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Abstract

Protein sequence alignment is a key component of most bioinformatics pipelines to study
the structures and functions of proteins. Aligning highly divergent sequences remains, how-
ever, a difficult task that current algorithms often fail to perform accurately, leaving many
proteins or open reading frames poorly annotated. Here, we leverage recent advances in
deep learning for language modelling and differentiable programming to propose DEDAL,
a flexible model to align protein sequences and detect homologs. DEDAL is a machine
learning-based model that learns to align sequences by observing large datasets of raw pro-
tein sequences and of correct alignments. Once trained, we show that DEDAL improves
by up to two- or three-fold the alignment correctness over existing methods on remote ho-
mologs, and better discriminates remote homologs from evolutionarily unrelated sequences,
paving the way to improvements on many downstream tasks relying on sequence alignment
in structural and functional genomics.

Introduction

Sequence alignment is a key component of bioinformatics pipelines to study the structures and
functions of proteins, and to annotate open reading frames (ORF) in newly sequenced genomes
and metagenomes [1]. Indeed, aligning two protein sequences allows identifying homologous
sequences with known structure or function, and regions of similarity that may be the result
of evolutionary, structural or functional relationships. Jointly aligning multiple sequences fur-
ther gives information about evolutionary constraints and patterns of co-evolution along the
sequence, which is for example useful for 3D structure inference [2–4]. It is remarkable that
algorithms for pairwise sequence alignment have basically remained unchanged since their in-
vention in the 1980’s and 1990’s, in particular the Smith-Waterman (SW) algorithm to find the
best local alignment between two sequences in quadratic time with dynamic programming [5]
and faster heuristics like BLAST [6] or FASTA [7] which are also the first steps of more advanced
methods based on multiple sequence alignment such as PSI-BLAST [8]. However, in spite of
their immense popularity and importance for downstream applications, these algorithms often
produce erroneous alignments or fail to detect homology, particularly for sequences with low
similarity [9]. This leaves a sizeable fraction of predicted ORF in genomics and metagenomics
projects without annotation [10], while alignment errors can in turn result in wrong structural
or functional annotations. Improving pairwise sequence alignment algorithms, particularly for
divergent sequences, could directly benefit a number of downstream tasks.

The SW algorithm formulates the problem of finding the correct alignment between two
sequences as a search for the best-scoring path in a graph. Each candidate path represents a
possible alignment and the score of a path depends on user-defined parameters. These are the
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costs of starting or extending a gap in the alignment, and the substitution score of aligning each
position of the first sequence to each position of the second one, which usually depends on the
amino acids at both positions. This formulation, which leads to efficient algorithms to find or
approximate the best-scoring alignment, has at least two weaknesses that may lead to possible
errors in the alignment found. First, it lacks flexibility in the formulation of the score of a path,
by enforcing for example that the cost of opening or extending a gap is the same wherever in
the sequences, or by enforcing that the substitution score of aligning two positions only depends
on the amino acids at those positions. Allowing more flexible parameterizations may give more
opportunities to the algorithm to optimize a relevant score; for example, [11] show the benefits
of making the substitution score between two positions in protein sequences depend not only
on the amino acids at those positions, but also on predicted structural properties, at the cost
of increasing the number of parameters of the model. Second, the best alignment returned by
the algorithm strongly depends on the choice of the parameters [12–18], and even for simple
models where the substitution score only depends on the amino acids to be aligned, it is well
known that there is no universally “good” substitution scores that lead to good alignments for
all protein pairs [19, 20]. This raises the question of how to optimally choose adequate scoring
parameters for a given pair of proteins.

In this work, we propose DEDAL (Deep Embedding and Differentiable ALignment), an algo-
rithm for pairwise sequence alignments that addresses both issues. DEDAL builds on top of the
standard SW algorithm to efficiently find an optimal alignment between two sequences, but pro-
vides a flexible parameterization of the scoring function used by the SW algorithm that adapts
to each sequence pair and each position in each sequence. The parameterization is automati-
cally learned during a training phase from a set of sequence pairs with known alignments, and
a large set of raw protein sequences. It relies both on recent advances in deep learning language
models which embed discrete sequences in a continuous space and are automatically trained on
a large corpus of raw sequences, and also a parameterization of the SW algorithm (gap and
substitution parameters) as a function of the continuous embedding. To train DEDAL, we pro-
pose a smoothed variant of the SW algorithm, to make the alignment solution a continuous and
differentiable function of the scoring parameters. Given a set of sequence pairs with known cor-
rect alignment, we then tune automatically the various parameters of the model by end-to-end
gradient-based optimization to minimize the alignment errors. Once trained, DEDAL produces
gap and substitution scoring matrices computed specifically for each new pair of sequences. In
addition, the gap and substitution scores are contextual: for each pair of positions, they depend
on the full sequences to be aligned. The optimal alignment is then computed with a standard
SW algorithm using those parameters. We show that DEDAL can be trained efficiently on
modern hardware with accelerators. Once trained, we demonstrate that DEDAL improves by
up to two- or three-fold the quality of the alignment predicted for remote homologs compared to
standard SW, and produces an alignment score that more accurately detects remote homology.

Related work. The fact that the solution of the SW algorithm depends on the scoring param-
eters has been studied in detail in the context of the so-called parametric sequence alignment
problem, which aims to describe the set of possible solutions as a function of the parameters
used [12–18]. This approach, however, is only feasible for simple models with up to 2 or 3
parameters that vary. Conversely, the idea to search for parameters that reproduce a set of
given, correct alignments, was tackled by [11, 21–23] using various optimization techniques, but
these works focus on simple parameterizations where a fixed-size substitution matrix and one
or two gap parameters are optimized. It is proposed in [24] to exploit known alignments to help
train deep embedding models with a differentiable loss, however this model does not produce
a sequence alignment once trained. The closest work to ours is the DeepBlast model of [25],
who also propose to learn a deep language model for proteins with a differentiable alignment
module, however the model has a simpler model for scores (linear instead of affine), and only
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Figure 1: Overview of DEDAL. At test time (top), DEDAL aligns two sequences x and y by
running the SW local alignment algorithm with position-specific parameters (gap open O, gap
extend E, substitution scores S) that depend on the input sequences through a transformer
encoding Tφ of each sequence followed by a parameterizer Pβ that transforms the continuous
representations into matrices of parameters needed by SW. Both Tφ and Pβ depend on param-
eters φ and β which are learned at train time from a large corpus of raw sequences to learn the
language model Tφ, combined with pairs of sequences with known alignment to learn jointly
Tφ and Pβ by end-to-end optimization with a differentiable variant of SW and a specific loss
function (bottom).

produces global alignments. More recently, concurrently and independently from this work, [26]
presented a differentiable version of SW for multiple sequence alignment, albeit with a simple
convolution layer instead of a full language model to embed the sequences, and simpler position-
independent gap penalty. Moreover, they focus on contact and structure prediction tasks, as
opposed to directly investigating alignment and homology detection performance as done here.

Results

Pairwise local alignment or protein sequences with DEDAL

We introduce DEDAL, a trainable algorithm for accurate pairwise local alignment of protein
sequences (Figure 1). DEDAL aligns sequences by computing substitution scores and gap
penalties that are specific to the sequences being aligned (Figure 1, top). To this end, DEDAL
depends on parameters which are automatically tuned before inference during a training phase
(Figure 1, bottom).

For sake of clarity, let us first describe how DEDAL works once it is trained and ready to
be used to align sequences. In order to align two sequences x and y and score the resulting
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alignment, DEDAL simply uses the standard SW algorithm for pairwise local alignments, but
with gap open, gap extend and substitution score matrices which are computed specifically from
x and y. To do so, a deep learning-based transformer encoder network Tφ with parameters φ [27]
is first used to independently obtain a continuous representation of each of these sequences. In
this representation, each residue of each sequence is mapped to a vector in a vector space
of a fixed dimension (we use d = 768 in our experiments). Crucially, these embeddings are
contextual, that is, the embedding of each residue encodes information not only about the
amino acid present at that position but also about all other residues in the sequence, as well as
their relative arrangement. This allows DEDAL to be highly flexible in the way sequences are
represented, opting for a data-driven approach towards incorporating contextual information
over hard-coded rules. Next, DEDAL computes a substitution score as well as gap open and gap
extend penalties for each pair of residues from the sequences to be aligned, computed from their
respective vector representations by a parameterizer function Pβ, which depends on parameters
β. Finally, the standard SW algorithm is used to compute an optimal alignment and score it,
using the substitution scores, gap open and gap extend penalties computed at the previous step.
In other words, DEDAL relies on the SW algorithm to align sequences and score the alignment,
but provides a very flexible framework to parameterize the SW algorithm; in particular, the
substitution score, gap open and gap extend penalties are specific to each pair of positions in
the two input sequences, and depend on the full sequences through the contextual embedding
of the transformer encoder and the parameterizer.

