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Abstract 

Identifying and controlling adverse drug reactions is a complex problem in the pharmacological 

field.  Despite the studies done in different laboratory stages, some adverse drug reactions are 

recognized after being released, such as Rosiglitazone. Due to such experiences, pharmacists 

are now more interested in using computational methods to predict adverse drug reactions. In 

computational methods, finding and representing appropriate drug and adverse reaction 

features are one of the most critical challenges.  Here, we assess fingerprint and target as drug 

features; and phenotype and unified medical language system as adverse reaction features to 

predict adverse drug reaction. Meanwhile, we show that drug and adverse reaction features 

represented by similarity vectors can improve adverse drug prediction. In this regard, we 

propose four frameworks. Two frameworks are based on random forest classification and 

neural networks as machine learning methods called F_RF and F_NN, respectively. The rest 

of them improve two state-of-art matrix factorization models, CS and TMF, by considering 

target as a drug feature and phenotype as an adverse reaction feature.  However, machine 

learning frameworks with fewer drug and adverse reaction features are more accurate than 

matrix factorization frameworks. In addition, the F_RF framework performs significantly 

better than F_NN with ACC = %89.15, AUC = %96.14 and AUPRC = %92.9. Next, we contrast 

F_RF with some well-known models designed based on similarity vectors of drug and adverse 

reaction features. Unlike other methods, we do not remove rare reactions from the data set in 

our frameworks. The data and implementation of proposed frameworks are available at 

http://bioinformatics.aut.ac.ir/ADRP-ML-NMF/. 
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1. Introduction 
After the outbreak of coronavirus (SARS-CoV-2), according to studies and performed tests, 

the World Health Organization (WHO) issued an emergency use authorization for the drug 

hydroxychloroquine, which was canceled shortly afterward[1]. One of the reasons was the 

presence of a rare adverse reaction for this drug that caused heart disorders 

(cardiotoxicity)[2][3]. However, after its widespread use, this drug also caused many deaths[2]. 

In addition, it has been reported that about 26% of the people are admitted, only in a single 
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hospital in southern India, due to adverse drug reactions (ADRs)[4]. Moreover, drug toxicity is 

common among children[5] caused to be hospitalized in about 300 children with an average 

age of 5 years in a medical center in the Netherlands due to ADRs. Such problems show the 

importance of various drug assessments before a drug is produced and released to the market, 

considering its time-consuming and costly process. 

Nevertheless, sometimes monitoring a drug after launch shows some rare adverse reactions, 

and it is caused to be withdrawn after a few years, e.g., Rosiglitazone[6]. In May 2007, after 

examining data from a clinic, it was found that taking Rosiglitazone had a significant effect on 

the deaths caused by cardiovascular diseases. Eventually, the drug was first withdrawn in 

Europe, and then in the same year, severe restrictions were imposed on its use in the United 

States[7].  

Regardless of laboratory studies performed at various stages of drug production to identify its 

adverse reactions, this strategy is still not effective enough to solve the ADR problem. 

Therefore, there is a severe need to diagnose ADRs accurately. In this regard, researchers are 

interested in approaching the ADR problem by computational methods. Nowadays, 

recommender systems[8] and machine learning methods[9][10] have been common 

computational models for ADR prediction.  

A recommender system can predict whether a user prefers an item based on its profile[11]. This 

technique is also used in the ADR problem. Drugs and adverse reactions are assumed as users 

and items, respectively. In other words, the recommender system predicts whether a drug has 

an adverse reaction based on the drug profile[12]. Galeano[13] introduced a collaborative 

filtering recommendation system to predict an adverse reaction for a new drug using known 

similar drugs. Matrix factorization[14] is a class of collaborative filtering recommendation 

systems. Poleksic et al.[15] used the compressed sensing (CS) model as a matrix factorization 

to predict unknown relationships between drugs and adverse reactions. In addition, the CS 

model is an appropriate model for dealing with sparsity data. It is suitable for solving the ADR 

problem because known drug-adverse reactions (positive data) are less than unknowns. In this 

method, the latent preference of drugs and adverse reactions is computed in a lower dimension 

by minimizing the defined loss function to complete the drug-adverse reaction associations. 

Also, later in 2020, Guo et al.[12] recovered drug- adverse reaction matrix using triple matrix 

factorization (TMF) model based on calculating the similarity between drugs and adverse 

reactions with different features.  

In addition to recommender systems, various machine learning methods are also very effective 

in solving this problem. Chen et al.[16]  predicted the possible likelihood of that drug being 

associated with adverse effects for each drug. In this method, the similarity of two drugs is 
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calculated based on the interaction of each drug with other drugs and target proteins. Finally, 

this algorithm uses the other drugs with this adverse reaction to calculate the score of a drug-

adverse reaction association based on the relationship between the drugs and calculating the 

likelihood. 

