-Saharan Africans (Hodgson et al. 2014; Pierron et al. 2018; Hamid et 92 

al. 2021), and the transmission of the lactase persistence allele in the Fula pastoralists from Western 93 

Eurasians (Vicente et al. 2019).  94 

 95 

An ideal setting in which to test whether and how admixture contributed to genetic adaptation is 96 

Latin America. The genetic make-up of present day Latin Americans stems mainly from three 97 

ancestral populations: indigenous Native Americans, Europeans (mainly from the Iberian 98 

Peninsula), and Sub-Saharan Africans (Wang et al. 2007; Moreno-Estrada et al. 2013; Moreno-99 

Estrada et al. 2014; Homburger et al. 2015; Chacon-Duque et al. 2018; Luisi et al. 2020) that were 100 

brought together starting ~500 years ago. The admixed genomes of Latin Americans are thus the 101 

result of an intermixing process between human populations that had been evolving independently 102 

for tens-of-thousands of years and that were suddenly brought together in a new environment. In 103 

this new environment, the ancestral genomes were quickly subjected to novel pressures that were 104 

largely unfamiliar from where they firstly evolved. Therefore, the genomes of Latin Americans 105 

potentially harbor signals of both older adaptations present in each of the ancestral populations, and 106 

more recent adaptations attributable to beneficial variants, e.g. introduced from a particular 107 

ancestral population, increasing rapidly in frequency post-admixture. Motivated by this, several 108 

studies have explored the genomes of admixed Latin Americans for signatures of selection, for 109 

example focusing on events occurring since the admixture event (Tang et al. 2007; Basu et al. 2008; 110 

Ettinger et al. 2009; Guan 2014; Rishishwar et al. 2015; Deng et al. 2016; Zhou et al. 2016; Norris 111 

et al. 2020; Vicuna et al. 2020). These studies have relied on an approach similar to that of 112 

admixture mapping, where the ancestry of a genomic region in each admixed individual is assigned 113 

to a particular ancestral population, a technique known as local-ancestry-inference (LAI). Loci with 114 

significantly more inferred ancestry inherited from one ancestral population are assumed to have 115 

evolved under some form of selection (Tang et al. 2007). 116 

 117 
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In addition, the genetic make-up of Latin Americans offers the opportunity to detect selection in 118 

their ancestral populations, as large cohorts of Latin Americans can be leveraged to reconstruct 119 

genetic variation patterns in each source population. This is of particular use for exploring selection 120 

in Native Americans, since Native groups are currently underrepresented in genomic studies 121 

(Sirugo et al. 2019) and as a consequence only a few studies have centered on detecting adaptive 122 

signals of indigenous groups from the Americas. Such studies have identified strong selective 123 

signals at different genes, particularly at those related to immunity, highlighting the selective 124 

pressures that Native Americans were subjected to after they entered the continent (Lindo et al. 125 

2018; Reynolds et al. 2019; Avila-Arcos et al. 2020).  126 

 127 

With some exceptions (Cheng et al. 2021), these studies either limited their analyses to Latin 128 

Americans with high Native American ancestry or used LAI to infer loci in individuals that derive 129 

from a Native American source. However, such approaches may result in a reduction of statistical 130 

power due to removal of individuals with non-Native ancestry, inaccurate local ancestry estimation 131 

and/or through removing segments challenging to assign.  132 

 133 

Here we present a novel statistical model that identifies loci that have undergone selection before or 134 

after an admixture event (which we refer to as pre- or post-admixture selection, respectively). In 135 

contrast to previous methods, this approach is based on allele frequencies and does not require 136 

assignments of local ancestry along the genome. We illustrate the utility of our new method by 137 

performing a selection scan in five Latin American cohorts collected as part from the CANDELA 138 

Consortium (Ruiz-Linares et al. 2014). Our results suggest that several loci have been subjected to 139 

natural selection in admixed Latin American populations, and in their ancestral populations, 140 

replicating many of these signals using LAI. Many of the putative selected SNPs are strongly 141 

associated to relevant phenotypes, or act as expression quantitative loci (eQTL) in relevant tissues, 142 

providing further evidence of their functional effect. Overall, our analyses highlight the usefulness 143 

of our method to detect signals of selection in admixed populations or their ancestral populations, 144 

and reveal novel candidate genes implicated in the adaptive history of groups from the American 145 

continent.  146 

 147 

Results 148 

 149 

Overview of AdaptMix 150 

In part following Balding and Nichols (1995), and analogous to previous approaches (Long 1991; 151 

Mathieson et al. 2015; Cheng et al. 2021), our model AdaptMix assumes that, under neutrality, the 152 
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allele frequencies of an admixed target population can be described using a beta-binomial model, 153 

with expected allele frequency equal to a mixture of sampled allele frequencies from a set of groups 154 

that act as surrogates to the admixing sources (fig. 1). In our case the admixed target population is a 155 

Latin American cohort, defined below, and we use three surrogate groups to represent Native 156 

American, European, and African admixing source populations. The mixture values are inferred a 157 

priori, e.g. using ADMIXTURE (Alexander et al. 2009) (fig. 1a) or SOURCEFIND (Chacon-Duque 158 

et al. 2018), as the average amount of ancestry that each admixed target individual matches to a set 159 

of reference populations. (The reference populations used by these programs may be the same as the 160 

surrogate populations, but they need not be as illustrated below.) We find the variance parameter 161 

that maximises the likelihood of this beta-binomial model across all SNPs. This variance term aims 162 

to limit the number of false-positives attributable to genetic drift in the target population following 163 

admixture and/or the use of inaccurate surrogates for the ancestral populations. Then, at each SNP, 164 

we calculate the probability of observing allele counts equal to or more extreme than those observed 165 

in the target population, hence providing a P-value testing the null hypothesis that the SNP is 166 

neutral (see Methods).  167 

 168 

Assuming a pulse of admixture, this test is designed to detect selection occurring: (i) in the admixed 169 

population following the admixture event (e.g. along the purple line time period in fig. 1b), and/or 170 

(ii) in one (or more) of the source/surrogate pairings, i.e. following the split of the surrogate 171 

population from the admixing source it is representing (e.g. along the red and/or blue lines in fig. 172 

1b). At SNPs with evidence of selection (i.e. low P-values), we distinguish between (i) and (ii) by 173 

exploring how genotype counts of admixed target individuals relate to their inferred admixture 174 

proportions contributed by each surrogate. Under scenario (i), we assume that selection affects all 175 

target individuals equally, regardless of their admixture proportions, which in turn assumes all 176 

ancestries were present when selection occurred. In contrast, under scenario (ii), we expect selection 177 

to more strongly affect one of the source/surrogate population pairings. Intuitively, if (ii) is true, 178 

individuals with nearly 100% ancestry from the source/surrogate pair experiencing selection will 179 

have genotype counts that deviate the most from expectations under the neutral model, while 180 

individuals with nearly 0% ancestry from this pair will have counts that closely follow the neutral 181 

model (fig. 1c). If instead (i) is true, this pattern is attenuated, though it can be challenging in 182 

practice to distinguish (ii) from (i) if allele frequencies strongly differ between surrogate groups (fig 183 

1d). Assuming a multiplicative model of selection, we find the selection coefficients that maximize 184 

the fit of the data to model (i) and to model (ii) when separately treating each source/surrogate pair 185 

as the selected group. We report ratios of likelihoods, equivalent here to using differences in Akaike 186 

Information Criterion (AIC), to quantify our ability to distinguish among scenarios (i) and (ii).  187 
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 188 

In summary, for each tested SNP we infer (a) a P-value testing the null hypothesis of neutrality, (b) 189 

the relative evidence (i.e. likelihood ratios) for whether selection occurred post-admixture or in one 190 

of the admixing sources and (c) the selection strength summed across time. 191 

 192 

Simulations 193 

We tested our approach using simulations designed to resemble our Latin American cohort in terms 194 

of sample size, inferred admixture proportions, and the extent to which our surrogates match the 195 

true admixing sources (see Methods). At a false-positive rate of 5×10-5, these simulations indicate 196 

we have ~50-90% power to detect selection for scenario (i) (i.e., post-admixture selection) with 197 

selection strength (s) of 1.15-1.20 per generation in homozygotes carrying two copies of the 198 

selected allele, and selection occurring over 12 generations under various modes of selection 199 

(additive, dominant, multiplicative, recessive) (fig. 2a, supplementary fig. S1). For scenario (ii), in 200 

the case of selection occurring in the Native American source, power depends on the overall amount 201 

of Native American ancestry (fig. 2a). As an example, Brazil-like simulations (<15% average 202 

Native American ancestry) show little power, Colombia-like simulations (~30% average Native 203 

American ancestry) typically exhibit >50% power, and other simulated populations (~50–70% 204 

average Native American ancestry) exhibit >75% power under scenario (ii) assuming s=1.1 per 205 

generation over 50 generations, with similar power if instead s~1.025 over 150 generations 206 

(supplementary fig S2). Detecting selection occurring in the European source depends on the 207 

overall amount of European ancestry in a similar manner (e.g., fig. 2a, supplementary fig. S3). For 208 

SNPs where we detect selection, we mis-classify the type of selection ≤2% of the time, e.g., 209 

concluding post-admixture selection when the truth is selection in the Native American source ~1% 210 

of the time across all selection coefficients (fig. 2b). However, our approach often fails to classify 211 

selection scenarios unless selection strengths are large (e.g., s>1.1).  212 

 213 

Applying AdaptMix to the five Latin American cohorts of CANDELA 214 

We divided Latin Americans into five cohorts based on country of origin: Brazil (n=190), Chile 215 

(n=896), Colombia (n=1125) Mexico (n=773), and Peru (n=834), using individuals sampled as part 216 

of the CANDELA Consortium (Ruiz-Linares et al. 2014), testing each cohort for selection 217 

separately (supplementary fig. S4). Analyzing each cohort by country of origin results in a higher 218 

number of individuals, and thus increases the statistical power to detect selection. As demonstrated 219 

in Chacon-Duque et al (2018), however, there is notable population sub-structure within each 220 

country. To test for robustness of our selection signals to this sub-structure, we supplemented each 221 

of these analyses by testing subsets of individuals within a country based on their inferred ancestry 222 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.467418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.467418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

matching to Native American reference groups from Chacon-Duque et al. (2018). This gave six 223 

additional tested groups with sufficient ancestry represented: ‘Mapuche’ (n=434) in Chile, ‘Chibcha 224 