DEDAL thus depends on parameters φ for the transformer encoder Tφ, and β for the parame-
terizer Pβ. These parameters are tuned automatically during a training phase, where we provide
DEDAL with a large set of ∼ 30 million non-redundant protein sequences from UniRef50 [28]
to train the transformer encoder, as well as a set of pairs of homologous sequences with curated
correct alignment extracted from the set of ∼ 1.2 million sequences organized in ∼ 19 thousand
families in the Pfam-A seed database [29] to jointly train the transformer encoder and the pa-
rameterizer. More precisely, using these datasets, DEDAL tunes its parameters by end-to-end
gradient-based optimization to minimize a loss function combining three tasks: 1) a so-called
masked language modelling task on the UniRef50 dataset, which is a classical way to tune the
parameters of a transformer encoder [30, 31]; 2) an homology detection task, where we train
DEDAL so that it can discriminate homologous from non-homologous pairs in Pfam-A seed
from the alignment score; 3) a learning to align task, where we train DEDAL to produce the
correct alignment on homologous pairs from Pfam-A seed with known correct alignment. In
order to solve the second and third tasks by gradient-based optimization, we implement a novel
differentiable variant of the SW algorithms that allows to backpropagate not only the alignment
score but also the error between the predicted and true alignments to the parameters φ and β.
Since Pfam sequences represent protein domains, which therefore tend to be aligned from start
to end within a given family, we extend the sequences when possible upstream and downstream
of the domain so that DEDAL is trained to produce a correct local alignment. We refer the
reader to the Methods section for more details about the model and the data.

DEDAL accurately aligns homologous sequences

We first assess the ability of DEDAL to accurately align homologous sequences. Since DEDAL
is trained on a set of known correct alignments, we must evaluate its performance on sequences
not seen at train time. We therefore split the Pfam sequences into two non-overlapping sets.
The first one is used to train the model and to choose hyperparameters, and the second one to
assess its performance. We consider two ways to make the split: 1) split sequences uniformly at
random in Pfam, so that sequences in the test set come from families seen at train time (we call
this setting the in-distribution setting), and 2) split clans between training and test sets, so that
sequences in the test set come from clans that are not seen at train time (we call this setting the
out-of-distribution setting). Obviously the out-of-distribution setting is more challenging, since
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it requires the model to generalize across clans. It mimics the situation where we want to align
sequences from unknown domains. The in-distribution setting, on the other hand, mimics the
common situation where we want to align sequences from known Pfam domains. We measure
the quality of a predicted alignment by the F1 score of the prediction on the test set, and
stratify the performance by percent identity (PID) of the sequences in the correct alignment,
since it is well known that the difficulty of aligning sequences increases when PID decreases. As
a baseline, we compare DEDAL to the SW algorithm ran with a fixed PFASUM60 substitution
matrix and an affine gap penalty model with gap open=16 and gap extend=2. We chose this
configuration as the best among more than 1, 000 combinations of substitution matrices in the
BLOSUM [32], VTML [33, 34] and PFASUM [20] families, and gap open and extend parameters
(see Methods).

Figures 2a and 2b summarize the alignment performance of DEDAL and of the baseline,
respectively in the in-distribution and out-of-distribution settings. A breakdown of the F1

score into precision and recall is shown in Supp. Figures S7 and S8, respectively. We see that
DEDAL significantly outperforms the baseline both in-distribution and out-of-distribution. The
difference is particularly strong in-distribution (with an average relative improvement of 25%
over baselines, from F1 = 0.673 to F1 = 0.843), which confirms the benefit of training DEDAL on
Pfam families in order to then align new protein sequences within these families. Strikingly, the
gap between DEDAL and baselines widens as the PID decreases, with a relative improvement
of up to 219% in the hardest setting (PID ≤ 0.1), showing that DEDAL is able to provide good
quality alignments (F1 = 0.520) even between very remote homologs, while the baseline can not
(F1 = 0.163). Interestingly, a similar pattern is visible on the out-of-distribution setting, where
DEDAL outperforms the baselines by 5% on average (from F1 = 0.709 to F1 = 0.742), and by
89% on the remote homologs with PID < 0.1 (from F1 = 0.165 to F1 = 0.313). This suggests
that DEDAL learns a model of protein sequence similarity that extends beyond the biological
subspace it sees at train time, and that DEDAL is particularly useful is difficult situations of
remote homology, where standard methods perform poorly.

We then compare DEDAL and the baseline on their ability to align Pfam domains, as
opposed to the extended domains that we use to train DEDAL. While the domain sequences are
the same in both cases, the alignments are very different since two domain sequences in a Pfam
family can generally be aligned from the beginning to the end, thus making the correct alignment
closer to a global alignment than a local one. We show the results in this setting in Figures 2c
and 2d. Compared to the previous setting, we see that the performances of all methods tend to
be better, which can be explained by the fact that the number of wrong candidate alignments
is reduced when we focus on the domain sequence that must be aligned. Besides the overall
improvement of all methods, DEDAL still significantly outperforms the baseline, particularly
in-distribution and particularly in the low PID regime (with, e.g., a relative F1 increase of 173%
for in-distribution domains with PID ≤ 0.1, from F1 = 0.201 to F1 = 0.551). We also notice
that for “easy” in-distribution cases (PID ≥ 0.5), the baseline and DEDAL reach similarly high
accuracy, suggesting that the baseline suffers particularly when it needs to find local alignments
as opposed to global ones, even in the high PID regime, while DEDAL behaves equally well in
both settings.

In order to clarify why DEDAL behaves so differently from a standard SW algorithm with a
fixed substitution matrix and gap parameters, we now focus on a particular pairwise alignment
between two domain sequences of Pfam-A seed (accession PF00048): a C-C motif chemokine
from western lowland gorilla (UniProt A0A2I2ZUR5) and a C-X-C motif chemokine ligand 14
from northern mallard (UniProt U3IBZ2). Figure 3 summarizes the alignments produced by
DEDAL and the baseline (using a PFASUM substitution matrix), and the parameters of both
models. Note that this alignment is not part of DEDAL’s training set. As seen in Figure 3.a, the
sequences have only 8 conserved residues in the Pfam-A seed curated alignment, meaning that
this is a difficult case (PID=0.12). Indeed, using SW with a PFASUM substitution matrix gives
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Figure 2: Alignment F1 score of DEDAL and the best-performing substitution matrix baseline,
in the in- and out-of-distribution settings (respectively, left and right columns), and for Pfam
extended or raw domains (respectively, top and bottom rows).

an alignment where no residue is correctly aligned (F1 = 0), however we see that using DEDAL
gives an almost perfect alignment where only 7 residues are wrongly aligned, and in all cases with
an error of only one residue in distance (F1 = 0.88). To better understand the difference between
PFASUM and DEDAL, we plot in Figure 3.b and 3.c, respectively, the SW parameters for
PFASUM (substitution scores) and for DEDAL (substitution scores, gap open and gap extend
penalties). We see that the substitution score matrix produced by DEDAL is much smoother
spatially than the one of PFASUM, highlighting the benefit of context dependent embeddings of
residues. We also see that DEDAL clearly picks the importance of aligning cysteine (C) residues,
which are very conserved since they form disulfide bonds which stabilize the 3D structure of
the domain (there are four cysteines in each sequences, respectively at positions 3, 4, 27, 43 in
gorilla and 3, 5, 29, 49 in mallard, corresponding to the 16 positions in DEDAL’s substitution
matrix with highest score). PFASUM, on the other hand, has high scores not only to match the
cysteines, but also to match the two tryptophans (W) at respective positions 21 and 49 in the
gorilla sequence, and 38 and 63 in the mallard sequence. While tryptophans are usually very
conserved, and have therefore a large substitution score in standard substitution matrices such
as PFASUM, it is interesting that in this particular case they should not be aligned according
to the Pfam-A seed curated alignment, and DEDAL correctly predicts it by producing a small
substitution score. Finally, we note that DEDAL’s gap open and extend penalties are far from
uniform in the matrix, with in particular strong penalties to open and extend gaps near the
cysteines, suggesting that DEDAL has learned that mutations are more likely than insertions
or deletions near a cysteine involved in a disulfide bond.

DEDAL accurately detects remote homologs

Next, we seek to determine if DEDAL’s ability to align homologous sequences accurately also
implies that the alignment score it computes is effective to detect homology. To this end, we
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Gorilla            SVC.CRDYVRYRL.PLRVVKHFYWT..SDSCPRPGVV.LL
Mallard Pfam-Seed  VKCKCSRKG..PKIRFSNVRKLEIKPRYPFCVEEMIIVTL
Mallard DEDAL      VKCKCSRKG.PKI.RFSNVRKLEIKPRYPFCVEEMII.VT
Mallard PFASUM     ..............................CSRKGPK.IR

Gorilla            TF....RDKEICADPRVPWV..KMILNKL
Mallard Pfam-Seed  WTRVR.GEQQHCLNPKRQNT..VRLLKWY
Mallard DEDAL      LWTRVRGEQQHCLNPKRQNT..VRLLKWY
Mallard PFASUM     FS....NVRKLEIKPRYPFCVEEMIIVTL

a

c

b

Figure 3: Example of pairwise alignment of two protein domain sequences from Pfam-A seed,
a C-C motif chemokine from western lowland gorilla (UniProt A0A2I2ZUR5) and a C-X-C mo-
tif chemokine ligand 14 from northern mallard (UniProt U3IBZ2). a. Alignment respectively
from the curated Pfam-A seed database (second row), predicted by DEDAL (third row), and
predicted with a PFASUM60 substitution matrix (fourth row). We show all residues in both se-
quences for the Pfam-A seed and DEDAL alignments, but not the unaligned residues upstream
and downstream of the alignment in the mallard sequence for PFASUM. Residues highlighted
in green correspond to correctly aligned conserved residues, while those in red correspond to
discrepancies between a predicted alignment and the Pfam-A seed one. b. Substitution scores
between all pairs of residues from the PFASUM substitution matrix. c. SW parameters pre-
dicted by DEDAL.

follow the same experimental setup as when probing alignment performance, namely considering
pairs of Pfam extended domains or pairs of Pfam domains, on the one hand, and considering
pairs of candidate homologous sequences from families seen at train time (in-distribution setting)
or from clans not seen at train time (out-of-distribution setting), on the other hand. For each of
these settings, we measure the area under the precision-recall curve (AUPRC) when predicting
whether a pair of sequences belongs to the same Pfam family or not based on the SW score,
correcting the alignment score for sequence length as usually done when computing alignment
E-values to assess homology (see Methods). We again stratify AUPRC values according to
the PID of related sequence pairs (positive class), with unrelated pairs (negative class), whose
ground-truth PID is unknown, being included in all bins.