Khan[17] applied different learning models for predicting ADRs such as neural networks, 

support vector machine, random forest, naive Bayes, using different drug features like 

fingerprint and drug indications. He limited the SIDER database[18] based on ten adverse 

reactions with the maximum variance across the drugs. The negative and positive data are 

defined using the frequency of causing each side effect by a drug according to the recorded 

medical history of 30 patients in the SIDER database. Therefore, if the frequency of each drug-

adverse reaction is more than 0.5, its association is considered positive and vice versa. Finally, 

for each adverse reaction, it is created a classification model. Zhao et al.[19] proposed a 

different approach based on the similarity of drugs with different properties such as 

fingerprints, the two-dimensional structure of drugs, target proteins, ATC code, and some 

features from the STITCH database. Similarity vectors are considered as the input of the 

random forest classifier model. Also, the positive data is determined based on known adverse 

reactions of the drugs with label 1. The negative data is randomly selected from unknown 

adverse reactions of drugs with label 0. In addition, they chose adverse reactions that are 

associated with more than five drugs. Rodriguez et al.[20] proposed a Bayesian network 

approach to predict ADRs using 593 pharmaceutical care center reports. Dey[21] introduced a 

model to convert two-dimensional or three-dimensional drug structures into numerical vectors 

using convolutional neural networks (CNNs) for each adverse reaction. Zheng et al.[22] 

calculated the similarity of drugs based on various properties such as chemical structure, target 

protein, drug alternatives, and ATC code to form the feature vectors of each drug-adverse 

reaction association as the model input. Also, they introduced a new approach for selecting 

negative data. The negative data is chosen based on the assumption that dissimilar drugs have 

fewer common adverse reactions. Uner[23]  proposed a learning method to solve the ADR 

problem based on CNNs using the structural features of the drug and the characteristics of gene 

expression. They also selected negative data from pairs of drugs and adverse reactions whose 

relationship is unknown. In 2020, Liang et al. proposed a new approach for making negative 

data by random walk on drug-drug interaction networks[24]. They removed adverse reactions 

associated with less than six drugs from the dataset. In 2021, It was shown that combining 

different data sources can improve the accuracy of learning models for the ADR problem[25]. 

Zhang et al.[26] defined negative data based on drug-indication associations and applied a 

machine learning model to classify adverse  reactions as adverse or therapeutic. Table 1 shows 

a summary of the studies on the ADR prediction problem.  
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In the computational methods, finding and representing appropriate features of drugs and 

adverse reactions are challenging.  Here, we assess fingerprint and target as drug features; and 

phenotype and Unified Medical Language System (UMLS) as adverse reaction features to 

predict adverse drug reaction. Meanwhile, we show that drug and adverse reaction features 

represented by similarity vectors can improve the performance of the computational methods 

in adverse drug prediction. 

This article proposes four frameworks to analyze drug features and adverse reaction features in 

drug-adverse reaction association prediction. Two frameworks are based on two machine 

learning methods; a random forest classifier[10] and a neural network[9].  The rest improve two 

well-known matrix factorization models; CS [14] and TMF[12]. 

The first framework is F_RF to predict drug-adverse reactions based on a random forest 

classifier by considering drug-drug similarity vectors and the vector of adverse reaction 

References/Year Drug 

Feature 

Adverse 

reaction 

Feature 

Algorithm Number 

of 

Drugs 

Number 

of 

adverse 

reactions 

Database for 

adverse reactions 

Database 

for Drug 

2013[16] Target protein 

Literature-

Association 

 

- Machine 

Learning 

835 100 - SIDER 

STITCH 

 

2017[17] Fingerprint 

Indication 

Target Protein 

- Machine 

Learning 

667 10 - SIDER 

CHEMBL 

 

2018[15] Fingerprint UMLS 

semantic 

Recommender 

system 

1430 5868 SIDER 

MedDRA 

SIDER 

PubChem 

2018[19]  Fingerprint 

Smiles 

ATC code 

Target Protein 

Literature 

association 

- Machine 

Learning 

841 824 - SIDER 

KEGG 

RDKit 

2018[20] ADR report causality 

categories 

Machine 

Learning 

- 2100 Northern 

Pharmacovigilance 

Centr 

- 

2019[22] Fingerprint 

Target Protein 

ATC code 

Substituent 

- Machine 

Learning 

917 500 - SIDER 

DrugBank 

EMBL-

EBI 

2019[23] gene expression 

SMILES 

- Machine 

Learning 

791 1052 - SIDER 

PubChem 

 

2020[27] Fingerprint 

Side effect profile 

Drug 

profile 

Recommender 

System 

614 5596 SIDER 

PubChem 

SIDER 

 

2020[24] Fingerprint 

SMILES 

ATC code 

Target Protein 

Literature 

Association 

- Machine 

Learning 

841 824 - SIDER 

STITCH 

PubChem 

KEGG 

 

 

2021[26] Indication 

Target protein 

CUI code Machine 

Learning 

3632 5589 SIDER 

-DrugBank 

SIDER 

Table 1:Some studies on the ADR problem. 
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similarity. F_RF approach is compared with the neural network-based framework, F_NN, to 

address the ADR problem. F_RF framework shows better performance than F_NN. Although 

we improve the CS model[15] into 𝐶𝑆𝑃ℎ𝑒𝑛 and TMF method[12] into three versions, 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 

𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛 as matrix factorization approaches, the result announces that the F_RF 

model has better accuracy than state-of-the-art matrix factorization methods. Therefore, we 

compare the F_RF framework with some well-known algorithms in machine learning 

approaches that consider similarity vectors as features.  

It seems that defining negative data similar to Zheng's approach[22] and considering similarity 

vectors as drug and adverse reaction features improve the performance of F_RF. Moreover, 

unlike some methods[24][19] that remove rare adverse-drug reactions, we consider all drugs 

and adverse reactions, including rare associations, as training data. 

Although the limited association of rare adverse reactions can reduce the model's accuracy, the 

F_RF framework achieves comparable performance. Finally, our framework successfully 

predicts some associations in some case studies. 

This paper is organized as follows: the "Materials and methods" section presents the databases 

and datasets, the notations and definitions, and a description of our proposed frameworks. The 

"Results" section includes assessing our frameworks and comparing results with other models. 

The "Discussion" section shows that the F_RF framework successfully predicts adverse 

reactions for some case study drugs, and finally, the "Conclusion" represents the future point 

of the ADR problem. 