Paez’ (n=200) in Colombia, ‘Nahua’ (n=466) and ‘South Mexico’ (n=78) in Mexico, and ‘Andes 225 

Piedmont’ (n=195) and ‘Quechua’ (n=147) in Peru (supplementary fig. S5). To infer the proportion 226 

of African, European, and Native American ancestry in each Latin American, we applied 227 

unsupervised ADMIXTURE with K=3 clusters jointly to all CANDELA individuals and 553 Native 228 

American, Iberian, and West African reference individuals (fig. 1a).  229 

Note that the choice of surrogate populations defines the selection test between each surrogate and 230 

its corresponding ancestral source in scenario (ii). In this way, our test acts as an analogue to FST 231 

comparing two populations, but while accounting for admixture in one of the populations. As an 232 

illustration, we tested the Brazilian cohort for selection using northwest Europeans from England 233 

and Scotland (GBR) from the 1000 Genomes Project (1KGP) (The 1000 Genomes Project 234 

Consortium 2015) as a surrogate for the Brazilian cohort's European ancestry source 235 

(supplementary fig. S6). Given the majority (~80%) of ancestry in the Brazilian cohort is related to 236 

Iberian Europeans, this test is most-powered to detect selection acting along the branch separating 237 

present-day northwest Europeans and descendants of Iberians who traveled to Brazil post-238 

Columbus. In this analysis, we infer strongest signals of selection at the HERC2/OCA2 and 239 

LCT/MCM6 genes. This replicates previously reported selection signals when comparing northwest 240 

Europeans to present-day Iberians (Poulter et al. 2003; Bersaglieri et al. 2004), and likely indicates 241 

selection for lighter skin pigmentation and lactase persistence in northwest Europeans that is 242 

unrelated to any selection in the Americas. As another example, we also tested each Latin American 243 

cohort separately while using Han Chinese from Beijing (CHB) from the 1KGP as a surrogate for 244 

Native American ancestry (supplementary fig. S7). In this analysis, SNPs that follow model (ii) 245 

indicate selection along the branch separating present-day Han Chinese and Native American 246 

populations. For this test, we find the strongest signals of selection at previously reported selected 247 

genes in East Asians, including those related to alcohol metabolism such as ADH7 and ADH1B 248 

(Galinsky et al. 2016; Gu et al. 2018) that both are classified as selection under model (ii). The 249 

strongest overall signal in this analysis overlapped the POU2F3 gene, implicated in the regulation 250 

of viral transcription, keratinocyte differentiation and other cellular events, which has been reported 251 

to be under selection in Native American populations from throughout the Americas (Amorim et al. 252 

2017).  253 

For our main analyses, we use 205 Iberians (from 1KGP and Chacon-Duque et al. (2018)) to 254 

represent European ancestry surrogates. Therefore, given the likely short split time between present-255 

day Iberians and Europeans that migrated to the Americas during the colonial era, we are 256 

underpowered to detect selection in the European source only (see simulations). We use 206 West 257 
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Africans from the 1KGP to represent the African ancestry source, which has been reported as a 258 

good proxy to the African genetic sources (from Chacon-Duque et al. (2018)). For this reason, we 259 

should similarly have low power to find selection occurring only in the African source/surrogate. At 260 

any rate we do not test for selection related to African ancestry, because the Latin American cohort 261 

here have ~6% African ancestry on average, limiting power further. We combined 142 individuals 262 

with <1% non-Native American inferred ancestry from 19 Native American groups (supplementary 263 

table S1) to represent the Native American surrogate. By using individuals sampled from 264 

geographically spread Native American groups as the Native American ancestry surrogate, we aim 265 

to identify regional selection signals experienced by some Native American groups but not others. 266 

We also expect to have the highest power when testing for selection type (ii) in Native Americans, 267 

as there is likely to be the most time separating this ‘average’ Native American surrogate and the 268 

admixing source of each regional Latin American cohort. To avoid confounding our inference, we 269 

excluded individuals with >1% inferred ancestry matching to surrogates other than Native 270 

Americans, Iberian Europeans, and West Africans using SOURCEFIND (Chacon-Duque et al. 271 

2018). Also, since the time since admixture among these groups is relatively short in the 272 

CANDELA cohort (likely <15 generations ago), detecting selection post-admixture can only 273 

identify relatively strong selection signals (see simulations). 274 

 275 

AdaptMix identifies 47 regions of putative selection 276 

For each Latin American cohort, we considered SNPs under selection as those having P-values less 277 

than the 5×10-5 false-positive threshold in the population-matched neutral simulations, which 278 

corresponds to a model-based P-value of 6.75×10-6–1.07×10-7 (supplementary table S2). For Chile, 279 

Colombia, Mexico and Peru, we report loci that pass these criteria both in the analysis of all 280 

individuals from that country and in at least one of three alternative analyses for that country that 281 

are designed to test for robustness to latent population structure (supplementary fig. S8). The first of 282 

these alternative analyses consisted of identifying signals of selection using AdaptMix on each of 283 

the six Native American subsets defined above (e.g., in either the ‘Andes Piedmont’ or ‘Quechua’ 284 

subset when testing for selection in Peruvians) (supplementary table S3). The other two alternative 285 

analyses were based on LAI. In particular we used ELAI (Guan 2014) to assign each genomic 286 

region of an admixed individual to a Native American, European, or African ancestral source. For 287 

the second alternative analysis, designed to test for post-admixture selection, we assessed whether 288 

the proportion of ancestry inferred from one of these three sources in a local region deviated 289 

substantially from the genome-wide average (supplementary table S4). For the third alternative 290 

analysis, designed to test for selection in the Native American source, we instead used the 291 

Population Branch Statistic (PBS) (Yi et al. 2010) to test for selection in one of the six Native 292 
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American subset groups defined above, using allele frequencies computed from LAI-inferred 293 

Native American segments from the subset of individuals representing that Native American group 294 

(see Methods) (supplementary fig. S5 and supplementary table S5).  295 

 296 

Overall, we find 51 candidate regions to have evidence of positive or purifying selection passing the 297 

criteria above, 47 of which target protein-coding genes (supplementary table S6 and fig. 3). Four of 298 

these 47 candidate gene regions contain at least one SNP exhibiting strong evidence (likelihood 299 

ratio >1,000) of selection affecting all admixed individuals regardless of ancestry proportions, 300 

which we assume reflects post-admixture selection. Furthermore, 18 of these 47 regions exhibit 301 

strong evidence of selection containing at least one SNP (likelihood ratio >1,000) in the Native 302 

American source only. The 25 remaining candidate gene regions are unclassified into either type of 303 

selection (likelihood ratio ≤1,000).  304 

 305 

To prioritize candidate casual genes, we annotated the protein-coding gene that had the highest 306 

overall Variant-to-Gene (V2G) scores (Ghoussaini et al. 2021) for the SNPs showing the strongest 307 

evidence of selection in each candidate gene region. The overall V2G score aggregates 308 

differentially weighted evidence of variant-gene association from several sources, including cis-309 

QTL data, chromatin interaction experiments, in silico function predictions (e.g., Variant Effect 310 

Predictor from Ensembl), and distance between the variant and each gene’s canonical transcription 311 

starting site. For each of these candidate genes we then annotated the phenotype with the highest 312 

overall association score based on the Open Targets Platform (Koscielny et al. 2017). 313 

 314 

While most of these associated phenotypes represent genetic disorders, syndromes, or different 315 

types of measurements (medically or non-medically-related), many are also related to immune 316 

response and diet – two major selective forces that shape the human genome (Karlsson et al. 2014; 317 

Fan et al. 2016). We therefore organize the description of our candidate selection signals into two 318 

main sections below that cover only these two features, with signals of all other hits in 319 

supplementary table S6. For brevity, below we only highlight putatively selected regions where at 320 

least one significant SNP had an associated GWAS or eQTL signal. For our significant SNPs 321 

related to immune-response genes, GWAS signals included SNPs associated to white blood cell 322 

counts in a large multi-continental cohort (including Latin American individuals) (Chen et al. 323 

2020), and eQTL signals included cis-associated SNPs to gene expression in 15 immune-related cell 324 

types from the DICE project (Schmiedel et al. 2018). For our significant SNPs related to diet, 325 

GWAS signals included metabolic, anthropometric, and lipid levels from the UK Biobank cohort 326 
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(Loh et al. 2018), and eQTL signals included cis-associated SNPs to gene expression in adipose, 327 

muscle, and liver tissue from the GTEx Project (Lonsdale et al. 2013).  328 

 329 

Signals at immune-related genes 330 

Fifteen of the 47 candidate gene regions contained at least one protein-coding gene either related to 331 

the development or regulation of the immune system or that has been previously associated to the 332 

quantification of immune cell types, susceptibility progression to infectious diseases, or 333 

autoimmune disorders. For example, we replicate a well-known signal encompassing several 334 

immune-related genes at 6p21 that are part of the human leukocyte antigen (HLA) system (fig. 4 335 

and supplementary fig. S9-S11). These included SNPs (AdaptMix P-value<5.00×10-7) near several 336 

MHC class I genes (HLA-G, HLA-H, HLA-A, and HLA-J) in each of the Chilean, Colombian, 337 

Mexican and Peruvian cohorts, with the Colombian cohort containing several SNPs classified as 338 

being selected post-admixture (likelihood ratio>1,000). Encouragingly, we inferred African 339 

ancestry enrichment (Z-score>2.5) in each cohort ~60kb downstream from our top AdaptMix 340 

signals using LAI, with maximum Z-score>9 (one-sided P-value<4.09×10-21) in the Chilean cohort 341 

(fig. 4). In addition, other signals were inferred upstream in the Chilean cohort at a 5’ UTR SNP of 342 

the ZBTB12 gene (rs2844455, AdaptMix P-value=5.45×10-8), the Mexican cohort at an intronic 343 

SNP of HLA-DMA (rs28724903, AdaptMix P-value=3.87×10-8), and the Peruvian cohort at an 344 

intronic SNP of the MHC class III gene STK19 (rs6941112, AdaptMix P-value=7.57×10-9). Many 345 

of these HLA genes have been previously characterized as subject to be under selection post-346 

admixture in different Latin American populations by showing an excess of African ancestry at the 347 

HLA locus (Tang et al. 2007; Basu et al. 2008; Ettinger et al. 2009; Guan 2014; Rishishwar et al. 348 

2015; Deng et al. 2016; Zhou et al. 2016; Norris et al. 2020; Vicuna et al. 2020). 349 