The results of this experiment are summarized in Figure 4. We also show in Supp. Figure
S9 an alternative manner to evaluate performance, using the area under the receiver operating
characteristic curve (AUROC). We see that, unsurprisingly, all methods are largely successful
in detecting homology for sequence pairs with moderate-to-large PID (≥ 0.2) in all settings.
Interestingly, DEDAL is markedly better at detecting homology of highly divergent sequences
across all four settings. For the smallest PID bin (< 0.1), DEDAL improves in-distribution
performance by 154% (from AUPCR=0.389 to AUPCR=0.988) and 97% (from AUPCR=0.501
to AUPCR=0.987) for Pfam domains and extended domains, respectively. Once again, the
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Figure 4: Homology detection AUPRC of DEDAL and the best-performing substitution matrix
baseline, in the in- and out-of-distribution settings (respectively, left and right columns), and
for Pfam extended or raw domains (respectively, top and bottom rows).

performance of DEDAL degrades in the out-of-distribution split while remaining significantly
superior to the baselines, boosting AUPRC by 39% (from AUPCR=0.640 to AUPCR=0.892)
and 32% (from AUPCR=0.666 to AUPCR=0.880) for domains and extended domains, respec-
tively. Interestingly, DEDAL only seems to be outperformed by a small yet non-negligible
margin in the largest PID bin (≥ 0.7) of the out-of-distribution split, where its AUPRC is 4%
(AUPCR=0.990 vs. AUPCR=0.950) and 1.2% (AUPCR=0.971 vs. AUPCR=0.960) inferior
relative to that of the substitution matrices. A possible explanation for this phenomenon is
that, as shown in Supp. Figure S6, sequence pairs in that PID range are exceedingly scarce in
DEDAL’s training dataset, representing less than 1% of all sequence pairs. Upsampling schemes
might be investigated as a potential way to alleviate this shortcoming.

Discussion

Using recent advances in deep language models with transformers and novel differentiable align-
ment modules, we showed that DEDAL learns a continuous representation of protein sequences
that, combined with the SW algorithm, leads to more accurate pairwise sequence alignment
and homology detection than using the SW algorithm with fixed substitution matrices and
gap penalties. The improvement is particularly striking in hard cases, where we want to align
remote homologs with limited sequence identity, and we showed that the model learned by
DEDAL on some sequence space generalizes well to new clans, suggesting that DEDAL learns
universal biological properties not easily captured by standard substitution matrices and affine
gap penalties.

Since DEDAL incorporates a number of design choices, such as the architecture of the model
or the strategies to train it, one may wonder which aspects are the most critical to explain its
success. To address that question, we performed an ablation study where we systematically
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evaluated the effect of various design choices on the performance of DEDAL (Supplementary
Results S2.1). In short, we found that replacing our rich parameterization of position-specific
gap open and extend parameters by a simpler model where the gap open and extend parameters
are position independent does not affect the performance of DEDAL much, achieving slightly
superior alignment F1 scores in the in-distribution split but marginally inferior results for out-
of-distribution sequence pairs. Another simplification would be to replace our position-specific
affine gap penalty by a position-specific linear gap penalty, as for example used in DeepBLAST
[25], which, however, we found leads to a small performance drop for remote homologs that is
most pronounced in the out-of-distribution split.

On the technical side, we explored two approaches to create a differentiable SW alignment
module, needed to train the parameters of DEDAL in the “learning to align” task, using either
a smoothing technique [35] or a perturbation technique [36]; we found no significant difference
between both in terms of performance, and implemented the one based on perturbations in the
final DEDAL model. Regarding the set of alignments used to train DEDAL, we found that it
is beneficial to use Pfam extended domains instead of Pfam domains when we want DEDAL to
be able to predict accurate local alignments. Regarding the strategy to train end-to-end jointly
the transformer and parameterizer, we found that this is indeed significantly better than a more
classical, two-step strategy that would first train a transformer encoder on the masked language
modelling task, and second the parameterizer on the “learning to align” task by keeping the
transformer fixed. This suggests that a universal language model, such as the one presented
by [31], is not sufficient and should be at least fine-tuned for optimal performance in alignment.
Finally, we assessed the benefit of context-dependent embeddings by simply training a model
where the substitution cost is constrained to depend only on the amino acids to be aligned;
unsurprisingly, we observed a strong drop in performance for this model, reaching about the
same performance as the best-performing substitution matrix in the literature. All in all, our
ablation study indicates that DEDAL is robust to changes in several technical aspects of the
model, but that the main idea to jointly train a deep language model and a flexible parameterizer
for SW is key to its performance.

This work opens several research directions for the future. First, as pure language models
are increasingly used for a variety of downstream tasks, it is interesting to explore if adding
alignment information to supervise language models, as DEDAL does, may also benefit other
downstream tasks beyond sequence alignment. In preliminary experiments, we did not observe
significant differences between the transformer encoder trained by DEDAL and one purely
trained on a language modelling task on the TAPE benchmark [37], a collection of problems to
assess the relevance of protein embedding models for various downstream tasks (see Supplemen-
tary Results S2.2), but believe there is room for improvement. Second, it will be interesting to
extend DEDAL to the multiple alignment setting (MSA), either by combining pairwise align-
ment operations, as proposed by [26], which could directly benefit from DEDAL, or by directly
embedding multiple non-aligned sequences and creating a differentiable MSA module. Third,
given the accuracy of DEDAL’s alignment and ability to capture homology, it will be interest-
ing to develop fast approximations based, e.g., on fast similarity search in continuous spaces, in
order to allow accurate homology search and alignment in large databases.

Methods

Data

To train the transformer encoder with a masked language modelling task, we used 30, 162, 111
cluster representative sequences from the March 2018 release of the UniRef50 database [28].
These representatives provide a non-redundant yet complete coverage of UniProtKB [38], ob-
tained by clustering sequences with at least 50% percent identity and 80% overlap with the
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cluster’s longest sequence using MMseqs2 [39]. A representative for each cluster was chosen
accounting for factors such as quality of the UniProtKB entry and availability of annotations,
among others. Given the relatively low redundancy between UniRef50 representative sequences,
sequences were allocated to train or test uniformly at random as in [31], resulting in training
and test sets of size 27, 052, 653 and 3, 019, 006, respectively. A small validation set of 90, 452 se-
quences was further reserved for hyperparameter tuning. For computational efficiency, we limit
the length of sequences fed to the model for this task to at most 1, 023 amino acids. Longer
sequences are cropped to length 1, 023 with a uniformly distributed offset sampled on-the-fly at
training and evaluation time.

To create pairs of homologous sequences with known alignment, we collected 19, 179 man-
ually curated multiple sequence alignments (MSAs) from release 34.0 of the Pfam-A seed
database [29], grouped into 12, 452 evolutionarily-related clans, and spanning a total of 1, 223, 021
sequences. We kept only the 1, 198, 870 sequences (98% of the total) of length smaller than 512.
We define a pair of homologous sequences as a pair of sequences in the same MSA, from which
we extract a correct pairwise alignment. Any two sequences not in the same MSA are deemed
as not homologous in the homology detection task. From this set of Pfam domain sequences, we
also build a set of Pfam extended domain sequences, by adding flanking sequences with random
lengths upstream and downstream of each domain sequence, following the existing flanking re-
gions of the domain in the UniProtKB protein sequence database (see Supplementary Methods
S1.1). This ensures that the correct alignment between two homologous extended domains usu-
ally does not span the full sequences. For both Pfam domains and extended domains, we split
the full dataset into five disjoint splits: train (80%), in-distribution validation (2.5%), out-of-
distribution validation (2.5%), in-distribution test (7.5%) and out-of-distribution test (7.5%).
To this end, we first select 255 and 955 out of the 12, 452 Pfam clans uniformly at random to
form the out-of-distribution validation and out-of-distribution test, respectively. The number
of clans was chosen to reach the target sample sizes of 2.5% and 7.5% for each split. Finally, we
divide each of the remaining 10, 493 clans uniformly at random to form the train, in-distribution
validation and in-distribution test splits.