2. Material and methods 

This section introduces drug and adverse reaction datasets and databases and then defines some 

notations to describe the problem of the adverse drug reaction (ADR). Finally, the proposed 

model for ADR prediction is explained in more detail.  

2.1. Datasets and Databases 

In the ADR problem, we need to extract drug and adverse reaction features in addition to known 

drug-adverse reaction associations from databases. In this paper, we generate three datasets 

called  Δ1, Δ2, and Δ3 from the SIDER database[18], and apply Poleksic[15] and Mizutani[28] 

datasets as  Δ4 and Δ5, respectively. 

We use the SIDER database[18] for collecting adverse reactions (CUI codes), drugs (CID 

codes), and drug-adverse reaction associations. We split the extracted adverse reactions and 

drugs from the SIDER database into three datasets,  Δ1, Δ2 and Δ3. Fig. 1. shows that the first 

dataset includes more common adverse reactions in most drugs. In Fig. 2., it can be seen Δ2 
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dataset includes adverse reactions, which are not more common in most drugs. Fig. 3. indicates 

Δ3 dataset contains rare adverse reactions.  

 
Fig. 1. Frequency of ADRs in ∆1 dataset. 

 

 
Fig. 2. Frequency of ADRs in ∆2 dataset. 

 

 
Fig. 3. Frequency of ADRs in ∆3 dataset. 

 

Table 2 shows that dataset Δ ∈ {Δ1, Δ2,  Δ3} includes a 2-tuple ∆=< 𝐷, 𝐴 > where 𝐷 and A 

indicate the sets of the selected drugs and adverse reactions, respectively. The numbers of drugs 

and adverse reactions are shown by |𝐷| = 𝑚 and |𝐴| = 𝑛, respectively. The first column shows 

three datasets. The second and third ones display the number of extracted drugs and adverse 

reactions, respectively, where each adverse reaction has been associated with at least one drug. 

The fourth column indicates the number of known drug-adverse reaction associations in each 

dataset. The next column presents the number of adverse reactions that are treated by some 

extracted drugs. We call treated adverse reactions as indications. Therefore, the set of 

indications is a subset of 𝐴 as an adverse reaction set. The last column shows the number of 

drug-indication associations in each dataset. 
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Moreover, we apply Poleksic[15] and Mizutani[28] datasets as  Δ4 and Δ5, respectively. Table 

3 shows more details of these datasets. Meanwhile, we extract 17843 and 17418 phenotypes 

for the adverse reactions in  Δ4  and  Δ5 datasets from the CTD database, respectively.  

The fingerprint of each drug as a binary vector with length 881 is extracted from PubChem[25] 

database . The directly interacted proteins with drugs of the Mizutani database are extracted 

from DrugBank[29] and Matador[30] databases. The number of these target proteins is equal 

to 1368. 

The number of 

drug-indication 

associations 

The number 

of 

indications 

 The number of 

drug-adverse reaction 

associations 

|𝑨|
= 𝒏 

|𝑫|
= 𝒎 

𝚫 =< 𝐃, 𝐀
> 

1498 663  24239 1467 357 𝚫𝟏 

3788 955  4591 1533 443 𝚫𝟐 

2786 740  3017 2868 630 𝚫𝟑 

Table 2:Extracted datasets from the SIDER database. 

 

The number of 

drug-adverse reaction associations 

|A|=n |𝑫| = 𝒎 𝚫 =< 𝐃, 𝐀 > 

 

 

120491 5868 1430  𝚫𝟒 

49051 1339 658  𝚫𝟓 

Table 3: Datasets used in the Poleksic and Mizutani studies. 

2.2. Notations and definitions 

This part describes the selected biological features of a drug and an adverse reaction. Moreover, 

we define some notations for the feature representations. 

2.2.1. Drug 

A set of 𝑚 drugs is denoted by 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚}, where 𝑑𝑖 ∈ 𝐷 shows the 𝑖𝑡ℎ drug. Each 

drug 𝑑 ∈ 𝐷  is displayed by fingerprint chemical structure or protein targets as follows: 

• The binary vector  𝐹𝑑 = [𝑓1, … , 𝑓881] with length 881 represents fingerprint[31]. Each 

𝑓𝑖  with value 1 or 0 represents the existence or absence of the  𝑖𝑡ℎ  substructure descriptor 

associated with a specific chemical feature, respectively.  

• The binary vector  Ʈ𝑑 = [𝜏1, 𝜏2, . . . , 𝜏1368] with length 1368 shows target proteins. Each 𝜏𝑖 

with value 1 or 0, represents the  𝑖𝑡ℎ protein as a known target for drug 𝑑 or not, respectively. 

To calculate the fingerprint chemical structure similarity of drugs 𝑑, 𝑑′ ∈ 𝐷, we use Gaussian 

Interaction Profile (𝐺𝐼𝑃) meter[12][32] defined as follows: 
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 𝐺𝐼𝑃𝐹𝑖𝑛𝑔(𝑑, 𝑑′) = exp (−𝛾 (||𝐹𝑑 −  𝐹𝑑′
||)

2
),           (1) 

where the bandwidth control parameter (γ) is assigned one[12]. 