 350 

In addition to HLA, we infer previously unreported selection signals in four candidate gene regions 351 

that each harbor genes with well-established roles in the immune system, with each region 352 

containing at least one SNP significantly associated (P-value<5×10-8) to white blood cell counts or 353 

the expression of an immune-related gene in immune cells (P-value<10-5) (see Methods). Among 354 

these, one signal at 1p13 in the Chilean cohort encompasses the CD101 gene (fig. 5a), which 355 

belongs to a family of cell-surface immunoglobulins superfamily proteins and plays a role as an 356 

inhibitor of T-cell proliferation (Soares et al. 1998; Bouloc et al. 2000). Within this region five 357 

SNPs are classified as being selected post-admixture and show also an increase of LAI-inferred 358 

European ancestry (maximum Z-score=3.40, one-sided P-value=3.36×10-4). Strikingly, the region 359 

contains a synonymous SNP (Ile588, CADD score of 9.23) (rs3736907, AdaptMix P-360 

value=1.05×10-9) that strongly affects CD101 expression in T cells (eQTL P-value < 2.42×10-10) 361 
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and is associated with neutrophil (GWAS P-value=2.08×10-10) and total white cell count (GWAS 362 

P-value=3.61×10-9) (fig. 5a). 363 

 364 

The second signal, at 18p11 also in Chileans, encompasses the PTPN2 gene, a tyrosine-specific 365 

phosphatase involved in the Janus kinase (JAK)-signal transducer and activator of transcription 366 

(STAT) signaling pathway (fig. 5b). The JAK-STAT pathway has an important role in the control 367 

of immune responses, and dysregulation of this pathway is associated with various immune 368 

disorders (Shuai and Liu 2003). Several SNPs with low AdaptMix P-values (P-value<1.69×10-7) in 369 

the 18p11 region are also associated with eosinophil counts (GWAS P-value<1.13×10-10) and the 370 

expression of PTPN2 in natural killer (NK) cells (eQTL P-value<1.14×10-9) (fig. 5b). 371 

 372 

The other two novel signals, both in the Peruvian cohort, are consistent with selection in Native 373 

Americans only (likelihood-ratio>1,000). The first, at 17q25, contains the CD300LF gene that 374 

encodes for a membrane glycoprotein that contains an immunoglobulin domain, and which plays an 375 

important role in the maintenance of immune homeostasis by promoting macrophage-mediated 376 

efferocytosis (Borrego 2013). Notably, a 3’UTR SNP (rs9913698, AdaptMix P-value=3.11×10-9) is 377 

strongly associated with monocyte count (GWAS P-value=1.00×10-33), total white cell count 378 

(GWAS P-value=5.96×10-24), lymphocyte count (GWAS P-value=2.50×10-19), and neutrophil 379 

count (GWAS P-value=1.30×10-9) (supplementary fig. S12). The second signal is at 22q11 adjacent 380 

to the MIF gene (fig. 5c), which is implicated in macrophage function in host defense through the 381 

suppression of anti-inflammatory effects of glucocorticoids (Calandra and Roger 2003). Variants 382 

within MIF have been recently associated to rheumatoid arthritis in southern Mexican patients 383 

(Santoscoy‐Ascencio et al. 2020). The SNP rs2330635 (AdaptMix P-value=7.06×10-8) is strongly 384 

associated to the expression of MIF in T-cells (eQTL P-value<8.63×10-5) and NK cells (eQTL P-385 

value=5.77×10-9) and is also marginally associated to neutrophil counts (GWAS P-value=2.46×10-386 

6) (fig. 5c). 387 

 388 

Overall, these findings suggest that some of the most robust signals of adaptation in the Americas 389 

can be ascribed to immune-related selective pressures. These plausibly resulted from both the 390 

introduction of novel pathogens after European colonization and the endemic pathogens 391 

encountered by the first Native Americans during the initial peopling of the continent.  392 

 393 

Signals at genes related to diet 394 

Among the 47 candidate regions, nine regions contained at least one protein-coding gene potentially 395 

related to dietary practices through their association with metabolism-related phenotypes or 396 
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anthropometric-related measurements (supplementary table S6). Among these, we infer three 397 

previously unreported signals where at least one of the selected SNPs was associated to metabolic- 398 

or anthropometric-related phenotypes, or to the expression of the candidate gene in adipose, muscle, 399 

or liver tissue (see Methods). One of these three hits (rs4636058, AdaptMix P-value=5.70×10-10), at 400 

6p22 in the Chilean cohort, is classified as being selected post-admixture and shows an increase of 401 

LAI-inferred European ancestry (Z-score=3.78, one-sided P-value=7.82×10-4). It is located at 6q22 402 

and encompasses the SLC35F1 gene, whose function is not known, though several studies have 403 

associated this gene with different measurements of cardiac function (Hoffmann et al. 2017; Warren 404 

et al. 2017; Giri et al. 2019). Notably, SNP rs4636058 is marginally associated to cholesterol levels 405 

(UKBB GWAS P-value=3.8×10-4) and body fat percentage (UKBB GWAS P-value=4.29×10-4). 406 

Another of these three hits, at 1q31 in the Mexican cohort, is consistent with selection in Native 407 

Americans (likelihood-ratio>1,000) (fig. 6a). The 1q31 signal includes an intronic SNP (rs1171148, 408 

AdaptMix P-value=2.31×10-8) of BRINP3, a gene associated to body mass index in studies across 409 

different human groups (Pulit et al. 2019; Zhu et al. 2020). Within this region, various SNPs are 410 

associated to different metabolic-related phenotypes, including the SNP rs1171148 that is 411 

associated with hip circumference (UKBB GWAS P-value=4.96×10-8) and marginally associated 412 

with body mass index (UKBB GWAS P-value=5.51×10-5) (fig. 6a). 413 

 414 

Finally, the third hit (rs5030938, AdaptMix P-value= 3.79×10-15), which had the highest overall 415 

AdaptMix score, is inferred in the Peruvian cohort at 10q22 and indicates selection in Native 416 

Americans (likelihood-ratio>1,000) (fig. 6b). This SNP is associated with the expression of HKDC1 417 

in liver (eQTL P-value=2.19×10-5), adipose visceral (eQTL P-value=1.46×10-5), and adipose 418 

subcutaneous tissue (eQTL P-value=1.36×10-4) (fig. 6b). HKDC1 encodes and hexokinase that 419 

catalyzes the rate-limiting and first obligatory step of glucose metabolism (Ludvik et al. 2016), and 420 

several studies have associated variants within this gene with glucose levels in pregnant women 421 

(Hayes et al. 2013; Guo et al. 2015; Kanthimathi et al. 2016; Tan et al. 2019) and with weight at 422 

birth (Warrington et al. 2019). 423 

 424 

Overall, these results support previous hypothesis that genes related to energy metabolism were 425 

probably critical in the establishment of stable human populations in distinct ecoregions (Hancock 426 

et al. 2010), including those of the Americas (Amorim et al. 2017; Reynolds et al. 2019). 427 

 428 

Discussion 429 

 430 

Analytical considerations 431 
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Here we present AdaptMix, a novel statistical model that identifies loci under selection in admixed 432 

populations. Our model is based on the principle that allele frequencies in an admixed population 433 

can be modeled as a linear combination of the allele frequencies in the ancestral populations 434 

proportional to their admixing contributions, and that deviations from the expectation can be a 435 

product of selection. This selection test is related to the work of Long (1991) and Mathieson et al. 436 

(2015). One difference is that our approach directly infers and models the variance of the predicted 437 

allele frequencies in the admixed population given the set of surrogates used for ancestral sources. 438 

This parameter can help control for large deviations in allele frequency arising solely from genetic 439 

drift experienced in the admixed population (Long 1991; Bhatia et al. 2014) and/or from using 440 

inaccurate proxies for one or more of the source populations. In some applications here, e.g. the 441 

Brazilian cohort, AdaptMix gives P-values with a median near 0.5 as expected under the null 442 

hypothesis of neutrality, indicating a correction approach such as genomic control may not be 443 

necessary as in Mathieson et al. (2015) (supplementary fig. S13). However, simulations under 444 

neutrality that follow a slightly different model than our inference approach (see Methods), shows 445 

AdaptMix gives both an excess of high and low P-values relative to the uniform distribution 446 

expected under neutrality (supplementary fig. S14). This suggests our P-values are not well-447 

calibrated, perhaps reflecting deviations from the underlying model and necessitating caution when 448 

choosing thresholds for significance. We thus based our significance thresholds on neutral 449 

simulations tailored to each cohort, and focus only on the strongest association signals that resulted 450 

in low false-positive rates based on simulated neutral SNPs. However, we caution that necessarily 451 

simulations are over-simplifications of complex latent demographic processes, and more work is 452 

required to verify these signals. 453 

 454 

Another important contribution of our test is that it can infer whether selection disproportionately 455 

affects one source/surrogate pairing or affects all ancestry backgrounds equally. We assume 456 

selection affecting all ancestry backgrounds indicates selection occurring post-admixture, which is 457 

more parsimonious than an alternative explanation of independent selection events differentiating 458 

allele frequencies between each admixing source and its surrogate. For inferred selection in a 459 

source/surrogate pairing, this can reflect selection occurring in that source and/or its surrogate, 460 

possibly even following the admixture event. Post-admixture selection affecting only one source 461 

may be possible in cases of selection only occurring in a particular environment that is correlated 462 

with admixture fractions. For example, selection we detect to occur in Native Americans may be 463 

attributable to Europeans introducing a new environmental pressure (e.g. infectious disease) that 464 

disproportionately affected fitness in indigenous Americans. However, the split time between the 465 

true Native American ancestral source and our Native American surrogate is likely much longer 466 
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than the time since colonial era admixture, suggesting selection pre-admixture as a more plausible 467 

explanation given the longer time to act. Supporting this, our inferred selection coefficients (which 468 

are summed over time) in cases where we conclude selection in Native Americans are typically 469 

greater than 2 (supplementary table S6). If selection had occurred post-admixture continuously over 470 

the last 12 generations (corresponding to an admixture date of ~1650CE), this value approximately 471 

corresponds to a per generation selection coefficient ~0.16, which is strong relative to previous 472 

reports of recent selection in human populations (e.g. Hamid et al. (2021)). In contrast, our four 473 

signals concluding post-admixture selection infer a per generation selection coefficient <0.1, which 474 

falls more in line with previous inference of selection strengths.  475 

 476 

For 18 genomic regions where we conclude selection in the Native American source 477 