DEDAL model

DEDAL is a parametric model that transforms a pair of sequences onto three matrices of gap
open, gap extend penalties and substitution costs, respectively, and then uses the SW algorithm
to align the two initial sequences using these matrices of parameters. Each protein sequence
is seen as a sequence of tokens in a 27-letter alphabet (22 amino acids including pyrrolysine
(O) and selenocysteine (U), 3 ambiguous codes B, Z and X, and 2 special tokens <EOS>, which
we append to each sequence, and <MASK>, which is used for masked language modelling only).
Each such sequence is mapped to a sequence of vectors by a transformer encoder neural network
similar to the smallest transformer-based model of [31] which uses L = 6 transformer encoder
layers with h = 12 heads per layer and embeddings of dimension d = 768. Each transformer
encoder layer combines multi-head self-attention, position-wise multilayer perceptron, dropout
and layer normalization. From the output of the transformer, we compute the substitution score
between two positions as a bilinear function of their vector representations, and the gap and open
penalties as the softplus function applied to a bilinear function of their vector representations
to ensure they are nonnegative. An in-depth description of the DEDAL model as well as of its
architecture and hyperparameters can be found in Supplementary Methods S1.2.

Differentiable SW alignment

Given two sequences x = x1 . . . xn and y = y1 . . . ym of amino acids, an alignment π is a subset of
distinct positions in x and y that are matched in increasing order. Let us denote by Π(x, y) the
set of possible alignments between x and y, including the empty one. Given three n×m matrices
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S (substitution scores), O (gap open) and E (gap extend penalties), the local alignment score
s(π) of a candidate alignment π is defined as the sum of the substitution scores over matched
positions, and gap penalties defined as the gap open penalty where a gap starts and gap extend
penalties where it continues. The SW algorithm finds the maximum scoring alignment with the
dynamic programming recursion over the (n + 1) × (m + 1) matrices M , X and Y defined for
any i = 1, . . . , n and j = 1, . . . ,m by Mi,0 = M0,j = Xi,0 = X0,j = Yi,0 = Y0,j = −∞ and:

Mi,j = Si,j + max(0,Mi−1,j−1, Xi−1,j−1, Yi−1,j−1) ,

Xi,j = max(Mi,j−1 −Oi,j , Xi,j−1 − Ei,j) ,
Yi,j = max(Mi−1,j −Oi,j , Xi−1,j −Oi,j , Yi−1,j − Ei,j) .

(1)

The score of the best alignment is then s∗(x, y) = maxπ∈Π(x,y) s(π) = max (0,maxi,j(Mi,j)),
and the best-scoring alignment π∗(x, y) = argmax π∈Π(x,y) s(π) can be recovered by backtrack-
ing the argmax in the recursion. Both operations can be implemented in O(nm) complexity
in time and space; to benefit from modern computational infrastructure, we implemented a
version optimized for hardware accelerators such as GPU and TPU, which practically runs in
O(max(m,n)) time and in parallel across a batch of sequences to align, using a wavefront algo-
rithm (see Supplementary Methods S1.3). We note that the score of any alignment π ∈ Π(x, y)
is a linear function of the parameters Θ = (S,O,E) seen as a 3nm-dimensional vector, which
we write as s(π) = Θ>Φ(π) for some mapping Φ : Π(x, y) → R3nm. This shows that s∗(x, y)
is almost everywhere differentiable in Θ, with gradient Φ(π∗(x, y)), which potentially allows to
backpropagate to Θ any differentiable objective function that depends on the optimal align-
ment score, such as the one used in the homology detection task. On the other hand, the best
alignment π∗(x, y) is a piecewise constant function of Θ, and any loss that only depends on
π∗(x, y), such as how different it is from the correct alignment, can not be backpropagated to
the parameters. In the “learning to align” task, however, we need to have a differentiable loss
to minimize with respect to Θ when SW finds an alignment π∗(x, y) but the correct alignment
is π̄, potentially different from π∗(x, y).

To overcome this issue, a first idea is to consider the so-called structured perceptron loss
[40], which penalizes the difference between the score of the best alignment and the score of
the true alignment: `Perceptron(Θ) = s(π̄)− s∗(x, y). Its gradient is simply Φ(π̄)− Φ(π∗(x, y)),
which can be computed with the SW forward and backward recursions. To create a smoother
loss function, we consider two natural extensions to the perceptron loss. The first one is the
so-called CRF loss [41] given by `CRF (Θ) = s(π̄) − s∗τ (x, y) for τ ≥ 0. Instead of being the
maximum score, s∗τ (x, y) = τ log

∑
π∈Π(x,y) e

s(π)/τ is the soft-maximum score. The CRF loss
can also be interpreted as a negative log-likelihood model under a Gibbs distribution, and
as shown in [35], its value and gradient can be computed as efficiently as for the perceptron
loss, by simply replacing the max operation in the SW recursion (1) by a softmax of the form
maxτ ({u1, . . . , uk}) = τ log

∑k
i=1 e

uk/τ , and adapting the backtracking. The CRF loss thus
provides a smooth approximation to the perceptron loss, which converges to it when τ goes to
zero. The second extension creates smoothness by random perturbation of Θ, as proposed by
[36].

More precisely, we consider a random perturbation Θ + τZ of the parameters Θ, where
τ ≥ 0 and Z is a standard multivariate normal random vector; then the so-called Fenchel-
Young loss [42] associated to the perturbation according to [36] is a valid loss with gradient
∇`FY (Θ) = Φ(π̄) − EZΦ(π∗(x, y)). In other words, `FY is a valid loss whose gradient is the
expectation of the perceptron loss gradient under random perturbation of the SW parameters.
In practice we compute a stochastic gradient (which is enough to optimize the loss function
by stochastic gradient descent) by taking the perceptron loss gradient after a single random
perturbation of the parameters by τZ. We note, again, that the Fenchel-Young loss is a smooth
approximation to the perceptron loss, which converges to it when τ goes to 0.
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Homology detection classifier

We treat homology detection as a binary classification problem, aiming to elucidate whether a
pair of sequences x and y belong to the same Pfam family or not, given their alignment score
s∗(x, y). Since it is well known that the distribution of alignment scores on random sequences
strongly depends on their length [43], we must correct for the length effect on the score and pose
the following model, inspired by how E-values are defined to assess the significance of alignment
scores, for the probability P that x and y are related given their alignment score and lengths n
and m:

P = Sigmoid(w1s
∗(x, y)− w2 log(nm) + b), (2)

where w1, w2 ∈ R+ and b ∈ R are parameters. These parameters are jointly trained end-to-end
alongside the sequence encoder and the differentiable alignment layer using a binary cross-
entropy loss. The differentiable alignment layer is thus explicitly trained to output small scores
for unrelated sequence pairs, preventing the model from acquiring biases caused by it only being
trained on related sequences by the alignment task.

Output head for masked language modelling

We follow [30, 31] and define a masked language modelling task to train the transformer by
randomly selecting 15% of the residues in each sequence to be prediction targets. 80% of
these are substituted by a special <MASK> token, 10% by a randomly chosen residue and the
remaining 10% is left unchanged. For a sequence x of length n, we denote by T ⊆ J1, nK the
set of target residues, chosen uniformly at random, and by x̃ ∼ perturb(x; T ) the resulting
randomly perturbed sequence. The goal of the masked language modelling output head is to
predict the original value of each perturbed token xi from the embeddings of the (perturbed)
sequence φ(x̃) as

P̂ (xi | x̃) = (Softmax ◦WLM)(φi(x̃)), (3)

whereWLM : Rd → Rk is a learnable, affine mapping that is not tied to F in the input embedding
layer (see Supplementary Methods S1.2.1). These predicted probabilities P̂ (xi | x̃) ∈ ∆k−1 are
then compared to the ground-truth using a cross-entropy loss,

LLM := ExET Ex̃|x,T

[∑
i∈T
− log P̂ (xi | x̃)

]
, (4)

where we omitted the dependence of LLM on the parameters φ of the sequence encoder and
WLM.

Training DEDAL

We first pretrain the sequence encoder on the masked language modelling task for 1 million
steps. After that, we jointly train the sequence encoder, differentiable alignment layer, homology
detection classifier and masked language modelling output head for 2 million additional steps
to minimize a multi-task objective:

LMT := Lτ + λHDLHD + λLMLLM, (5)

where Lτ is a loss for the alignment task dependent on the relaxation scheme, LHD the binary
cross-entropy loss for the homology detection task, LLM the cross-entropy loss for the masked
language modelling task and λHD, λLM ∈ R+ are hyperparameters controlling the relative weight
of each loss on the multi-task objective. In both phases, we use the Adam [44] optimizer with
a linear warm-up of 8, 000 steps until reaching a maximum learning rate lrmax that we treat as
a hyperparameter, followed by an inverse square root decay schedule.
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Metrics

Given two homologous sequences x and y from an evaluation set Deval with known correct
alignment, let us denote by mtrue(x, y) the set of pairs of indices aligned to each other in the
correct alignment, and by m∗(x, y) the set of pairs of indices predicted to be aligned by a SW
prediction. We assess the performance of the SW prediction in terms of precision, recall and F1

score defined as:

Precision :=

∑
(x,y,mtrue(x,y))∼Deval

|m∗(x, y) ∩mtrue(x, y)|∑
(x,y,mtrue(x,y))∼Deval

|m∗(x, y)|
,

Recall :=

∑
(x,y,mtrue(x,y))∼Deval

|m∗(x, y) ∩mtrue(x, y)|∑
(x,y,mtrue(x,y))∼Deval

|mtrue(x, y)|
,

F1 := 2
Precision · Recall

Precision + Recall
.