To measure the target protein similarity of drugs 𝑑, 𝑑′ ∈ 𝐷, we apply the cosine similarity 

(𝐶𝑂𝑆) criterion[12], as follows: 

 𝐶𝑂𝑆𝑇𝑎𝑟𝑔(𝑑, 𝑑′) =  
Ʈ𝑑(Ʈ𝑑′

)𝑇

||Ʈ𝑑||  ||Ʈ𝑑′
|| 

.   (2) 

For each drug 𝑑 ∈ 𝐷 and similarity function 𝑓 ∈ {𝐺𝐼𝑃𝐹𝑖𝑛𝑔, 𝐶𝑂𝑆𝑇𝑎𝑟𝑔}, we define the similarity 

vector 𝛿𝑑,𝑓 with length  𝑚, as follows:  

 𝛿𝑑,𝑓 = [𝑓(𝑑, 𝑑1), 𝑓(𝑑, 𝑑2), … , 𝑓(𝑑, 𝑑𝑚)] , 𝑑𝑖 ∈ 𝐷,    1 ≤ 𝑖 ≤ 𝑚, (3) 

where 𝛿𝑑,𝑓 shows the feature representation of drug 𝑑. 

2.2.2. Adverse reaction 

The set of 𝑛 adverse reactions is denoted by 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, where 𝑎𝑗 ∈ 𝐴 shows the 𝑗𝑡ℎ 

adverse reaction. For each 𝑎 ∈ 𝐴,  phenotype or UMLS[33][15] is considered as an adverse 

reaction feature: 

• The phenotype of adverse reaction 𝑎 is shown by the binary vector 𝑃𝑎 = [𝑝1, … . , 𝑝18058]. 

In our datasets, 18058 is the union of all extracted phenotypes and 𝑝𝑘 is considered 1 or 0 

to show the existence and absence of the 𝑘𝑡ℎ phenotype for adverse reaction 𝑎. The 

phenotype illustrates each adverse reaction based on genetic ontology through biological 

processes, cellular components, and molecular functions[34].  

• The UMLS[33] includes over 100 medical terminologies with a unified and semantic 

network designed by the National Library of Medicine to support scientific research . 

To calculate the phenotype similarity of adverse reactions, 𝑎, 𝑎′ ∈ 𝐴, we use the cosine 

similarity (𝐶𝑂𝑆) criterion as follows: 

 𝐶𝑂𝑆𝑃ℎ𝑒𝑛(𝑎, 𝑎′) =  
𝑃𝑎(𝑃𝑎′)𝑇

||𝑃𝑎|| ||𝑃𝑎′||
,   (4) 

The UMLS similarity of adverse reactions 𝑎, 𝑎′ ∈ 𝐴 is computed using UMLS-similarity 

software which is denoted by function 𝑆𝐼𝑀𝑈𝑀𝐿𝑆(𝑎, 𝑎′)[33][15]. 

For each adverse reaction  𝑎 ∈ 𝐴 and similarity function 𝑓 ∈ {𝐶𝑂𝑆𝑃ℎ𝑒𝑛, 𝑆𝐼𝑀𝑈𝑀𝐿𝑆}, we define 

the similarity vector α𝑎,𝑓 with length  𝑛, as follows:  

 α𝑎,𝑓 = [𝑓(𝑎, 𝑎1), 𝑓(𝑎, 𝑎2), … , 𝑓(𝑎, 𝑎𝑛)] , 𝑎𝑖 ∈ 𝐴,    1 ≤ 𝑖 ≤ 𝑛, (5) 
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where  α𝑎,𝑓indicates the feature vector of adverse reaction 𝑎. 

2.3. Adverse drug reaction problem 

We assume that 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} and  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} represent 𝑚 drugs and 𝑛 adverse 

reactions. In the ADR problem, biological features of drug 𝑑 ∈ 𝐷 and adverse reaction 𝑎 ∈ 𝐴 

are given to the model. The primary goal of the ADR problem is to predict the association 

between adverse reaction 𝑎 ∈ 𝐴 and drug 𝑑 ∈ 𝐷.  If the model predicts adverse reaction 𝑎 

associated with drug 𝑑, the output is one and otherwise zero. 

For each drug 𝑑, we use the similarity vector 𝛿𝑑,𝐺𝐼𝑃𝐹𝑖𝑛𝑔
, or  𝛿𝑑,𝐶𝑂𝑆𝑇𝑎𝑟𝑔

 as a drug feature. For 

each adverse reaction 𝑎, the similarity vector α𝑎,𝐶𝑂𝑆𝑃ℎ𝑒𝑛
 or α𝑎,𝑆𝐼𝑀𝑈𝑀𝐿𝑆   is considered as an 

adverse reaction feature. 

2-4. Proposed Models 

In this paper, four frameworks are proposed to solve the ADR problem. As machine learning 

approaches, the first and second frameworks use random forest[10] and neural networks [9], 

respectively. The third and fourth ones improve CS[15] and TMF[12] as matrix factorization 

models for ADR prediction. In the following, we describe these frameworks in more detail. 

The first and second frameworks are called F_RF and F_NN, respectively. In both models, the 

concatenation of the similarity vectors 𝛿𝑑,𝐺𝐼𝑃𝐹𝑖𝑛𝑔
 and α𝑎,𝑆𝐼𝑀𝑈𝑀𝐿𝑆   is given as input to predict 

drug-adverse reaction association. For each drug 𝑑, the similarity vectors 𝛿𝑑,𝐺𝐼𝑃𝐹𝑖𝑛𝑔
 is 

computed using the GIP function (see Eq.1). Meanwhile, the similarity vector α𝑎,𝑆𝐼𝑀𝑈𝑀𝐿𝑆  is 

obtained by the UMLS  function[33]  for each adverse reaction 𝑎. In F_RF and F_NN 

frameworks, we require positive and negative samples for training the model. Known drug-

adverse reaction associations and known drug-indication associations are considered positive 

and negative data, respectively (see Fig. 4.). 