(supplementary table S6), it is possible this is capturing selection in (some subset of) groups that 478 

comprise the Native American surrogate group we use here, rather than in the (more localized) 479 

Native American source of the admixed population. The lack of overlap in selection signals when 480 

analysing the five CANDELA cohorts, and lack of concordance of our signals with those from PBS 481 

testing for selection in this combined Native American surrogate (supplementary fig. S15), suggests 482 

our signals are not being driven by selection in this combined population in practice. Furthermore, 483 

when using PBS to test for selection in LAI-inferred Native American segments from individuals 484 

with high degrees of ancestry recently related to the tested Native American source, an analysis that 485 

does not use the combined Native American surrogate, PBS scores for SNPs in 6 of these 18 486 

regions fall into the top 99.99th percentile (supplementary fig. S16-21), with the remaining 13 487 

regions containing SNPs in the top 99th percentile. However, relative to our approach, LAI-based 488 

inference (e.g., Avila-Arcos et al. (2020)) may be more robust to using combined data from 489 

multiple populations to represent one surrogate, since it only requires matching to a subset of 490 

individual’s haplotype patterns in the reference panel. 491 

 492 

In general our approach has decreased power to distinguish whether selection occurred post-493 

admixture versus in one of the ancestral sources, if reference population allele frequencies are very 494 

different and selection is weak (fig. 1c). Inferring excess ancestry matching using LAI would likely 495 

better capture post-admixture selection in such cases, e.g. a scenario where one population that is 496 

fixed (or nearly-fixed) for the protective allele intermixes with a population nearly-fixed for the 497 

non-protective allele, with the admixed population subsequently undergoing selection. An example 498 

of this is a recently reported excess of African ancestry, likely attributable to post-admixture 499 

selection, on the Duffy-null allele in inhabitants of Santiago Island in Cape Verde (Hamid et al. 500 

2021). However, our test to detect whether any type of selection occurred should not be affected by 501 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.467418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.467418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

these scenarios. In addition, our approach may identify post-admixture selection in scenarios that 502 

excess-ancestry LAI-based would miss by design, such as cases where the selected allele is at a 503 

similar frequency in all reference populations. Perhaps the most important contrast to LAI and other 504 

approaches detecting selection in admixed populations (Cheng et al. 2021), is that in principle our 505 

approach can be applied to populations that descend from the mixture of genetically similar groups, 506 

e.g. if using haplotype-based approaches (e.g. SOURCEFIND) to infer ancestry proportions. Future 507 

work should assess the power of this technique under such admixture settings. 508 

 509 

While our method assumes a single pulse of admixture, theoretically our ability to diagnose and 510 

classify selection occurring in only one source should not be affected by multiple instances of (or 511 

continuous) admixture from that or any other source. This is because the signal of allele frequency 512 

deviation due to selection in such cases is entirely determined by the amount of ancestry inherited 513 

from that source, and not the number of admixture pulses. In contrast, if an admixed population 514 

experiences selection and then receives new migrants from one of the original admixing sources 515 

that are unaffected by this selection, e.g. later European migrants to the Americas, in theory this 516 

may attenuate our ability to determine that selection occurred post-admixture. However, in a simple 517 

scenario of one such additional admixture pulse, contributing 10-50% of DNA, the correct post-518 

admixture selection theoretical model fits as well or better to the theoretical truth than does the 519 

incorrect model concluding selection in the source that did not contribute new migrants 520 

(supplementary fig. S22). 521 

 522 

As noted above, and consistent with other tests comparing populations (Mathieson 2020), the 523 

choice of surrogate group can make a difference in the inferred selection signals. For example, our 524 

largest signal of Native American selection, at 10q22 and most strongly signalled in the ‘Andes 525 

Piedmont’ Peruvian subgroup, disappears if replacing the ‘combined Native American’ surrogate 526 

group with Han Chinese (CHB from the 1KGP) (supplementary fig. S7). In this case, the frequency 527 

of the putatively selected allele (rs5030938) is 67% in LAI-inferred Native haplotypes in the 528 

Peruvian ‘Andes Piedmont’ subgroup, which is notably higher than the 38-54% observed in LAI-529 

inferred Native American haplotypes in four non-Peruvian sub-groups, and thus consistent with 530 

selection (supplementary table S7). However, it is lower than that of CHB (~76%,), which explains 531 

the lack of signal when using CHB as a surrogate. The frequency in Yakut, a Siberian group that 532 

perhaps better represents ancestral Native Americans than CHB does (Wang et al. 2007), is closer 533 

to that of frequency estimates across non-Peruvian Native American groups (0.46-0.5). In general, 534 

there is a trade-off between using surrogates more distantly related to the source, which may 535 

decrease power to find regional adaptation signals, versus choosing a more closely related 536 
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surrogate, which may also decrease power by masking adaptation signatures that it shares with the 537 

target source (e.g. using Iberians as a surrogate for European ancestry of Latin Americans). Our 538 

inferred variance parameter can be used to investigate how well a given surrogate captures genetic 539 

variation in the target population, with for example the inferred variance using CHB as a surrogate 540 

~5-10-fold higher relative to using the combined Native American surrogate. 541 

 542 

Selection signals detected in the CANDELA cohort 543 

The candidate genes we infer to be affected by selection in Latin Americans and their Native 544 

American ancestors are best viewed in the context of other previously reported signals. Reynolds et 545 

al. (2019) recently performed a selection scan in three Native North American populations and 546 

identified some of the strongest signals at immune-related genes including the interleukin 1 receptor 547 

Type 1 (IL1R1) gene in a sample from several closely related communities in the southeastern 548 

United States, and the mucin 19 (MUC19) gene in a central Mexican population. We do not 549 

replicate the MUC19 signal in the CANDELA Mexican cohort, which could indicate that the Native 550 

American component in this cohort is not closely related to that of the central Mexican Native 551 

American group. Nonetheless, we found some of our strongest signals of selection at several loci 552 

encompassing genes involved in the immune response, including CD300LF and MIF, detected as 553 

being selected in the Native American ancestors of Peruvians. Interestingly, CD300LF promotes 554 

macrophage-mediated efferocytosis, while MIF play a role regulating macrophage function through 555 

the suppression of glucocorticoids. These observations suggest that these two genes might have 556 

perhaps evolved in a coordinated manner, possibly due to their phagocytic-related role against the 557 

novel pathogens encountered in the Americas.  558 

 559 

Regarding signals of selection post-admixture, several studies have consistently shown adaptive 560 

signals in different Latin American populations at HLA by showing an excess of matching to 561 

African reference haplotypes using LAI (Tang et al. 2007; Basu et al. 2008; Ettinger et al. 2009; 562 

Guan 2014; Rishishwar et al. 2015; Deng et al. 2016; Zhou et al. 2016; Norris et al. 2020; Vicuna et 563 

al. 2020). Given that African ancestry was enriched at this region, the authors suggested that certain 564 

African alleles could have conferred a selective advantage to certain infectious diseases most likely 565 

brought by Europeans. While AdaptMix is only able to classify selection in one cohort (Colombia) 566 

out of our four HLA signals, we also replicated this excess of African ancestry in each of the 567 

CANDELA cohorts (supplementary fig. S9). There is some debate as to whether these signals are 568 

genuine or attributable to confounders such as inaccurate LAI inference (Pasaniuc et al. 2013). To 569 

illustrate the validity of these concerns, people with entirely Northwest European ancestry from 570 

Britain infer excess ancestry related to Africa in HLA, which – though perhaps influenced by 571 
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genuine selection at HLA in Northwest Europeans – presumably does not reflect genuine recent 572 

African ancestry (supplementary fig. S23). Instead this is more likely attributable to the relatively 573 

high degree of genetic diversity in HLA mimicking African genetic diversity, illustrating how these 574 

LAI-based tests can give false-positive signals when testing for post-admixture selection. This may 575 

explain why AdaptMix does not replicate the moderate amount of excess African ancestry inferred 576 

by LAI at HLA in the Brazilian cohort (supplementary fig. S9), which is predominantly of 577 

European ancestry. Indeed regions under selection in admixed populations may be particularly 578 

difficult to classify accurately using LAI, e.g. with the HLA region here having the lowest overall 579 

LAI classification probability (supplementary fig. S24), especially in cases where the reference 580 

population have not experienced similar selection and hence may have poorly matching genetic 581 

variation patterns. As our approach does not require LAI, it is robust to these issues. While our 582 

model is not able to classify selection as post-admixture at most of our HLA signals, allele 583 

frequency patterns in the admixed cohorts are consistent with post-admixture selection and often 584 

show allele frequencies drifting away from those expected under our neutral model and towards 585 

those of the African or European reference population (supplementary fig. S25). This is most 586 

evident in the Colombian cohort, consistent with Africans contributing protective alleles as 587 

previously suggested (Tang et al. 2007; Basu et al. 2008; Ettinger et al. 2009; Guan 2014; 588 

Rishishwar et al. 2015; Deng et al. 2016; Zhou et al. 2016; Norris et al. 2020; Vicuna et al. 2020). 589 

In addition to HLA, we also identified a novel post-admixture selection signal in the Chilean cohort 590 

that was accompanied by a significant increase of European ancestry at the CD101 locus, again, 591 

suggesting that protective alleles from Europeans might have also been adaptive to counter Old 592 

World-borne diseases brought to the Americas.  593 

 594 

The signals encompassing genes related to metabolic and anthropometric-related phenotypes are 595 

consistent with novel dietary practices in the Americas driving adaptation, with many signals with 596 

an effect on relevant phenotypes and/or tissues, classified as being selected in the Native American 597 

source. Previous studies have shown evidence of adaptation at genes related to metabolic-related 598 

phenotypes and attributed the adaptation to dietary pressures in Native Americans. Avila-Arcos et 599 

al. (2020) recently reported strong signals of selection in the Mexican Huichol at several genes 600 

associated to lipid metabolism, including APOA5 and ABCG5. We do not replicate these signals in 601 

the CANDELA Mexican cohort, which could indicate that the Native American component in this 602 

cohort is not closely related to that of the Huichol. The signals at APOA5 and ABCG5 are in line 603 

with a previous finding of a strong selection signal at another ATP-binding cassette transporter A1 604 

(ABCA1) gene that has been associated with low high-density lipoprotein cholesterol in Latin 605 