(6)

To evaluate homology detection performance, we use the Area Under the Precision-Recall
Curve (AUPRC). We do not exclude false positives for sequence pairs that are part of the same
Pfam clan yet do not belong to the same Pfam family. Since such sequence pairs might be
evolutionarily related, this is a conservative definition of performance that might overestimate
the number of erroneous predictions.

To better reflect the relative difficulty of each task, we stratify all alignment and homology
detection metrics by Percent IDentity (PID) [45], using the definition of PID from [46], namely,

PID :=
IdenticalResidues

AlignedResidues + InternalGaps
, (7)

where the number of identical residues and internal gaps is computed for each pair of related
sequences using the ground-truth alignments. For homology detection, only the positive class
(sequence pairs belonging to the same Pfam family) is stratified. Negative pairs, for which no
ground-truth alignments are available, are shared across all PID bins. Since we chose a version
of PID that disregards external gaps, it is largely unaffected by our data augmentation process
where we add flanking regions to Pfam domains (Supplementary Figure S6).

In practice, Deval consisted of a random subset of 256, 000 held-out sequence pairs for each
split (in- and out-of-distribution) and setting (Pfam extended and raw domains).

Baselines

We compared the performance of DEDAL on the alignment and homology detection tasks
to three widely-used families of substitution matrices: BLOSUM [32], VTML [33, 34] and
PFASUM [20]. For each family, we exhaustively optimized over the following hyperparameters:
1) the matrix number in the family, where we considered four matrix numbers for the BLOSUM
family (45, 50, 62, 80), six for the VTML family (10, 20, 40, 80, 160, 200) and, finally, four for
the PFASUM family (31, 43, 51, 60); 2) the gap open penalty, taking any integer value between
5 and 16; 3) the gap extent penalty, taking values in {0.5, 0.75, 1.0, 1.25, 1.5, 2.0}. We selected
the best-performing configuration over these 1, 008 combinations as the baseline representing
substitution matrices, following the protocol described in Supplementary Methods S1.5.

Data availability

The Uniref50 dataset is freely available under the Creative Commons Attribution (CC BY 4.0)
License from https://www.uniprot.org. Pfam is freely available under the Creative Commons
Zero (“CC0”) licence from https://pfam.xfam.org

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468653doi: bioRxiv preprint 

https://www.uniprot.org
https://pfam.xfam.org
https://doi.org/10.1101/2021.11.15.468653
http://creativecommons.org/licenses/by/4.0/


Code availability

The code used in this study is freely available under an Apache 2.0 license at https://github.
com/google-research/google-research/tree/master/dedal
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S1 Supplementary Methods

S1.1 Pfam domain sequence extension

As explained in the main Methods, we use pairs of aligned domain sequences from Pfam-A seed
as ground-truth alignments, to supervise the “learning to align” task of DEDAL and assess the
performance of various alignment algorithms. A drawback of using Pfam-A seed alignments
as targets, however, stems from the fact that these are de facto global alignments. This is
illustrated in Figure S1a, where we see that the vast majority of pairwise alignments from
the original Pfam-A seed dataset have no flanking sequence tails outside the alignment region.
Thus, models naively trained using these alignments as supervision targets will be heavily biased
towards global alignment, which might impede their ability to predict local alignments whenever
necessary.
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Figure S1: (a) The empirical CDF of the number of residues not mapping to matches or internal
gaps in a target alignment. (b) A kernel density estimate of the sequence length distribution.
A random set of 128, 000 sequence pairs from the training set was used for both figures.

To overcome this limitation, we apply data augmentation to the Pfam-A seed dataset, creat-
ing local pairwise sequence alignment targets as follows. Firstly, we cross-reference each Pfam-A
seed sequence with the UniProtKB entry in which it occurs. This provides a ground-truth con-
text from which to incorporate biologically relevant flanking tails, given by the Lprefix and
Lsuffix residues that precede and follow the Pfam-A seed sequence in its UniProtKB context,
respectively.1. To further increase data diversity, Lprefix and Lsuffix are chosen independently
at random every time a Pfam-A seed sequence is drawn as part of a sequence pair for train-
ing or evaluation. In particular, let Lseq be the length of a given Pfam-A seed sequence and
Lctx = Lprefix,max + Lseq + Lsuffix,max the length of the UniProtKB sequence in which it occurs,
where Lprefix,max and Lsuffix,max are the total number of residues available as prefix and suffix,
respectively. We sample Lprefix and Lsuffix as:

Ltails ∼ U(0,min(Lctx, Lmodel)− Lseq),

Lprefix ∼ U(max(0, Ltails − Lsuffix,max),min(Ltails, Lprefix,max)),

Lsuffix = Ltails − Lprefix,

(1)

with Lmodel = 512 being the maximum sequence length we consider for this task. In other words,
the total length of flanking tails being added (prefix and suffix) is sampled uniformly between
zero and the maximum possible, given the context length and the computational budget. These
Ltails residues are subsequently allocated to prefix and suffix uniformly at random among all

1For the sake of simplicity, we discard 550 Pfam-A seed sequences that occur more than once within their
corresponding UniProtKB entry.
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valid choices. A high-level overview of the data augmentation process is depicted in Figure S2.
As shown in Figure S1a, this data augmentation process greatly increases the diversity of
alignment targets relative to the original data. Moreover, the augmented input sequences have
a significantly less skewed length distribution, as can be seen in Figure S1b.

W Y I K … F G M Y  A G Y C   …      H I T  S A Y  T A … V E V 

Figure S2: Conceptual illustration of the data augmentation process. A Pfam-A seed sequence
(red) is shown alongside the remainder of the UniProtKB sequence it is a part of (green). Each
time the Pfam-A seed sequence is drawn in a sequence pair, a random amount of prefix and
suffix is added to simulate a local alignment target (dark green).

S1.2 DEDAL model and training

In this section we provide additional details on the DEDAL model, and how it is trained.
DEDAL contains a sequence encoder that computes continuous representations of protein se-
quences and multiple task-specific output heads that make predictions based on these continuous
representations. All model components are jointly trained end-to-end using a multi-task loss,
with the exception of the output heads for downstream tasks, which are fine-tuned indepen-
dently for each task. The remainder of this section introduces each model component in turn,
concluding with a description of the training process.

S1.2.1 Contextual sequence embeddings

The sequence encoder is a parametric function that maps sequences x = (x1, x2, . . . , xn) over
a finite alphabet (xi ∈ A for all i = 1, . . . , n) to a sequence of d-dimensional vectors of the
same length Tφ(x) = (Tφ,1(x), Tφ,2(x), . . . , Tφ,n(x)). Crucially, its architecture was chosen so
that the embedding for the i-th input residue Tφ,i(x) ∈ Rd depends on the entire sequence x
rather than on xi alone, making these sequence embeddings contextual. To this end, we use a
transformer encoder [1].Transformer-based models achieve state-of-the-art performance across
a wide range of problems in natural language processing and, more recently, computer vision.
Unlike convolutional or recurrent architectures, transformers make extensive use of attention
to model long-range interactions between tokens directly, thus excelling at capturing non-local
context.

Tokenization. In our case, the alphabet A = J1, kK consists of k = 27 tokens corresponding
to (i) the 20 standard amino acids, (ii) the less common Pyrrolysine (O) and Selenocysteine
(U) amino acids, (iii) the “ambiguous” amino acid codes B, Z and X and (iv) the special tokens
<EOS>, which we append to each sequence, and <MASK>, which is used for masked language
modelling only.

Input embeddings. Similar to [1, 2], the first layer of our sequence encoder is an input
embedding layer that additively encodes residue identity and position information for each
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token in the input sequence. Given a sequence x = (x1, x2, . . . , xn) ∈ An, we define X ∈ Rn×k
to be the one-hot representation of x, i.e., Xi,j = δj(xi). The input embedding layer computes
non-contextual, continuous representations for each residue as

Z0 = XF + P, (2)

where F ∈ Rk×d contains learnable input embeddings for each token in A and P ∈ Rn×d is a
matrix of sinusoidal, absolute position embeddings [1].

Transformer encoder layers. The non-contextual embeddings Z0 ∈ Rn×k are then fed to
a stack of L transformer encoder layers which use multi-headed self-attention followed by a
position-wise multilayer perceptron (MLP). Together, these adaptively incorporate into each
residue’s embedding information about the other tokens in the sequence. In particular, we use
transformer encoder layers with pre-layer normalization [3, 4],

Z̃l = Zl−1 + (Dropout ◦MultiHeadedSelfAttention ◦ LayerNorm)(Zl−1),

Zl = Z̃l + (Dropout ◦MLP ◦ LayerNorm)(Z̃l),
(3)

where ◦ denotes function composition.
The multi-headed self-attention mechanism combines the output from h independent self-

attention layers as

MultiHeadedSelfAttention(Z) =

h∑
i=1

(WO
i ◦ SelfAttentioni)(Z),

SelfAttentioni(Z) = Dropout

(
Softmax

(
WQ
i (Z)(WK

i (Z))T√
d/h

))
W V
i (Z),

(4)

where WQ
i ,W

Q
i ,W

V
i : Rd → Rd/h and WO

i : Rd/h → Rd are all learnable, affine mappings.
These and the softmax non-linearity are applied row-wise to their respective n×d, n×d/h and
n× n inputs.