The third framework named 𝐶𝑆𝑃ℎ𝑒𝑛 improves CS[15] model as a matrix factorization approach 

for ADR prediction. The original CS model uses UMLS-similarity software to calculate 

adverse reaction similarity for each 𝑎, 𝑎′ ∈ 𝐴 shown by  𝑆𝐼𝑀𝑈𝑀𝐿𝑆(𝑎, 𝑎′). We improve the 

similarity matrix between adverse reactions in the CS model by adding the phenotype similarity 

of adverse reactions, 𝐶𝑂𝑆𝑃ℎ𝑒𝑛 (see Eq.4), to UMLS-similarity as follows: 

 
𝑆𝐼𝑀𝑈𝑀𝐿𝑆(𝑎, 𝑎′) + 𝐶𝑂𝑆𝑃ℎ𝑒𝑛(𝑎, 𝑎′) 

2
. (6) 

The fourth framework is defined based on TMF[12]  model as a matrix factorization approach 

for ADR prediction. This model combines different criteria to compute the similarity between 

two drugs 𝑑, 𝑑′ ∈. We call this similarity 𝑆𝑇𝑀𝐹(𝑑, 𝑑′). Meanwhile, the original TMF uses drug 
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profile as a feature to compute the similarity between two adverse reactions 𝑎, 𝑎′ ∈ 𝐴 named 

𝑆𝑇𝑀𝐹(𝑎, 𝑎′). Here, we define three different versions of TMF as follows: 

• 𝑇𝑀𝐹𝑇𝑎𝑟𝑔: The drug-drug similarity matrix of TMF is changed as: 

 
 𝑆𝑇𝑀𝐹(𝑑, 𝑑′) + 𝐶𝑂𝑆𝑇𝑎𝑟𝑔(𝑑, 𝑑′)

2
, (7) 

where 𝐶𝑂𝑆𝑇𝑎𝑟𝑔(𝑑, 𝑑′) is obtained based on Eq. 2 to show the similarity between targets of 

drugs. 

• 𝑇𝑀𝐹𝑃ℎ𝑒𝑛: The similarity matrix between adverse reactions is developed as: 

𝑆𝑇𝑀𝐹(𝑎, 𝑎′) + 𝐶𝑂𝑆𝑃ℎ𝑒𝑛(𝑎, 𝑎′)

2
, (8) 

where 𝐶𝑂𝑆𝑃ℎ𝑒𝑛 is obtained based on Eq.4 to show the similarity between phenotypes of adverse 

reactions . 

• 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛: Both drug-drug similarity matrix and the similarity matrix between adverse 

reactions are improved by Eq.7 and Eq.8. 

The matrix factorization models define positive and negative data based on known drug-

adverse reaction associations and unknown drug-adverse reaction associations, respectively.  

  

 

Fig. 4. Outline of the first and second frameworks. 

3. Result 

In this section, we evaluate the four proposed frameworks. The first and second models, F_RF 

and F_NN, are based on random forest classifier and neural network as machine learning 

methods. The third framework, 𝐶𝑆𝑃ℎ𝑒𝑛, improvs CS model as a matrix factorization approach. 

In the fourth framework, we define three versions of the TMF model, 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 
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𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛 , as the matrix factorization model. Each framework was implemented in Matlab 

2018b under Windows and Intel Core i5-2430M processor and 4GB of memory.  

In the following, we introduce our selected evaluation criteria, then the parameters of each 

framework are explained. Next, we assess the performance of machine learning frameworks 

F_RF and F_NN and analyze their effectiveness to predict rare adverse reactions. Then, the 

assessment of frameworks 3-4, based on matrix factorization, is evaluated. Later, we compare 

our proposed frameworks to introduce the best one and determine its performance against four 

well-known models.  Finally, we assess our best framework effectiveness on predicting 

associations of some case studies.    

3.1. Evaluation criteria 

We evaluate our frameworks using the area under receiver operating characteristic curve 

(AUC), the area under precision-recall curve (AUPRC), and accuracy (ACC) criteria. 

AUC is obtained based on the false positive rate (FPR) and the classifier model’s real positive 

rate (TPR) under different classification thresholds, where: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
,          𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

and FP, TN, TP, and FN display false positive, true negative, true positive, and false negative, 

respectively (see Table 4). 

Prediction Definition 

True Positive (TP) the number of known drug-adverse reaction associations predicted correctly by the 

model 

False Positive (FP) the number of drug-indication associations predicted wrongly by the model 

True Negative (TN) the number of drug-indication associations predicted correctly by the model 

False Negative (FN) the number of known drug-adverse reaction associations predicted wrongly by the 

model 

Table 4: Definition of true positive (TP), false positive (FP), true negative (TN), and false negative (FN). 

AUPRC shows the relationship between sensitivity (recall) and positive predictive value 

(precision), where: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.     𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

ACC indicates the rate of correct prediction to all predictions as below: 
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𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
. 

3.2. Parameters of the frameworks  

The hyperparameters of F_RF, F_NN, 𝐶𝑆𝑃ℎ𝑒𝑛, 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛 models, 

respectively, are defined as follows:  

• The F_RF framework 

In Matlab 2018, the random forest classifier is located in the package Statistics and Machine 

Learning Toolbox1 and has some hyperparameters which can be changed according to the 

problem. Here, we refer to the three most important ones: 

o "MinLeafSize" shows the minimum observations (samples) per leaf, which is 

essential in dividing the nodes in the decision trees. By default, this parameter 

is 1 for classification. A smaller number of “MinLeafSize” makes the model 

more prone to capturing noise in the training data. 

o   "NumPredictorsToSample" means the number of predictor or feature variables 

to select at random for each decision split. By default, it is equal to the square 

root of the total number of variables for classification.  

o "NumLearningCycles" variable represents the number of decision trees in the 

random forest.  