Americans (Villarreal-Molina et al. 2008; Acuña-Alonzo et al. 2010). As the ABCA1 protein 606 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.467418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.467418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

carrying the putative selected allele shows a decrease cholesterol efflux, the authors suggest that 607 

this variant could have favored intracellular cholesterol and energy storage, which in turn might 608 

have beneficially influenced the ability to accommodate fluctuations in energy supply during severe 609 

famines and during the regulation of reproductive function (Acuña-Alonzo et al. 2010). Lindo et al. 610 

(2018) used a genomic transect of Andean highlanders from northern Peru, and found the strongest 611 

signals of selection at MGAM, a gene related to starch digestion. The authors attributed this finding 612 

to a dietary-related selective pressure perhaps brought by the transition to agriculture in this region. 613 

AdaptMix shows evidence in the CANDELA Peruvian cohort within MGAM (rs7810984, 614 

AdaptMix P-value=1.79×10-8, above 99.9th percentile) only when using CHB as a surrogate for 615 

Native American ancestry. This again illustrates how the choice of surrogate populations defines the 616 

selection test between each surrogate and its corresponding ancestral source. It is possible that by 617 

including Andean Native Americans in our Native American source population (supplementary 618 

table S1) we are affecting the power to detect selection in the Andean Native American ancestors of 619 

the CANDELA Peruvian cohort, analogous to how Lindo et al. (2018) no longer detect selection at 620 

MGAM if using PBS to compare ancient and present-day (Aymara) Andean groups.  621 

 622 

Studies have also reported signals of selection in Native Americans groups shared with Siberian 623 

populations, which the authors interpreted as an adaptation to polyunsaturated-rich diets prior or 624 

close to the peopling of the Americas, likely in the Arctic Beringia. These included a signal 625 

overlapping the WARS2 and TBX15 genes, previously associated to body fat distribution and 626 

adipose tissue differentiation (Racimo et al. 2017), and the fatty acid desaturase (FADS) gene 627 

cluster that modulates the manufacture of polyunsaturated fatty acids (Amorim et al. 2017; Harris et 628 

al. 2019) (but see Mathieson (2020) for an alternative explanation of the FADS signal). Again, we 629 

inferred moderate selection evidence at these regions in the CANDELA Peruvian cohort only when 630 

using CHB as surrogate for Native American ancestry (SNP rs2361028 near TBX15, AdaptMix P-631 

value=1.8×10-7, above 99.5th percentile; SNP rs174576 within FADS2, AdaptMix P-value=3.8×10-632 

8, above 99.5th percentile). It is thus tempting to suggest that the three novel signals of selection 633 

AdaptMix classifies as being under selection in Native Americans might be related to dietary 634 

pressures experienced prior or during the peopling of the Americas (e.g., the BRINP3 signal 635 

detected in Mexicans), or as a product for a greater reliance of domesticated crops including 636 

potatoes (3400–1,600 CE) (Rumold and Aldenderfer 2016) (e.g., the HKDC1 signal detected in 637 

Peruvians). However, it is important to note that other factors may also be attributable for some of 638 

these selection signals.  639 

 640 

Of potential adaptive interest is the STOX1 gene detected in the Peruvian cohort close to our highest 641 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.467418doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.467418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

overall selection signal within HKDC1 at 10q22 (fig. 6b). Mutations within STOX1 have been 642 

associated to preeclampsia (Van Dijk et al. 2005; van Dijk and Oudejans 2011), a pathology of 643 

pregnancy characterized by high blood pressure and signs of damage to other organ system that can 644 

be lethal for the mother and for the fetus (Sibai 2003). Interestingly, in the single linkage study on 645 

preeclampsia conducted in Andean Peruvian families to date, SNPs within STOX1 show marginal 646 

association (P-value=0.004678) (supplementary fig. S26) (Badillo Rivera and Nieves Colón et al. 647 

2021). Given that high altitude is linked to an increased incidence of preeclampsia (Zamudio 2007), 648 

it is possible that natural selection has acted on genes related to this condition. Furthermore, the fact 649 

that variants within HKDC1 are associated with glucose levels in pregnant women (Hayes et al. 650 

2013; Guo et al. 2015; Kanthimathi et al. 2016; Tan et al. 2019) and considering the relationship 651 

between abnormal glucose levels and preeclampsia (Joffe et al. 1998; Weissgerber and Mudd 652 

2015), it is also possible that natural selection has targeted variants at HKDC1 due to its role in 653 

glucose metabolism.  654 

 655 

Lastly, other environmental factors may also be attributable for some of these selection signals, 656 

such as infectious diseases. There is growing evidence of a link between metabolic diseases and 657 

innate immunity or inflammation (Pickup and Crook 1998; Kominsky et al. 2010; Lumeng and 658 

Saltiel 2011; Robbins et al. 2014). For instance, it has been shown that cholesterol plays a key role 659 

in various infectious processes such as the entry and replication of flaviviral infection (Osuna-660 

Ramos et al. 2018). Additional studies in indigenous American populations will be needed to 661 

disentangle the putative selective pressures at these loci. 662 

 663 

Conclusion 664 

 665 

We have presented a novel allele frequency-based method that identifies loci under selection in 666 

admixed populations, while determining whether the selection affected all ancestral sources equally, 667 

indicating selection following admixture, or in only one of the sources. The novel candidate genes 668 

under selection provide new insights into the adaptive traits necessary for the early habitation of the 669 

Americas and to respond to the challenge of infectious pathogens corresponding to European 670 

contact. Future functional investigations will allow a more detailed understanding of the 671 

consequences of selective pressures experienced in the American continent, including its effect on 672 

present-day health outcomes.  673 
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Materials and Methods 674 

 675 

Genomic datasets 676 

The Latin American individual samples analyzed here were part of CANDELA Consortium (Ruiz-677 

Linares et al. 2014). The CANDELA Consortium samples (http://www.ucl.ac.uk/silva/candela) 678 

have been described in detail in previous publications (Ruiz Linares et al 2014; Chacon-Duque et 679 

al., 2018). These data include a total of 6,630 volunteers from five Latin American countries 680 

(Brazil, Chile, Colombia, Mexico and Peru). This dataset was genotyped on the Illumina 681 

HumanOmniExpress chip platform including 730,525 SNPs. We also collated reference populations 682 

from regions that have contributed to the admixture in Latin America. For Native American 683 

samples we used individuals previously genotyped by Chacon-Duque et al. (2018). This dataset 684 

compromises 19 Native American populations from throughout the Americas with genotype data 685 

(supplementary table S1). For all the analyses described, we have only retained Native American 686 

individuals that showed more than 99% Native American ancestry as estimated by ADMIXTURE 687 

(see below). For European samples, we used genotype data from Portuguese and Spanish, 688 

individuals previously genotyped by Chacon-Duque et al. (2018) and Spanish (IBS; Iberian 689 

Population in Spain) from the 1000 Genomes Project study (The 1000 Genomes Project Consortium 690 

2015). For Sub-Saharan Africans, we used genotype data from Yoruba (YRI; Yoruba in Ibadan, 691 

Nigeria), and Luhya (LWK; Luhya in Webuye, Kenya) individuals from the 1KGP. The reference 692 

samples from Chacon-Duque et al. (2018) are described in more detail in the Supplementary Table 693 

1 from the mentioned publication. For some of our analysis we also included the 103 Han Chinese 694 

from Beijing (CHB) and 85 Europeans from England and Scotland (GBR) from the 1KGP as a 695 

surrogate for the Native American and European source, respectively. Genotype data of the 696 

individuals from the 1KGP was downloaded from the 1000 Genomes Project FTP site available at 697 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/.  698 

 699 

Data curation 700 

We used PLINK v1.9 (Chang et al. 2015) to exclude SNPs and individuals with more than 5% 701 

missing data or that showed evidence of genetic relatedness as in Chacon-Duque et al. (2018). Due 702 

to the admixed nature of the Latin American samples, there is an inflation in Hardy-Weinberg P-703 

values, and therefore we did not exclude SNPs based on Hardy-Weinberg deviation. After applying 704 

these filters, 625,787 autosomal SNPs and 7,986 individuals were retained for further analysis.  705 

 706 
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Selecting admixed Latin American and reference individuals 707 

In order to select admixed Latin American individuals (i.e. individuals with varying degrees of 708 

Native American, European and African ancestry), we conducted an unsupervised ADMIXTURE 709 

analysis at K=3 using a set of 103,426 LD-pruned SNPs including Native Americans, Iberian 710 

Europeans and West Africans. We then removed non-admixed Latin American individuals that we 711 

define as having less than 10% or more than 90% Native American genome-wide ancestry. To 712 

avoid confounding our selection inference due to underlying population structure, we further 713 

excluded individuals with >1% inferred ancestry matching to surrogates other than Native 714 

Americans, Iberian Europeans, and West Africans using SOURCEFIND estimates obtained for the 715 

same individuals in Chacon-Duque et al. (2018). After this filtering procedure, the five Latin 716 

American populations consisted of 190 Brazilians (BRA), 1125 Colombians (COL), 896 Chileans 717 

(CHL), 773 Mexicans (MEX) and 834 Peruvians (PER). From our Native American, European, and 718 

Sub-Saharan African reference populations, we also removed individuals that contained more than 719 

1% of ancestry from another group based on the ADMIXTURE analysis described above. After this 720 

extra filter our final reference dataset was composed of 142 Native Americans, 205 Europeans, and 721 

206 Sub-Saharan Africans.  722 

 723 

Change in allele frequency under Wright-Fisher with multiplicative model of selection 724 

Assuming a multiplicative model of selection and random mating, the frequency of the three 725 

genotypes in generation 1 at a biallelic locus with alleles A and a at frequencies 𝑝 and 1 −  𝑝, 726 

respectively, in the previous generation is: 727 

 728 𝐴𝐴 𝐴𝑎 𝑎𝑎 (1 + 𝑠1)2 𝑝2 𝑐1⁄  (1 + 𝑠1)2𝑝 (1 − 𝑝) 𝑐1⁄  (1 − 𝑝)2 𝑐1⁄  

 729 

where 𝑠1 ∈ [−1, ∞] is the selection coefficient in generation 1 and 𝑐1 = (1 + 𝑠1)2𝑝2 +730 (1 + 𝑠1)2𝑝(1 − 𝑝) + (1 − 𝑝)2. Note that each copy of the A allele changes fitness by a factor of 731 (1 + 𝑠1).  732 

 733 

More generally, the allele frequency 𝑝𝑔 of allele 𝐴 in generation 𝑔 is: 734 

 735 𝑝𝑔 = (1 + 𝑠)𝑝1 + 𝑠𝑝 , (1) 