The MLP contains a single hidden layer that uses a Gaussian Error Linear Unit (GELU) [5]
element-wise non-linearity, namely,

MLP(Z) = (W out ◦Dropout ◦GELU ◦W in)(Z), (5)

where W in : Rd → R4d and W out : R4d → Rd are also learnable, affine mappings applied
row-wise to their inputs.

Output normalization. Finally, layer normalization is applied to the output of the L-th
transformer encoder layer to obtain the contextual embeddings Tφ(x) ∈ Rn×d for an input
sequence x ∈ An,

Tφ(x) := LayerNorm(ZL). (6)

S1.2.2 Parameterizer

Once each sequence is mapped to a continuous representation, we compute matrices of param-
eters to be used by the SW alignment algorithm from the continuous representations. This
allows the SW algorithm to rely on information other than the identity of individual residue
pairs by modelling the substitution scores, gap open and gap extend penalties as a parametric
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function of the (contextual) embeddings Tφ(x) and Tφ(y) of the sequences to be aligned. In
practice we implement these as symmetric bilinear forms,

Si,j(x, y) := T Tφ,i(x)WSTφ,j(y) + bS ,

Oi,j(x, y) := Softplus
(
T Tφ,i(x)WOTφ,j(y) + bO

)
,

Ei,j(x, y) := Softplus
(
T Tφ,i(x)WETφ,j(y) + bE

)
,

(7)

where WS ,WO,WE ∈ Rd×d are symmetric matrices and bS , bO, bE ∈ R scalar biases, respec-
tively. Together, these form the set of parameters β of the parameterizer function Pβ. An
element-wise softplus non-linearity is used to ensure gap penalties remain non-negative.

This model is a strict generalization of the traditional parameterization of the SW algorithm
based on substitution matrices. We can recover these as a particular case by (i) using a one-hot
representation as embeddings, i.e., Tφ(x) = X and Tφ(y) = Y , (ii) restricting the gap penalties
to be position-independent, i.e., Oi,j := O, Ei,j := E with O,E ∈ R+ and (iii) fixing WS ∈ Rk×k
to the desired substitution matrix. In contrast, we jointly train the transformer-based sequence
encoder and the alignment layer, resulting in a substantially more expressive parameterization.

S1.2.3 Architecture and hyperparameters.

We adopt the architecture of the smallest transformer-based model in [2], which uses L = 6
transformer encoder layers with h = 12 heads per layer and embeddings of dimension d = 768.
Glorot initialization [6] is used for all weight matrices with the sole exception of the input
embeddings table, which are initialized from a standard normal distribution. The dropout rate
is set to 0.1 throughout. A global batch size of 128 sequences or, when applicable, sequence pairs,
was used in all experiments. No attempts were made to optimize over these hyperparameters.
Additionally, DEDAL was trained with maximum learning rate lrmax = 10−4 and multi-task
loss weights λHD = 20, λLM = λHD/2. Unless stated otherwise (e.g. ablations), DEDAL
used the perturbation-based approach in [7] with relaxation strength τ = 0.1 to smooth the
SW alignments during training. For computational considerations, these hyperparameters were
selected after a lightweight exploration of model performance on the in-distribution and out-of-
distribution validation splits, which have no overlap with the held-out test set.

S1.3 Accelerator-friendly implementation of the (smooth) SW algorithm.

As explained in the Methods section, we use the SW algorithm to find the maximum scoring
alignment (or a soft maximum in the case of the CRF loss) with the dynamic programming
recursion over the (n + 1) × (m + 1) matrices M , X and Y defined for any i = 1, . . . , n and
j = 1, . . . ,m by Mi,0 = M0,j = Xi,0 = X0,j = Yi,0 = Y0,j = −∞ and:

Mi,j = Si,j + maxτ (0,Mi−1,j−1, Xi−1,j−1, Yi−1,j−1) ,

Xi,j = maxτ (Mi,j−1 −Oi,j , Xi,j−1 − Ei,j) ,
Yi,j = maxτ (Mi−1,j −Oi,j , Xi−1,j −Oi,j , Yi−1,j − Ei,j) ,

(8)

where maxτ ({u1, . . . , uk}) := τ log
∑k

i=1 e
uk/τ is the soft-max when τ > 0, or the max operator

when τ = 0. The (soft) best-scoring alignment needed to compute the gradient of the score
and of the different alignment loss functions with respect to S, O and E is then computed by
appropriate backtracking.

The widespread availability of modern hardware accelerators such as Graphical Processing
Units (GPUs) and Tensor Processing Units (TPUs) has been partly responsible for the recent
success of deep learning models. These hardware resources excel at vectorized computation,
perhaps most notably matrix-matrix and matrix-vector multiplication, which are the funda-
mental building blocks of most commonly-used deep learning layers. In contrast, the dynamic
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1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 ±∞ ±∞ ±∞ ±∞
±∞ 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 ±∞ ±∞ ±∞
±∞ ±∞ 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 ±∞ ±∞
±∞ ±∞ ±∞ 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 ±∞
±∞ ±∞ ±∞ ±∞ 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

Table S1: Effect of applying the mapping f (+) (resp. f (−)) to a tensor A ∈ R5×8, representing
SW parameters for a pair of sequences of lengths n = 5 and m = 9. Entries in the output tensor
not corresponding to any entry of A are padded with +∞ (resp. −∞).

program underlying the SW algorithm appears to be inherently sequential. Arguably, its most
natural description involves firstly iteratively computing Mi,j , Xi,j and Yi,j using a double for

loop along the lengths of sequences x and y, followed by backtracking. Unfortunately, such
an implementation would only profit from vectorization along the batch axis, i.e., carrying out
the dynamic program updates for multiple sequence pairs simultaneously, remaining otherwise
purely sequential along both length axes i and j. To prevent the differentiable alignment layer
from becoming a computational bottleneck, we implement a wavefront transformation that al-
lows expressing the SW algorithm in terms of a single for loop, leading to a computational
footprint comparable to that of Recurrent Neural Networks (RNNs). Most importantly, we
aim to accomplish this using solely operations supported off-the-shelf by frameworks such as
TensorFlow [8], JAX [9] or PyTorch [10] for maximum compatibility and ease of use.

Suppose S,D,O ∈ Rb×n×m are tensors representing the (contextual) substitution scores,
gap open and gap extend penalties of a batch of b sequence pairs of lengths at most n and m,
respectively. Entries corresponding to sequences strictly shorter than n (resp. m) are assumed
to have been padded with −∞ for S and +∞ for D and E. We also assume w.l.o.g. that n ≤ m.
In order to vectorize the SW algorithm, we exploit that the dynamic program updates can be
computed in parallel for all entries (i, j) along the same anti-diagonal, i.e., i + j = k for some
k ∈ J1, n + m − 1K. To reduce the number of non-contiguous indexing operations, we define
mappings f (+), f (−) : Rb×n×m → Rb×n×n+m−1 to rearrange the inputs S, D and E mapping
their anti-diagonals to a single axis in the output tensors. Namely,

f
(+)
s,i,k(A) =

{
As,i,k−i−1, if k − i− 1 ∈ J1,mK,
+∞, otherwise,

(9)

with f (−) defined analogously but using −∞ as a sentinel value for invalid entries. A conceptual
illustration of this transformation is shown in Figure S1. Setting S̃ := f (−)(S), D̃ := f (+)(D)
and Ẽ := f (+)(E), we can rewrite the dynamic program updates in Equation 8 as

Mi,k = maxτ (0,Mi−1,k−2, Xi−1,k−2, Yi−1,k−2) + S̃i,k,

Xi,k = maxτ

(
Mi−1,k−1 − D̃i,k, Xi−1,k−1 − Ẽi,k, Yi−1,k−1 −Di,j

)
,

Yi,k = maxτ

(
Mi,k−1 − D̃i,k, Yi,k−1 − Ẽi,k

)
,

(10)

which can be trivially vectorized along the batch and i axes, requiring only a single for loop
on k ∈ J1, n + m − 1K. Despite the fact that this change does not alter the computational
complexity of the algorithm, we found reducing the amount of strictly sequential computation
to have a dramatic impact on runtime in practice, as shown in Table S3.

S1.4 Efficiently differentiating the soft-maximum SW score

The gradient of the soft-maximum score s∗τ (x, y) = τ log
∑

π∈Π(x,y) e
s(π)/τ can in principle be

computed using modern automatic differentiation (AD) software [8–10]. However, we have
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Figure S3: Runtime to align a batch of sequence pairs as a function of the length of the sequences
for the proposed vectorization approach and a naive baseline implemented as a double for loop.
Times shown reflect the forward pass only, computed in inference mode (τ = 0) using 4 TPU
v3 chips. All data points were obtained as the median of 10 trials, with error bars reflecting
the minimum and maximum runtimes among these. (a) Batch size fixed to 128 sequence pairs.
(b) Batch size fixed to 1024 sequence pairs.

found using a custom implementation of ∇s∗τ (x, y) advantageous occasionally, particularly in
terms of memory usage. For the sake of completeness, we include a detailed derivation of this
custom implementation in this section.