As it can be seen in Table 5, we find the best values for these parameters on each dataset ∆∈

{∆1, ∆2, ∆3} by trial and error.  

 

Datasets Parameters Evaluation criteria  

MinLeafSize NumPredictorsToSample NumLearningCycles AUC AUPRC ACC 

𝚫𝟏 1 6 38 0.5054 0.3201 0.7301 

1 3 600 0.9637 0.9417 0.9031 

 

 

𝚫𝟐 

1 6 38 0.9754 0.9354 0.9288 

3 6 38 0.9601 0.9440 0.9050 

3 6 11 0.9673 0.8292 0.9109 

1 9 11 0.9540 0.8611 0.9077 

1 6 42 0.9661 0.9255 0.9132 

𝚫𝟑 1 6 38 0.9395 0.9055 0.8799 

Table 5: Hyperparameters used in the Random Forest model. 

• The F_NN framework 

We use a neural network strategy using the back-propagation approach for learning to predict 

drug- adverse reaction associations. Our model contains an input layer (according to the size of 

features) followed by one fully connected hidden layer (with100 neurons) and an output layer 

 
1 https://www.mathworks.com/help/stats/treebagger.html 
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that decides whether a drug and an adverse reaction are associated or not based on sigmoid 

function. The learning rate is 0.05, and we train the network about 100 iterations. Our activation 

function for the hidden layer is tan-sigmoid, and errors are backpropagated according to Scaled 

Conjugate Gradient (SCG) strategy. 

• Improved CS and TMF models 

The parameters of these two models are not changed and set according to the original 

models[12][15]. 

3.3. The assessment of machine learning methods on ADR problem 

In this subsection, we assess F_RF and F_NN frameworks on each dataset ∆ ∈

{Δ1, Δ2, Δ3}. Moreover, we compare our models to find which one is more accurate on rare 

adverse reactions. 

3.3.1. The assessment of F_RF and F_NN frameworks on ∆1, ∆2 and ∆3 datasets 

For each dataset ∆ ∈ {Δ1, Δ2, Δ3} (see Table 2), we consider  ∆=< 𝐷, 𝐴 > where D and A 

indicate drug and adverse reaction sets. All known drug-adverse reaction associations are 

considered as positive data (𝑃∆). Similar to Zhang et al.[26], we suppose that if a drug is 

prescribed for one of the adverse reactions, it does not cause that adverse reaction. According 

to this assumption, we extract drug-indication associations as negative data (𝑁∆). 

To form a test set from the dataset, we randomly select 10% of negative data (𝑁𝑡𝑒𝑠𝑡
∆ ) and the 

exact size of positive data (𝑃𝑡𝑒𝑠𝑡
∆ ). The rest of the positive (𝑃𝑡𝑟𝑎𝑖𝑛

∆ = 𝑃∆ − 𝑃𝑡𝑒𝑠𝑡
∆ ) and negative 

data (𝑁𝑡𝑟𝑎𝑖𝑛
∆ = 𝑁∆ − 𝑁𝑡𝑒𝑠𝑡

∆ ) are considered as the training data (see Table 6). 

 

As it can be seen in Table 6, the training data extracted from  Δ1 dataset is imbalanced because 

the number of negative data is less than positive data. We balance this training data by 

oversampling strategy to repeat the negative data.  

For each dataset ∆, we train F_RF and F_NN frameworks on 𝑃𝑡𝑟𝑎𝑖𝑛
∆ ⋃𝑁𝑡𝑟𝑎𝑖𝑛

∆  and test 

on 𝑃𝑡𝑒𝑠𝑡
∆ ⋃𝑁𝑡𝑒𝑠𝑡

∆ . Table 7 shows the values of corresponding evaluation criteria on the test set. 

Both frameworks have better performance on Δ1 dataset because the number of training data in 

Datasets Associations in dataset  Associations in training data Associations in test data 

|𝑃∆| |𝑁∆| |𝑃𝑡𝑟𝑎𝑖𝑛
∆ | |𝑁𝑡𝑟𝑎𝑖𝑛

∆  |𝑃𝑡𝑒𝑠𝑡
∆ | |𝑁𝑡𝑟𝑎𝑖𝑛

∆ | 
𝚫𝟏 24239 1498 24089 1348 150 150 

𝚫𝟐 4591 3788 4212 3409 379 379 

𝚫𝟑 3017 2786 2738 2507 279 279 

Table 6: the number of training and test data in each dataset. 
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this dataset is more than the others with common adverse reactions. The average accuracy  on 

all evaluation criteria on F_RF is more than in the F_NN framework.  

𝑭_𝑹𝑭(𝑷𝒕𝒆𝒔𝒕
∆ ⋃𝑵𝒕𝒆𝒔𝒕

∆ ) AUC AUPRC ACC 𝑭_𝑵𝑵(𝑷𝒕𝒆𝒔𝒕
∆ ⋃𝑵𝒕𝒆𝒔𝒕

∆ ) AUC AUPRC ACC 

𝚫𝟏 0.9637 0.9401 0.9032 𝚫𝟏 0.9735 0.9486 0.9132 

𝚫𝟐 0.9612 0.9076 0.8879 𝚫𝟐 0.9344 0.9247 0.8694 

𝚫𝟑 0.9592 0.9392 0.8835 𝚫𝟑 0.9308 0.9050 0.8513 

Average 0.9614 0.9290 0.8915 Average 0.9462 0.9261 0.8780 

Table 7:The evaluation criteria of F_RF and F_NN frameworks on the test set. 