 736 

where 737 
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  738 𝑠 = [∑ 𝑠𝑖𝑔𝑖=1 ] + [∑ (𝑠𝑗 ∑ 𝑠𝑖𝑔𝑖=𝑗+1 )𝑔−1𝑗=1 ] + ∑ ∏ ≈𝑖𝑔𝑖=3 ∑ 𝑠𝑖𝑔𝑖=1 , (2) 

with 𝑠𝑖 the selection coefficient at generation 𝑖 and 𝛱𝑖  the sum of the products of all (𝑔𝑖 ) 739 

combinations of {𝑠1, … , 𝑠𝑖} values. The approximation in equation (4) assumes the 𝑠𝑖 are small, 740 

which should be a reasonable approximation based on e.g. estimated selection coefficients in 741 

humans. 742 

 743 

Testing for evidence of selection at a SNP 744 

To assess the evidence of selection at a SNP, we employ a model inspired by that used in Mathieson 745 

et al. (2015) and based on the Balding-Nichols formulation (Balding and Nichols 1995). In 746 

particular for the allele count 𝑋𝑗 at SNP 𝑗 in the target population, we assume: 747 

 748 𝑃𝑟(𝑋𝑗 = 𝑥𝑗|𝑀, 𝑝𝑗 , 𝐷) = 𝐵𝑒𝑡𝑎 − 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑥𝑗; 2𝑀, 1 − 𝐷𝐷 𝑝𝑗 , 1 − 𝐷𝐷 (1 − 𝑝𝑗)), (3) 

 749 

where 𝑀 is the number of target individuals. The above model implicitly assumes that the 750 

frequency of the allele in the target population follows a 𝐵𝑒𝑡𝑎(𝑚𝑒𝑎𝑛 = 𝑝𝑗 , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐷𝑝𝑗(1 −751 𝑝𝑗)). Under neutrality, we assume 752 

 753 𝑝𝑗 = 1𝑀 ∑ ([∑ 𝛼𝑘(𝑖)𝑀𝑖=1 ] 𝑓𝑗𝑘))𝐾𝑘=1 , (4) 

 754 

where 𝑓𝑗𝑘 is the sampled frequency of the allele in the surrogate population at SNP 𝑗 for source 𝑘, 755 

and ∝𝑘 (𝑖) is the inferred admixture proportion from population 𝑘 in individual 𝑖. We first find �̂� as 756 

the value of 𝐷 that maximizes ∏ [𝑃𝑟(𝑋𝑗|𝑀, 𝑝𝑗 , 𝐷)]𝐽𝑗=1 , using the optim function in R with the 757 

‘Nelder-Mead’ algorithm. Then, fixing 𝐷 = �̂� in equation (3), for each SNP we find the two-sided 758 

P-value testing the null hypothesis that the observed allele counts follow this neutral model. 759 

 760 

The variance under (3) is small for SNPs with very high or very low 𝑝𝑗, so such SNPs tend to reject 761 

this null model even in cases where the observed target population allele frequency does not deviate 762 

notably from its neutral expectation 𝑝𝑗 in (4). Therefore, we used an alternative parameterisation 763 

where we assumed the frequency of the allele in the target population follows a 𝐵𝑒𝑡𝑎(𝑚𝑒𝑎𝑛 =764 𝑝𝑗 , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉). This was achieved by substituting 𝐷 in equation (3) at SNP 𝑗 with 765 
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𝑚𝑖𝑛 [ 𝑉𝑝𝑗(1−𝑝𝑗) , 0.99999], necessary to ensure numerical stability, and finding �̂�. In practice this 766 

means that SNPs with minor allele frequency < (1.00001 × 𝑉) had variance (0.99999𝑝𝑗(1 − 𝑝𝑗)) 767 

rather than 𝑉, though this approach gave sensible results in practice. 768 

 769 

Determining whether selection occurred pre or post-admixture 770 

Consider the scenario in supplementary fig. S27, where sampled population C descends from an 771 

admixture of unsampled populations 𝐴∗ and 𝐵∗, who are represented by sampled surrogate 772 

populations A and B, respectively. Our test aims to distinguish whether selection occurred post-773 

admixture along branch (e) versus along any of branches (a)-(d). Let 𝑓𝑐 be the allele frequency of a 774 

sample from population C. At a neutral SNP: 775 

 776 𝐸[fc] = 𝛼𝑓𝐴∗ + (1 − 𝛼)𝑓𝐵∗ , (5) 

 777 

where 𝑓𝐴∗ and 𝑓𝐵∗ are true allele frequencies of 𝐴∗ and 𝐵∗ at the SNP, respectively, and 𝛼 is the 778 

admixture proportion from 𝐴∗. Letting 𝑓𝑘  be the sampled allele frequency for population 𝑘 serving 779 

as surrogate to the true admixing population 𝑘∗, it seems reasonable to assume: 780 

 781 𝐸[fc] =∝ 𝑓𝐴 + (1−∝)𝑓𝐵. (6) 

 782 

Note that this also holds under selection along branch (f) in supplementary fig. S27, which we 783 

ignore here (but which can be tested by comparing allele frequencies in 𝐴 and 𝐵). Equation (6) 784 

assumes that 𝑓𝐴 and 𝑓𝐵 are equally good proxied for the admixing populations’ frequencies 𝑓𝐴∗ and 785 𝑓𝐵∗, respectively, at the SNP, which may not be true. We test the effect of this using simulations, 786 

described below, in which surrogates vary in how well they reflect their respective true admixing 787 

sources. 788 

 789 

In the case of a multiplicative model of selection along branch (e) in supplementary fig. S27 at this 790 

SNP, using equation (1) we assume: 791 

 792 𝐸[fc] = (1 + 𝑠)[∝ 𝑓𝐴 + (1−∝)𝑓𝐵]1 + 𝑠[∝ 𝑓𝐴 + (1−∝)𝑓𝐵] ≡ 𝐸𝑐[𝑓𝑐], (7) 

 793 

where 𝑠 is the selection strength (i.e. equation [2]) along branch (e). 794 
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Alternatively, under a nultiplicative model for selection along branches (a) and/or (c) in 795 

supplementary fig. S27, with analogous results for selection along branches (d) and/or (b), instead 796 

we assume: 797 

 798 𝐸[fc] =∝ [(1 + 𝑠𝐴)𝑓𝐴1 + 𝑠𝐴𝑓𝐴 ] + (1−∝)𝑓𝐵 = 𝑓𝐵+∝ [(1 + 𝑠𝐴)𝑓𝐴1 + 𝑠𝐴𝑓𝐴 − 𝑓𝐵] ≡ 𝐸𝐴[fc], (8) 

 799 

where 𝑠𝐴 is the selection strength along branches (a) and/or (c). Importantly, 𝐸𝐴[𝑓𝑐] is linear in ∝, 800 

while 𝐸𝐶[𝑓𝑐], is not, which we aim to exploit to distinguish between these two scenarios. 801 

 802 

Here, assuming CANDELA population 𝑇 can be described as a mixture of 𝐾 sources, we assume 803 

the genotype 𝑔𝑖  of individual 𝑖 ∈ [1, … , 𝑀] from 𝑇 follows: 804 

 805 𝑔𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑓𝑇(𝑖)). (9) 

 806 

Under neutrality, we set 𝑓𝑇(𝑖) in (9) to: 807 

 808 𝑓𝑇𝑁(𝑖) = ∑ [∝𝑘 (𝑖)fk]𝐾𝑘=1 , (10) 

 809 

where 𝑓𝑘 is the sampled allele frequency at the given SNP for the surrogate population to the source 810 

contributing ∝𝑘 (𝑖) admixture to individual 𝑖.  811 

 812 

In the case of selection in 𝑇 post-admixture, we generalize equation (7) and set 𝑓𝑇(𝑖) in (9) to: 813 

 814 𝑓𝑇𝑃(𝑖|𝑠) = (1 + 𝑠)[∑ 𝛼𝑘(𝑖)𝑓𝑘𝐾𝑘=1 ]1 + 𝑠[∑ 𝛼𝑘(𝑖)𝑓𝑘𝐾𝑘=1 ] . (11) 

 815 

For the alternative case of selection along the branches separating source 𝐴 and its sampled 816 

surrogate 𝐴∗, we generalize equation (8) and replace 𝑓𝑇(𝑖) in (9) with: 817 

 818 𝑓𝑇𝐴(𝑖|𝑠𝐴) = [∑ 𝛼𝐴(𝑖)𝑓𝑘𝐾𝑘!=𝐴 ] + 𝛼𝐴(𝑖) [(1 + 𝑠𝐴)𝑓𝐴1 + 𝑠A𝑓𝐴 ]. (12) 

 819 
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In practice, we fix ∝𝐴 (𝑖) to be the proportion of DNA that each target individual 𝑖 matches to 820 

surrogate 𝑘 as inferred by ADMIXTURE. We define: 821 

 822 LP(𝑠) ≡ ∏ [𝑓𝑇𝑃(𝑖|𝑠)𝑔𝑖(1 − 𝑓𝑇𝑃(𝑖|𝑠))2−𝑔𝑖]𝑀𝑖=1 , (13) 

 823 

where 𝑔𝑖  is the genotype for target individual 𝑖. We use the optim function in R with the ‘Nelder-824 

Mead’ algorithm to find the maximum-likelihood estimate (MLE) �̂�, which is the value of 𝑠 that 825 

maximizes equation (13). 826 

 827 

Similarly we define: 828 

 829 𝐿𝐴(𝑠𝐴) ≡ ∏ [𝑓𝑇𝐴(𝑖|𝑠𝐴)𝑔𝑖(1 − 𝑓𝑇𝐴(𝑖|𝑠𝐴))2−𝑔𝑖]𝑀𝑖=1 , (14) 

 830 

again finding �̂�𝐴, as the MLE for 𝑠𝐴. 831 

We note that [2 − 2𝑙𝑜𝑔(𝐿𝑃(�̂�)] and [2 − 2𝑙𝑜𝑔(𝐿𝐴(�̂�𝐴))] are analogous to AIC values for these 832 

respective models. Following AIC theory, we calculate: 833 

 834 𝐼 = 𝑚𝑖𝑛[𝐿𝑃(�̂�), 𝐿𝐴(�̂�𝐴)]𝑚𝑎𝑥[𝐿𝑃(�̂�), 𝐿𝐴(�̂�𝐴)] ≤ 1, (15) 