Suppose that the recursive updates described in Equation 8 have been run until termination

and define T := maxτ

(
0,maxτ

i,j
(Mi,j)

)
such that s∗τ (x, y) = T . Our derivation will proceed in

two steps. First, we express the sought-after partial derivatives ∂s∗τ (x,y)
∂Si,j

, ∂s∗τ (x,y)
∂Oi,j

and ∂s∗τ (x,y)
∂Ei,j

as

a function of the adjoint operators M̄i,j := ∂s∗τ (x,y)
∂Mi,j

, X̄i,j := ∂s∗τ (x,y)
∂Xi,j

, Ȳi,j := ∂s∗τ (x,y)
∂Yi,j

and of the

(local) partial derivatives of the update rules in Equation 8. Next, we derive update rules to
iteratively evaluate all of these adjoint operators.

Using the chain rule, we may write

∂s∗τ (x, y)

∂Si,j
=
∂s∗τ (x, y)

∂Mi,j

∂Mi,j

∂Si,j

= M̄i,j ,

(11)

for the substitution scores. Similarly, for the gap open penalties we have

∂s∗τ (x, y)

∂Oi,j
=
∂s∗τ (x, y)

∂Xi,j

∂Xi,j

∂Oi,j
+
∂s∗τ (x, y)

∂Yi,j

∂Yi,j
∂Oi,j

= X̄i,j

(
− ∂Xi,j

∂Mi,j−1

)
+ Ȳi,j

(
− ∂Yi,j
∂Mi−1,j

− ∂Yi,j
∂Xi−1,j

)
,

(12)

where we used that

∂Xi,j

∂Oi,j
=
∂maxτ ({Mi,j−1 −Oi,j , Xi,j−1 − Ei,j})

∂Oi,j
= − ∂Xi,j

∂Mi,j−1
(13)

and that

∂Yi,j
∂Oi,j

=
∂maxτ ({Mi−1,j −Oi,j , Xi−1,j −Oi,j , Yi−1,j − Ei,j})

∂Oi,j
= − ∂Yi,j

∂Mi−1,j
− ∂Yi,j
∂Xi−1,j

(14)
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in the last step of Equation 12. Based on the same approach, the partial derivatives with respect
to the gap extend penalties are given by

∂s∗τ (x, y)

∂Ei,j
=
∂s∗τ (x, y)

∂Xi,j

∂Xi,j

∂Ei,j
+
∂s∗τ (x, y)

∂Yi,j

∂Yi,j
∂Ei,j

= X̄i,j

(
− ∂Xi,j

∂Xi,j−1

)
+ Ȳi,j

(
∂Yi,j
∂Yi−1,j

)
,

(15)

where again we used that
∂Xi,j
∂Ei,j

= − ∂Xi,j
∂Xi,j−1

and
∂Yi,j
∂Ei,j

= − ∂Yi,j
∂Yi−1,j

, which can be shown analo-

gously to Equations 13 and 14.
To compute the adjoint operators, we use a recursive implementation with a computation

flow analogous to backtracking for the SW algorithm albeit with different update rules. Namely,

M̄i,j =
∂s∗τ (x, y)

∂T

∂T

∂Mi,j
+

∂s∗τ (x, y)

∂Mi+1,j+1

∂Mi+1,j+1

∂Mi,j
+
∂s∗τ (x, y)

∂Xi,j+1

∂Xi,j+1

∂Mi,j
+
∂s∗τ (x, y)

∂Yi+1,j

∂Yi+1,j

∂Mi,j

=
∂T

∂Mi,j
+ M̄i+1,j+1

∂Mi+1,j+1

∂Mi,j
+ X̄i,j+1

∂Xi,j+1

∂Mi,j
+ Ȳi+1,j

∂Yi+1,j

∂Mi,j
,

X̄i,j =
∂s∗τ (x, y)

∂Mi+1,j+1

∂Mi+1,j+1

∂Xi,j
+
∂s∗τ (x, y)

∂Xi,j+1

∂Xi,j+1

∂Xi,j
+
∂s∗τ (x, y)

∂Yi+1,j

∂Yi+1,j

∂Xi,j

= M̄i+1,j+1
∂Mi+1,j+1

∂Xi,j
+ X̄i,j+1

∂Xi,j+1

∂Xi,j
+ Ȳi+1,j

∂Yi+1,j

∂Xi,j
,

Ȳi,j =
∂s∗τ (x, y)

∂Mi+1,j+1

∂Mi+1,j+1

∂Yi,j
+
∂s∗τ (x, y)

∂Yi+1,j

∂Yi+1,j

∂Yi,j

= M̄i+1,j+1
∂Mi+1,j+1

∂Yi,j
+ Ȳi+1,j

∂Yi+1,j

∂Yi,j
.

(16)

The (local) partial derivatives of the update rules in Equation 8 can all be trivially evaluated,
as they are all instances of the smoothed max operator maxτ ({u1, . . . , uk}) = τ log

∑k
i=1 e

uk/τ

whose partial derivatives ∂maxτ ({u1,...,uk})
∂ui

= exp
(
ui−maxτ ({u1,...,uk})

τ

)
are given by the well-

known softmax function. For instance, one may write ∂T
∂Mi,j

= exp
(
Mi,j−T

τ

)
,
∂Mi+1,j+1

∂Mi,j
=

exp
(
Mi,j−Mi+1,j+1

τ

)
and

∂Yi+1,j

∂Xi,j
= exp

(
Xi,j+Oi,j−Yi+1,j

τ

)
. Lastly, we highlight that a careful

implementation can reuse the memory used to store the values of Mi,j , Xi,j and Yi,j during the
forward pass to also store M̄i,j , X̄i,j and Ȳi,j during the backward pass, roughly halving memory
usage relative to a brute-force implementation.

S1.5 Selecting the best-performing substitution matrix baseline

We use a combination of in-distribution and out-of-distribution performance on the alignment
and homology detection tasks to optimize the matrix number, gap open and gap extend penalties
for each matrix family. This criterion preferentially selects versatile models that perform reliably
well across all tasks under consideration over models that excel at a single task. Supposing there
are N metrics2 we wish to take into account and K different hyperparameter settings to select
from, we define an additive, self-normalized scalar summary of these N metrics as

fk :=
1

N

N∑
i=1

fi,k −mink fi,k
maxk fi,k −mink fi,k

, (17)

2For the sake of simplicity, we tacitly assume all metrics have been defined so that larger values imply better
performance. In practice, we multiply the metric by minus one before normalization and aggregation whenever
this is not the case.
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where fi,k is the value that the k-th hyperparameter setting attains for the i-th metric. The
optimal hyperparameters are then simply determined as k∗ = argmax k fk. Concretely, in
this work we use N = 4 metrics, namely, (i) in-distribution alignment F1 score, (ii) out-of-
distribution alignment F1 score, (iii) in-distribution homology detection AUPRC for remote
homologs (PID < 0.1) and (iv) out-of-distribution homology detection AUPRC for remote
homologs. In all cases, these metrics are computed on the validation splits, which have no
overlap with the held-out test set.
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S2 Supplementary Results

S2.1 Ablation study

We implemented six variations of DEDAL, each aiming to probe the effect on alignment and
homology detection performance of one specific aspect of the model. These share training
protocol and hyperparameters with the original DEDAL model, when applicable. To further
reduce the computational footprint of these experiments, all models, including the original,
were trained for half the number of steps and a single replicate was used for each ablation.
Figures S4 and S5 display the alignment F1 scores and homology detection AUPRC values for
all approaches under study.
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Figure S4: Alignment F1 score of the original DEDAL model alongside six ablations. Overall
performance (not stratified by PID) is displayed in the legend. Results for the original model
were averaged over 10 replicates, with error bars describing 95% confidence intervals. Ablation
results are based on a single replicate for computational considerations. (a) Pfam extended
domains, in-distribution split. (b) Pfam extended domains, out-of-distribution split (held-out
Pfam clans). (c) Pfam domain, in-distribution split. (d) Pfam domain, out-of-distribution split
(held-out Pfam clans).

Position-independent gap penalties. Unlike DEDAL, traditional parameterizations of the
SW algorithm use unique gap open and gap extend penalties that are shared across all positions.
We tested a version of DEDAL that learns scalar, position-independent gap open and gap extend
parameters instead of computing these as a function of the residue embeddings. Our findings
suggest that this variant performs within the margin of error of the original model, achieving
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Figure S5: Homology detection AUPRC of the original DEDAL model alongside six ablations.
Overall performance (not stratified by PID) is displayed in the legend. Results for the original
model were averaged over 10 replicates, with error bars describing 95% confidence intervals.
Ablation results are based on a single replicate for computational considerations. (a) Pfam
extended domains, in-distribution split. (b) Pfam extended domains, out-of-distribution split
(held-out Pfam clans). (c) Global alignment, in-distribution split. (d) Global alignment, out-
of-distribution split (held-out Pfam clans).

slightly superior alignment F1 scores in the in-distribution split yet marginally inferior results
for out-of-distribution sequence pairs.