3.3.2. The assessment of F_RF and F_NN frameworks on the rare adverse 

reactions 

An adverse reaction associated with a maximum of two drugs (and a minimum of one drug) is 

considered as adverse reaction rare. Predicting rare adverse reactions is an obstacle because the 

known associations of them are too limited. Some studies[24][19]  exclude the rare adverse 

reactions from their dataset to increase their performance. The number of drug–rare adverse 

reaction associations in each dataset Δ1, Δ2 and Δ3 contain 582, 668, and 1797, respectively. Fig. 

1., Fig. 2., and Fig. 3. depict the ratio of the adverse reaction numbers and their related drugs 

in each dataset ∆ ∈ {Δ1, Δ2, Δ3}.  Each adverse reaction in datasets ∆1, ∆2, and ∆3 is associated 

with average 16.52, 2.99, and 1.05 drugs, respectively. 

To evaluate the accuracy of F_RF and F_NN frameworks on rare adverse reactions in  ∆ dataset, 

we choose positive test data (𝑃𝑡𝑒𝑠𝑡
∆ ) with 10% drug-adverse reaction associations known as rare 

adverse reactions. The sets of  𝑁𝑡𝑒𝑠𝑡
∆ , 𝑃𝑡𝑟𝑎𝑖𝑛

∆  and 𝑁𝑡𝑟𝑎𝑖𝑛
∆  are generated the same as the previous 

section. Table 8 illustrates the results for predicting rare adverse reactions on the test set. In 

both models, the performance of ∆3 dataset is better than other ones because it has more rare 

adverse reactions than the other datasets. The results show that F_RF is generally more accurate 

than the F_NN framework. 

𝑭_𝑹𝑭(𝑷𝒕𝒆𝒔𝒕
∆ ⋃𝑵𝒕𝒆𝒔𝒕

∆ ) AUC AUPRC ACC 𝑭_𝑵𝑵(𝑷𝒕𝒆𝒔𝒕
∆ ⋃𝑵𝒕𝒆𝒔𝒕

∆ ) AUC AUPRC ACC 

𝚫𝟏 0.8390 0.7465 0.7400 𝚫𝟏 0.8733 0.8456 0.8212 

𝚫𝟐 0.9136 0.8833 0.8298 𝚫𝟐 0.8702 0.8534 0.7902 

𝚫𝟑 0.9345 0.9182 0.8428 𝚫𝟑 0.9101 0.9015 0.8127 

Average 0.8957 0.8493 0.8042 Average 0.8845 0.8668 0.8080 

Table 8: The evaluation of F_RF and F_NN frameworks on rare adverse reactions as the test set. 

3.4. The assessment of matrix factorization methods on ADR problem 

In this subsection, we assess the performance of the improved CS model[15] called 𝐶𝑆𝑃ℎ𝑒𝑛, 

and TMF model[12] in three versions, 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛. 
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As mentioned above, these models are extended by adding the new drug and adverse reaction 

features to the original ones. The main version of these models are performed on  datasets 

Δ4[15] and Δ5 [28], respectively. Therefore, we perform the improved CS model, 𝐶𝑆𝑃ℎ𝑒𝑛, and 

three different versions of the TMF model, 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛, on these 

datasets.  

In these models, positive and negative data are defined based on all known drug-adverse 

reaction associations and unknown drug-adverse reaction associations, respectively.  

To evaluate improved models, we perform cross-validation similar to the original version of 

CS[15] and TMF[12]. Here, we divide our known drug-adverse reaction associations randomly 

into equal subsets. One of them is chosen randomly, and its associations are set as 0 in the drug-

adverse reaction associations matrix, called the test set. Then, the model is trained by the 

remaining subsets. For prediction evaluation, the test set is added to the whole matrix as 

positive samples again. This process is repeated for every subset. 

 Table 9 depicts the evaluation scores for general CS and TMF models and their improved 

versions. 

Model (𝒅𝒂𝒕𝒂𝒔𝒆𝒕) AUC AUPR 

𝑪𝑺(𝚫𝟒) 0.9412 0.5059 

𝑪𝑺𝒑𝒉𝒆𝒏(𝚫𝟒) 0.9526 0.5517 

𝑻𝑴𝑭(𝚫𝟓) 0.9415 0.7071 

𝑻𝑴𝑭𝒑𝒉𝒆𝒏(𝚫𝟓) 0.9447 0.7093 

𝑻𝑴𝑭𝒕𝒂𝒓𝒈(𝚫𝟓) 0.9436 0.7100 

𝑻𝑴𝑭𝒕𝒂𝒓𝒈
𝑷𝒉𝒆𝒏(𝚫𝟓) 0.9479 0.7104 

Table 9:The evaluation of improved and original CS and TMF models. 

3.5. Comparison machine learning and matrix factorization methods 

This paper makes two similarity matrices of drugs and adverse reactions based on different 

features of drugs and adverse reactions. Meanwhile, we design four frameworks. Two of them 

are based on machine learning, F_RF and F_NN, and the others are based on matrix 

factorization, improvement of CS[15], and TMF[12]. 

In machine learning frameworks, the contention of each row of similarity matrices is given as 

input to F_RF and R_NN.  In matrix factorization frameworks, the similarity matrices are 

integrated into the original similarity matrices of CS and TMF approaches.  

The results show that although we improve the CS and TMF models as matrix factorization 

approaches, F_RF and R_NN represent better performance as machine learning approaches. In 
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addition, fewer features are considered for drug and adverse reactions to computing the 

similarity in machine learning frameworks (see Table 7 and Table 9).   