 835 

where, relative to the model with higher likelihood out of (13) and (14), the model with smaller 836 

likelihood is 𝐼 times as probable to minimise the loss of information when used to represent the 837 

unknown true model (Akaike 1974). 838 

 839 

Note we could analogously calculate the likelihood under the neutral model, i.e., using equation 840 

(10). Then, as an alternative to the selection testing approach described in Section ‘Testing for 841 

evidence of selection at a SNP’, we could use a likelihood-ratio-statistic approach to test for 842 

selection using either (13) or (14) as the alternative model likelihood. We explored this alternative 843 

testing approach, but do not use it here because it gave lower P-values when simulating under 844 

neutrality. This observation may in part be alleviated if we estimated 𝑓𝑘∗ under both the neutral and 845 

alternative models rather than fixing 𝑓𝑘∗ = 𝑓𝑘. However, estimating 𝑓𝑘∗  is confounded with 846 

estimating 𝑠 or 𝑠𝐴 under the alternative models. 847 

 848 
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Simulations 849 

 850 

Estimating how well each surrogate reflects its corresponding true admixing source 851 

We aimed to generate simulations that mimic our real data. To do so, we first generate a measure of 852 

how well a sampled surrogate population 𝑘 reflects its corresponding true (unknown) source 853 

population. In particular, we estimate a drift parameter 𝑑𝑘 in the following manner. First, at each 854 

SNP 𝑗 we use nlminb in R to find the estimated values {𝑓1𝑗 , … , 𝑓𝐾𝑗} for {𝑓1∗ , … , 𝑓𝐾∗}, respectively, 855 

that minimize: 856 ∑ (𝑥𝑖𝑗 − ∑ 𝛼𝑘(𝑖)𝑓𝑘∗𝐾𝑘=1 )2𝑀𝑖=1 , (16) 

 857 

Where 𝑥𝑖𝑗 ∈ {0,1,2} is the allele count for the admixed target individual 𝑖 ∈ [1, … , 𝑀] at the SNP 858 

and each 𝑓𝑘𝑗 ∈ [0,1]. Then, for each source 𝑘, with observed allele counts 𝐺𝑘𝑗 and total counts 𝑀𝑘𝑗 at 859 

SNP 𝑗 in the surrogate population, following Balding-Nichols (Balding and Nichols 1995) we 860 

assume:  861 

 862 𝐺𝑘𝑗𝐵𝑒𝑡𝑎 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑀𝑘𝑗 𝑑𝑘1 − 𝑑𝑘 𝑓𝑘𝑗 , 𝑑𝑘1 − 𝑑𝑘 (1 − 𝑓𝑘𝑗)). (17) 

 863 

We then used the ‘Nelder-Mead’ algorithm in the optim function in R to find the 𝑑𝑘 ∈ [0,1] that 864 

maximized the product of (17) across all SNPs. This gave the values reported in Table 1.  865 

 866 

Large estimated 𝑑𝑘 (>0.1) correspond to cases where there is little admixture from that source in 867 

our sampled individuals from that country, i.e. for African admixture in most countries and Native 868 

American admixture in Brazil. As values inferred using such little data are presumably unreliable, 869 

we cap them at 0.05 for the simulations below. While these values are a guide, in practice we 870 

adjusted these values by a multiple of 2-7 to generate neutral simulations that had the same inferred 871 

drift �̂�, described in section ‘Testing for evidence of selection at a SNP’, as that observed in the real 872 

data. 873 

  874 
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 875 

Target Native American European African 

Brazil 0.173 0.007 0.102 

Chile 0.02 0.011 0.226 

Colombia 0.044 0.012 0.044 

Mexico 0.024 0.007 0.223 

Peru 0.015 0.009 0.119 

Table 1. Inferred 𝑑𝑘 measuring how well the sampled surrogate (column) reflect the true admixing 876 

sources for each target population (row). 877 

 878 

Generating simulated allele frequencies 879 

We simulated admixed individuals who had experienced selection, with genome-wide admixture 880 

proportions ∝𝑘 (𝑖) from source populations 𝑘 ∈ [1, … , 𝐾] for simulated individuals 𝑖 ∈ [1, … , 𝑀] 881 

matching those inferred by ADMIXTURE in the real data. To do so, for each simulation we 882 

repeated the following procedure:  883 

 884 

1. For each source 𝑘, at each SNP we sample starting allele frequencies 𝑓𝑘∗ from a 885 𝐵𝑒𝑡𝑎 ( 𝑑𝑘1−𝑑𝑘 𝑓𝑘 , 𝑑𝑘1−𝑑𝑘 (1 − 𝑓𝑘)), where 𝑓𝑘 is the sampled frequency of the respective 886 

surrogate population and 𝑑𝑘 are defined in Table 1 (but capped at 0.05).  887 

2. We randomly select SNPs to undergo selection. If selection is occurring in source 888 

population 𝑘 prior to admixture, we randomly sample from among SNPs for which 𝑓𝑘∗ <889 0.5. If selection is occurring post-admixture, we instead randomly sample from among 890 

SNPs for which ∑ (∑ 𝑓𝑘∗ ∝𝑘 (𝑖)𝐾𝑘=1 ) 𝑀 < 0.5⁄𝑀𝑖=1 . 891 

3. We randomly select neutral SNPs from among all remaining SNPs, i.e., those not among 892 

the SNPs chosen in (2), in the real data. 893 

4. To simulate selection: 894 

• If selection is occurring prior to admixture, we simulate selection in the relevant 895 

source population for 𝑔 generations under a specified model of selection (additive, 896 

dominant, multiplicative, recessive) using Wright-Fisher with a population size of 897 𝑁𝑒  indiviuals. 898 

• If selection is occurring after admixture, we simulate selection separately in each of 899 

the source populations for 𝑔 generations, under a specified model of selection using 900 

Wright-Fisher with a population size of 𝑁𝑒 individuals per population.  901 
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5. At each SNP, we sample allele counts for each individual 𝑖 from a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑝𝑖) with 902 𝑝𝑖 = ∑ [𝑓𝑘𝑔 ∝𝑘 (𝑖)]𝐾𝑘=1 , where: 903 

• 𝑓𝑘𝑔 = fk∗ for neutral SNPs 904 

• 𝑓𝑘𝑔 = 𝑓𝑘∗ at selected SNPs for source populations 𝑘 not undergoing selection (i.e., in 905 

cases where selection is pre-admixture) 906 

• 𝑓𝑘𝑔  is the sampled final frequencies in step (4) after 𝑔 generations, at selected SNPs 907 

for source population 𝑘 undergoing selection 908 

 909 

We then analyse data from the simulated target population individuals using the real sampled data 910 

from the surrogate populations. For simulations here, we use 𝑁𝑒 = 10000 for the African, 911 

European, and Native American source groups.  912 

 913 

Our procedure in steps (4)-(5) to simulate selection and admixture ensures the admixed individuals 914 

have variable admixture proportions while remaining computationally tractable. An alternative to 915 

this would be to generate 𝑀 admixed populations using observed 𝑓𝑘 values, with the admixture 916 

proportions for population 𝑖 equal to 𝛼1(𝑖), … , 𝛼𝐾(𝑖), and then simulate each admixed population 917 

for 𝑔 generations using Wright-Fisher, either with or without selection. Such simulations would 918 

match the approach used by our model to classify selection as type (i) or type (ii) (Section 919 

‘Determining whether selection occurred pre- or post-admixture’). However, we chose the above 920 

for reasons of computational efficiency, as we have many individuals (i.e., 𝑀 > 1000). Note also 921 

that our selection test (Section ‘Determining whether selection occurred pre- or post-admixture’) is 922 

different from this simulation procedure, in that our test models the combined allele frequency 923 

across all admixed individuals, using the mean admixture contributions across target individuals to 924 

calculate the expected frequency. This may explain why our model exhibits an excess of SNPs with 925 

small P-values even when simulating no selection. This is despite using all SNPs to infer our 926 

model’s variance parameter, which is designed to make more SNPs fit the model (likely explaining 927 

the excess of high P-values we also see, e.g., in supplementary fig. S14). While including this 928 

variance parameter does somewhat control P-values by e.g., giving a median P-value near 0.5, as 929 

expected under neutrality, our no-selection simulations suggest caution in directly using our 930 

model’s P-values for assessing selection evidence. This suggests some degree of plausible 931 

simulations would be helpful to calibrate the model’s reported P-values. 932 

 933 

Local ancestry analysis 934 

Local ancestry assignment was conducted using the HMM approach implemented in ELAI (Guan 935 
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2014). The phased genotype data needed as input was obtained by using SHAPEIT2 (Delaneau et 936 

al. 2012) with default parameter settings. Genetic distances were obtained from the HapMap Phase 937 

II genetic map build GRCh37 (Gibbs et al. 2003). As reference continental panels, we used the 938 

same Native American, European, and African individuals as in our AdaptMix analysis. ELAI was 939 

run setting the admixture generation parameter to 20, and with 20 rounds of EM iterations. To 940 

obtain local ancestry assignment probabilities, we conducted 10 independent runs and averaged 941 

probabilities across all runs as recommended in the ELAI manual. To test for local ancestry 942 

deviations we estimated Z-scores for each ancestry across each locus, and obtained the 943 

corresponding one-sided P-values testing for a positive deviation. 944 

 945 

Population Branch Statistic (PBS) analysis 946 

We first selected Latin American individuals carrying a specific Native American ancestry 947 

component based on the inferred Native American ancestry proportions previously estimated by 948 

Chacon-Duque et al 2018 in the CANDELA sample. Specifically, for each Native American 949 

ancestry component, we selected CANDELA individuals with >10% inferred ancestry from that 950 

particular Native American ancestry component, and with <1% combined inferred ancestry 951 

combined across all other Native American components. Thus, each group of admixed Latin 952 

Americans was composed primarily of Native American ancestry from a particular Native 953 

American component, plus European and African ancestry. We then estimated allele frequencies for 954 

each Native American component by considering only alleles (i.e. haplotypes) that were considered 955 

of Native American origin with local-ancestry posterior probability >0.9. We only computed allele 956 

frequencies for a Native American component if all SNPs genome-wide had >100 alleles 957 

(haplotypes) assigned to Native American origin. This resulted in allele frequency estimates for six 958 

Native American components, including ‘Quechua’, ‘Andes Piedmont’, ‘Chibcha Paez’, ‘Nahua1’, 959 