Linear gap penalty model. DEDAL uses an affine gap penalty model, allowing it to assign
different costs to opening or extending gaps in an alignment. We explored an alternative version
of DEDAL based on a linear gap penalty model instead. This simplification leads to a small
performance drop for remote homologs that is most pronounced in the out-of-distribution split.

Regularization-based relaxation. In this work, we proposed two different techniques to
relax the SW algorithm during training for end-to-end differentiability. While the final DEDAL
model makes use of perturbations [7] to accomplish this, we also experimented with a variant
based on smoothing via regularization [11]. Our results hint that both approaches perform com-
parably well, with the regularization-based version of DEDAL having slightly better alignment
F1 scores and somewhat inferior homology detection AUPRC values, albeit not by a statistically
significant margin.
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Trained on Pfam domains. We tried training DEDAL on the original Pfam-A seed se-
quences, whose ground-truth alignments are predominantly global or close to global, instead of
on the extended Pfam domains we use to train DEDAL normally. As expected, this training
regime enhances the performance of DEDAL when aligning Pfam domains even further, with
in-distribution F1 scores for the smallest PID bin (< 0.1) being up to 311% superior to those of
the best-performing substitution matrix baseline. However, this comes at the cost of poor gen-
eralization in scenarios where the model must predict local alignments, such as when aligning
extended Pfam domains, where it only outperforms substitution matrices by a moderate margin
(81% as opposed to 219% for PID below 0.1). In contrast, when DEDAL is trained on the more
diverse set of extended Pfam domains, it performs consistently well both in situations requiring
local alignments and those for which the sought-after alignments happen to be approximately
global.

Frozen sequence encoder. To train DEDAL, we jointly tune the parameters of the trans-
former encoder network that continuously embeds input sequences and the (differentiable) align-
ment layer that scores and aligns them. To examine the importance of end-to-end, joint training,
we first fit a transformer encoder network on a masked language modelling task and then tuned
the differentiable alignment layer’s parameters while keeping the sequence encoder’s weights
constant. We find this to have a small, mostly negative effect on out-of-distribution perfor-
mance. However, in-distribution performance is significantly affected, with e.g. alignment F1

scores dropping by up to 33% for the hardest setting (PID < 0.1).

No sequence encoder. Finally, we take a step further relative to the previous ablation and
eliminate the sequence encoder altogether. This setting is equivalent to using our differentiable
alignment layer and training scheme to learn a substitution matrix alongside scalar gap open and
gap extend penalties. Unsurprisingly, we observed this to perform comparably, if not somewhat
worse, than the best-performing substitution matrices from the literature.

All in all, our ablation study indicates that DEDAL is surprisingly robust to changes in
many aspects of the model. Notably, the specific way in which gap penalties are parameterized
appears to have only a small effect on performance, as does the choice of approach to relax
the SW algorithm during training. In contrast, we found end-to-end, joint training of a flexible
sequence encoder and the differentiable alignment layer to be instrumental in realizing DEDAL’s
full potential.

S2.2 Results on the TAPE benchmark

We follow the Tasks Assessing Protein Embeddings (TAPE) benchmark [12] to probe whether
using pairwise sequence alignment as supervision leads to better sequence embeddings for down-
stream tasks. TAPE provides standardized train, validation and test splits for five heterogeneous
tasks. In a nutshell, these tasks are:

Secondary structure: A per-residue, 3-way (helix, strand, other) classification task, using the
data from [13, 14]. It consists of 8, 678, 2, 170 and 513 sequences for training, validation
and testing, respectively.

Residue-residue contacts: This task requires predicting residue pairs that are “in contact”,
defined as being less than 8Å apart. It relies on the data from [15], which provides 25, 299
training sequences alongside a test set of 40 sequences (CASP12 [16]) and an additional
set of 224 sequences for validation.

Fold classification: A per-sequence, 1, 195-way classification task aiming to predict the SCOP
hierarchy fold [17] each protein belongs to. Data is taken from [18] and is divided into
12, 312 training, 736 validation and 718 test sequences.

12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468653
http://creativecommons.org/licenses/by/4.0/


Fluorescence landscape: A per-sequence regression task whose goal is to predict the log-
fluorescence intensity of variations of a green fluorescent protein (GFP). It contains 21, 446
training, 5, 362 validation and 27, 217 testing sequences obtained from [19].

Stability landscape: Another per-sequence regression task aiming to predict a proxy for the
intrinsic stability of proteins. It uses 53, 614 training, 2, 512 validation and 12, 851 testing
sequences from [20].

We aim to reproduce the experimental setup used in the TAPE benchmark suite [12]. Namely,
we use the same output head and losses as [12] for most tasks and fine-tune the sequence
encoder while training the output head. Rather than exactly following TAPE, we chose to
simplify the output heads for the secondary structure and residue-residue contact prediction
tasks for computational considerations. Concretely, for secondary structure prediction, we did
not employ NetSurfP-2.0 [13]. Instead, we used a simpler model consisting of a stack of two 1D
convolutional layers followed by an affine mapping with output dimension three, corresponding
to the number of classes (helix, strand, other). The convolutional layers have 256 and 128
filters respectively, with kernel size 10, ReLU activations and dropout with rate 0.1. Similarly,
for contact prediction we simplify the RaptorX-based output head [21] used in TAPE by (i)
applying linear dimensionality reduction layer that halves the dimensionality of the residue
embeddings and (ii) reducing the number of ResNet blocks from 30 to 6.

For each task in the TAPE benchmark suite, we consider three different initializations for
the sequence encoder: (i) random, (ii) pretrained on masked language modelling only and (iii)
pretrained with DEDAL. In all cases, we use the Adam optimizer with a fixed learning rate,
treated as a hyperparameter to choose from {10−3, 10−4, 10−5}, and apply early stopping to
select the number of training steps. Both are tuned independently for each task to maximize
the task’s corresponding metric on its validation set.

Task Measure Random Language modelling DEDAL

SS Accuracy 0.700 (0.001) 0.755 (0.001) 0.756 (0.001)

Contact AUPRC 0.158 (0.008) 0.380 (0.020) 0.375 (0.024)

Folds Accuracy 0.096 (0.009) 0.232 (0.011) 0.240 (0.008)

Fluorescence MSE 0.413 (0.132) 0.153 (0.009) 0.198 (0.040)

Stability MSE 0.213 (0.027) 0.296 (0.052) 0.294 (0.056)

Table S2: Performance on downstream tasks from the TAPE benchmark suite for different
initializations of the sequence encoder: (i) random (from scratch), (ii) pretrained on masked
language modelling only and (iii) pretrained on alignment, homology detection and masked
language modelling (DEDAL). The secondary structure (SS) and fold classification (Folds) tasks
are evaluated in terms of classification accuracy (higher is better). The protein engineering tasks
(fluorescence and stability) are quantified according to the mean squared error (MSE, lower is
better). Finally, the residue-residue contact prediction task (Contact) uses AUPRC for medium
range contacts (higher is better). All results are averaged over 10 replicates, with the standard
deviation indicated in parenthesis.

The results for all five problems are summarized in Table S2. We find that both the masked
language modelling and DEDAL succeed in learning sequence representations that are trans-
ferable to downstream tasks. Indeed, initializing the model from scratch is only the superior
strategy in one of the five problems, stability landscape prediction, which happens to be that
which has the largest amount of training data. When it comes to comparing masked lan-
guage modelling to DEDAL, our results suggest that both strategies perform similarly, with the
DEDAL-based initialization being marginally better at secondary structure prediction and fold
classification, and marginally worse at predicting contacts and the fluorescence landscape

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468653
http://creativecommons.org/licenses/by/4.0/


S3 Supplementary Figures
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Figure S6: A kernel density estimate of the PID distribution for sequence pairs with and without
data augmentation. 128,000 sequence pairs from the training set were used to estimate each
distribution.
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Figure S7: Alignment precision of DEDAL and the best-performing substitution matrix baseline,
in the in- and out-of-distribution settings (respectively, left and right columns), and for Pfam
extended or raw domains (respectively, top and bottom rows).
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Figure S8: Alignment recall of DEDAL and the best-performing substitution matrix baseline,
in the in- and out-of-distribution settings (respectively, left and right columns), and for Pfam
extended or raw domains (respectively, top and bottom rows).

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468653
http://creativecommons.org/licenses/by/4.0/


82.5%
85.0%
87.5%
90.0%
92.5%
95.0%
97.5%

100.0%
AU

RO
C

Pfam extended domains, in-distribution Pfam extended domains, out-of-distribution

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-1.0)

Percent Identity

82.5%
85.0%
87.5%
90.0%
92.5%
95.0%
97.5%

100.0%

AU
RO

C

Pfam domains, in-distribution

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-1.0)

Percent Identity

Pfam domains, out-of-distribution

DEDAL
Best substitution matrix

Figure S9: Homology detection AUROC of DEDAL and the best-performing substitution matrix
baseline, in the in- and out-of-distribution settings (respectively, left and right columns), and
for Pfam extended or raw domains (respectively, top and bottom rows).
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