According to corresponding results of applying F_RF and F_NN on datasets (see Table 7 and 

Table 8), random forest performs more accurately on datasets and predicts rare adverse 

reactions with higher performance. 

 3.6. Comparison with Related Studies 

We compare the best-proposed framework, F_RF, with three machine learning 

models[24][19][22] that predict drug- adverse reaction associations using similarity-based 

methods. In addition, we compare F_RF with the logistic regression model introduced by 

Zhang in 2021[26]. This model defines negative data as ours by considering drug-indication 

associations for negative data[26]. Table 10 illustrates the values of evaluation criteria for each 

one.  

It should be noted, the Liang et al. model[24] excluded all adverse reactions with less than six 

associations from its dataset, and it positively affected the performance. However, the 

performance of F_RF on datasets includes rare adverse reactions. In addition to considering 

rare adverse reactions, F_RF uses fewer features than the others while the results are 

competitive with the rest models.  

Moreover, the performance of F_RF is more accurate than Zheng et al.[22], which performs a 

classifier for each adverse reaction separately.  

Model Drug feature Adverse reaction 

feature 

Number of 

Drugs 

Number 

of adverse 

reactions 

AUC AUPRC 

F_RF Fingerprint UMLS 

357 1467 0.9637 0.9401 

443 1533 0.9612 0.9076 

630 2868 0.9592 0.9392 

Zhao et al. 

[19] 

ATC code, 

literature 

(STITCH), Target 

protein 

Drug profile 841 824 0.8015 - 

Zheng et al. 

[22] 

Fingerprint, target 

protein, substituent, 

ATC code, 

- 917 500 0.9086 0.5424 

Liang et al. 

[24] 

Fingerprint, 

Simcomp (2D 

structure), ATC 

code, literature 

(STITCH), 

Drug profile 841 824 0.98 0.98 
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Zhang et al. 

[26] 

Target Protein, 

Drug Bank ID 
CUI code 3632 5589 0.87 - 

Table 10: Comparison of the proposed model with other related studies. 

4. Discussion 

We also use several antiviral drugs out of our drug set to test the performance of the F_RF 

model. It should be noted, the association of these drug–adverse reactions are not available in 

the training set. We assume that positive association is determined based on the predicted 

probability of an association between a drug-adverse reaction which is more than 0.5. In 

addition, we check these pairs with F_NN, too. 

For drug darunavir, F_RF predicts two adverse reactions Cardiac arrest, a type of heart disorder, 

and Hepatic steatosis, a type of liver disorder with the probability of association 0.98 and 0.61 

(see Table 11). it means darunavir causes these adverse reactions. According to [35][36], the 

model correctly makes the prediction. 

Moreover, F_RF suggests drug ribavirin and adverse reaction Liver disorder as a negative 

association. It is mentioned in [37] which this drug can treat Liver disorder. Table 11 depicts the 

case studies and the results of F_NN and F_RF. F_NN confirms the results of F_RF. 

 

Drug Adverse Reaction Type known 

Association 

The 

prediction 

score of 

F_RF 

The 

prediction 

score of 

F_NN 

darunavir 

(CID: 213039) 

Cardiac arrest 

(CUI: C0018790) 
heart disorer 

drug-adverse 

reaction (in[36]) 
0.98 0.84 

darunavir 

(CID: 213039) 

Hepatic steatosis 

(CUI:  C2711227) 
liver disordere 

drug-adverse 

reaction (in 

SIDER database 

[35]) 

0.61 0.58 

ribavirin 

(CID: 5064) 

Unspecified liver 

disorder 

(CUI: C0023895) 

Liver disorder 

drug-indiction(to 

treat the Liver 

disorder in [37]) 

0.45 0.25 

Table 11:The results of three case studies. 

5. Conclusion  

This study proposed a framework called F_RF based on a random forest classifier to predict 

drug-adverse reaction associations. For this aim, a similarity vector is suggested by the drug-

drug similarity score and the adverse reactions similarity function as the drug and adverse 

reaction representations. As the performance of machine learning methods depends on the 

training data, similarly to Zhang et al.[26], the drug-adverse reactions and drug-indication are 

considered positive and negative data, respectively. Then, another framework was introduced 
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using a neural network named F_NN. Comparing the corresponding of these frameworks 

indicated the F_RF got higher evaluation scores than F_NN for predicting rare and non-rare 

adverse reactions. Later, two state-of-the-art matrix factorization methods, CS and TMF, were 

improved to 𝐶𝑆𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔, 𝑇𝑀𝐹𝑃ℎ𝑒𝑛 and 𝑇𝑀𝐹𝑇𝑎𝑟𝑔
𝑃ℎ𝑒𝑛 and contrast with F_RF. According 

to the results, F_RF is performed more accurately than these models. Moreover, F_RF 

framework was compared with some popular machine learning approaches in ADR problem. 

Although some methods exclude rare adverse reactions [24][19] or use more features to solve 

the ADR problem,  F_RF utilized all drug-adverse reactions, including rare ones, and fewer 

features. The results announced that the F_RF performance was better than most of them. 

Meanwhile, F_RF correctly predicted cardiac arrest and hepatic steatosis as darunavir adverse 

reactions and suggested ribavirin to treat the liver disorder. 

We conclude that using similarity vectors as drug and adverse reaction features and considering 

drug indications as negative data can improve drug-adverse reaction association prediction. 

Moreover, applying a random forest classifier with less computational complexity than other 

models achieves higher performance scores. 

In the future, we aim to assess the 3D structures of drugs to increase the performance of drug-

adverse reaction association prediction. In addition, applying drug-related clinical information 

can improve the accuracy of the model. 
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