‘South Mexico’, and ‘Mapuche’ ancestral components (see Chacon-Duque et al. (2018) for a detail 960 

description of the inferred components). Pairwise FST were then estimated using Hudson’s estimator 961 

as in equation 9 of Bhatia et al. (2013). The branch length (T) between two populations was 962 

computed as 𝑇 = −𝑙𝑜𝑔10(1 − 𝐹𝑆𝑇) (Cavalli-Sforza 1969). The Population Branch Statistic (PBS) 963 

(Yi et al. 2010) combines the pairwise branch lengths between three populations, which was 964 

computed as:  965 𝑃𝐵𝑆𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇𝑇𝑎𝑟𝑔𝑒𝑡,𝐶𝑜𝑛𝑡𝑟𝑜𝑙+𝑇𝑇𝑎𝑟𝑔𝑒𝑡,𝑂𝑢𝑡𝑔𝑟𝑜𝑢𝑝+𝑇𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑂𝑢𝑡𝑔𝑟𝑜𝑢𝑝2 . 966 

 967 

PBS values were computed for each Native American component, using all possible pairwise 968 

combinations of the other Native components as the control and outgroup populations. The rationale 969 

of this analysis was to try to find signals of selection exclusive to a given Native American group 970 
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(i.e. that likely occurred after the divergence between Native American lineages). For some of our 971 

analysis we also used the CHB population from the 1000 Genomes Project, the European reference 972 

population, or the African reference population, as control and outgroup populations.  973 

 974 

Summary statistics for GWAS and eQTL data 975 

To assess the biological consequence of selected variants, we queried summary statistics from 976 

GWASs of relevant phenotypes, and gene-expression data (i.e expression quantitative locus [eQTL] 977 

studies) from relevant cell or tissues. For our GWAS query, we retrieved data from immune and 978 

metabolic-related phenotypes, as these traits are known to have been subjected to strong selective 979 

pressures across several human groups (Fan et al. 2016). Immune-related phenotypes included (i) 980 

total white cell count, neutrophil count, lymphocyte count, monocyte count, basophil count, and 981 

eosinophil count from the Chen et al. (2020) GWAS study conducted across five continental 982 

ancestry groups. Metabolic-related phenotypes included body mass index (BMI), body fat 983 

percentage, type II diabetes status, hip circumference, waist circumference, HDL levels, LDL 984 

levels, cholesterol levels, and triglycerides levels (Loh et al. 2018). Summary statistics from these 985 

GWAS analyses were based on the UK BioBank cohort available at: http://www.nealelab.is/uk-986 

biobank. For our eQTL query, we retrieved cis-associations summary statistics of 15 human 987 

immune cell types from the DICE (Database of Immune Cell Expression, Expression quantitative 988 

trait loci [eQTLs] and Epigenomics) project (Schmiedel et al. 2018), available at: https://dice-989 

database.org/downloads. We also retrieved cis-association summary statistics from adipose 990 

(subcutaneous, and visceral omentum), muscle (skeletal), and liver tissue from the GTEx Project v7 991 

(Lonsdale et al. 2013) available at: https://gtexportal.org/home/datasets. 992 

 993 
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Genomes Project Consortium 2015; Chacon-Duque et al. 2018). Raw genotype data from 1028 

CANDELA cannot be made available due to restrictions imposed by ethical approval. Summary 1029 
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Main Figure legends 1038 

\Fig. 1. Schematic and intuition of the AdaptMix model. (a) For each CANDELA individual 1039 

(columns), ADMIXTURE-inferred proportions of ancestry related to Native American, European, 1040 

and African reference individuals. (b) Assuming only two admixing sources in this illustration for 1041 

simplicity, the model assumes ancestral populations (𝐾1′ and 𝐾2′) contribute ancestry proportions 1042 𝛼𝐾1and 𝛼𝐾2, respectively, to an admixed population (𝑋′) that is ancestral to the tested population 1043 

(𝑋). Assuming neutrality, the expected allele frequency (𝑝0) of 𝑋′ is estimated using these 1044 

proportions and the allele frequencies surrogate populations 𝐾1 and 𝐾2 related to 𝐾1′ and 𝐾2′, 1045 

respectively. The sampled allele frequency (𝑝) of 𝑋 is compared to 𝑝0, with large deviations 1046 

indicative of selection (shown with an asterisk in the distribution). (c and d) The relationship 1047 

between 𝑝0, the expected allele frequency in the admixed population under neutrality or selection, 1048 

and 𝛼𝐾2, the ancestry proportion contributed from ancestral population 𝐾2′. If selection occurred 1049 

prior to admixture during the split between populations 𝐾2′ and its surrogate 𝐾2 (i.e. along the blue 1050 

branch in [a]), this relationship increases linearly (blue lines), becoming more differentiated from 1051 

neutrality (grey line) as the admixture from 𝐾2′  increases. In contrast, under selection post-admixture 1052 

(i.e. along the purple branch in a]), the expected allele frequency (purple lines) can deviate from 1053 

neutrality even when the admixture from 𝐾2′  is near 0. The difference between the post-admixture 1054 

and pre-admixture lines is more clear when allele frequencies in populations 𝐾1 and 𝐾2 are similar 1055 

(top plot). Solid blue and red lines indicate the allele frequencies in the surrogate populations 𝐾1 and 1056 𝐾2, which are used to calculate 𝑝0.  1057 

 1058 

Fig 2. Performance of AdaptMix to detect and classify selection in simulated Latin American 1059 

populations. (a) Power to detect selection post-admixture, selection in Native Americans, or 1060 

selection in Europeans in simulated populations mimicking the Latin American cohorts. Power is 1061 

based on a P-value cutoff that resulted in a false-positive rate of 5×10-5 in neutral simulations. The 1062 

power estimated for a given selection coefficient is based on combining simulations using four 1063 

different modes of selection (additive, dominant, multiplicative, recessive) over 12 generations for 1064 

the post-admixture simulations, over 50 generations for the selection in Native American 1065 

simulations, and over 25 generations for the selection in European simulations. Each simulation for 1066 

a given combination of parameters consisted of 10,000 advantageous SNPs with a pre-selection 1067 

minor allele frequency lower than 0.5. (b) The proportion of significant SNPs from (a) that were 1068 

assigned to the correct simulated scenario of (left-to-right) post-admixture selection or selection in 1069 

Native Americans or Europeans (using a likelihood ratio > 1,000 to make a call; otherwise 1070 

‘Unclassified’). Rows give the true selection coefficient (legend at right), and the heatmap values 1071 
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give the classification rate. Rows with N.A. shows instances with less than 50 selected SNPs for 1072 

which the classification rate is not shown. 1073 

 1074 

Fig. 3. Genome-wide selection scan in five Latin American cohorts. Manhattan plot showing the 1075 

genomic regions identified as selected via AdaptMix in each Latin American cohort. The dashed 1076 

horizontal lines indicate the P-values cutoffs corresponding to a false-positive rate of 5×10-5 based 1077 

on neutral simulations. Different shapes represent the most likely selection model. Names of genes 1078 

associated with significant SNPs are shown.  1079 

 1080 

Fig 4. Regional selection plot at the HLA region in five Latin American cohorts. The top plot 1081 

shows the −log10(P-values) of SNPs from AdaptMix, the middle plot shows Z-score values based on 1082 

African local ancestry deviations, and the bottom plot shows genes in the region shaded in grey. 1083 

Genomic coordinates are in Mb (build hg19 as reference) and genes shown include transcripts.  1084 

 1085 

Fig. 5. Genetic loci with signals of selection at immune-related genes. (a), (b) and (c) Regional 1086 

selection plot at three candidate regions of selection encompassing two immune-related genes in the 1087 

Chilean and one immune-related gene in the Peruvian cohort, respectively. Each plot is composed 1088 

of four panels (rows), consisting of −log10(P-values) of SNPs: (row 1) from AdaptMix; (row 2) 1089 

associated with immune-related cell counts via GWAS (Chen et al 2020); (row 3) associated (as 1090 

expression quantitative trait loci [eQTLs]) with expression of genes CD101, PTPN2 and MIF for 1091 

(a)-(c), respectively (Schmiedel et al. 2018); with (row 4) depicting genes in the region (in Mb, 1092 

build hg19 as reference. Horizontal dashed lines give significance thresholds of (row 1) P-1093 

value = 1×10−5 based on neutral simulations (row 2) P-value = 1×10−5 (blue line) and P-1094 

value = 5×10−8 (red line), and (row 3) P-value = 1×10−4. (d), (e) and (f) Derived allele frequency 1095 

(DAF) in admixed Latin Americans (white circles) stratified by proportion of inferred Native 1096 

American ancestry, for the SNPs highlighted (vertical dashed line) in top row panels. The sizes of 1097 

the circles are proportional to the number of individuals in that particular bin. Lines give expected 1098 

DAF under neutrality (grey), post-admixture selection (brown) or selection in the Native source 1099 

(black). Horizontal dashed red, blue, and green lines depict DAF for surrogates to Native American, 1100 

European, and African sources, respectively. 1101 

 1102 

Fig. 6. Genetic loci with signals of selection at metabolic-related genes. (a) and (b) Regional 1103 

selection plot at two candidate regions of selection encompassing metabolic-related genes in the 1104 

Mexican and Peruvian cohorts, respectively. Each plot is composed of four panels consisting of 1105 

−log10(P-values) of SNPs: (row 1) from AdaptMix; (row 2) from the UK Biobank GWAS; (row 3) 1106 
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associated (as eQTLs) with expression of BRINP3 and HKDC1 for (a)-(b), respectively, (GTEx 1107 

eQTL study);  with (row 4) depicting genes in the region (in Mb, build hg19 as reference). 1108 

Horizontal dashed lines give significance thresholds of (row 1) P-value = 1×10−5 based on neutral 1109 

simulations (row 2) P-value = 1×10−5 (blue line) and P-value = 5×10−8 (red line), and (row 3) P-1110 

value = 1×10−4. (c) and (d) Derived allele frequency (DAF) in admixed Latin Americans (white 1111 

circles) stratified by proportion of inferred Native American ancestry, for the SNPs highlighted 1112 

(vertical dashed line) in top row panels. The sizes of the circles are proportional to the number of 1113 

individuals in that particular bin. Lines give expected DAF under neutrality (grey), post-admixture 1114 

selection (brown) or selection in the Native American source (black). Horizontal dashed red, blue, 1115 

and green lines depict DAF for surrogates to Native American, European, and African sources, 1116 

respectively.  1117 
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