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in the last step of Equation 12. Based on the same approach, the partial derivatives with respect
to the gap extend penalties are given by
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and gt = — -, which can be shown analo-

(15)

where again we used thatgif:jj = — 8?()2_{1
gously to Equations 13 and 14.
To compute the adjoint operators, we use a recursive implementation with a computation

ow analogous to backtracking for the SW algorithm albeit with di erent update rules. Namely,
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The (local) partial derivatives of the update rules in Equation 8 can all be trivially evaluated,
as they are all instances of the smoothed max operator maX{u;:::;ux}) = log Ele gun/T

Usg T

whose partial derivatives ama"*({.{aul”“’“’“}) = exp (“"_maxf({“l"”“"'})) are given by the well-

known softmax function. For instance, one may write az‘?} = exp (Mi*fT), mgﬁjiﬂ =
5 T i,]
M j—Mit1,; i1, — Xi,j+0i,;—Yig1,5 T
exp (%*”“) and axt—.jj = exp <%ﬂ . Lastly, we highlight that a careful

implementation can reuse the memory used to store the values &, ;, X; ; and Y; ; during the
forward pass to also storeM; ;, X; ; and Y; ; during the backward pass, roughly halving memory
usage relative to a brute-force implementation.

S1.5 Selecting the best-performing substitution matrix baseline

We use a combination of in-distribution and out-of-distribution performance on the alignment
and homology detection tasks to optimize the matrix number, gap open and gap extend penalties
for each matrix family. This criterion preferentially selects versatile models that perform reliably
well across all tasks under consideration over models that excel at a single task. Supposing there
are N metrics? we wish to take into account andK di erent hyperparameter settings to select
from, we de ne an additive, self-normalized scalar summary of theséN metrics as

N .
1 fik—mlnkfik
fr= — ’ = 17
k N ;maxkfivk—mlnkfi,k ( )

2For the sake of simplicity, we tacitly assume all metrics have been defined so that larger values imply better
performance. In practice, we multiply the metric by minus one before normalization and aggregation whenever
this is not the case.
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where f; 1 is the value that the k-th hyperparameter setting attains for the i-th metric. The
optimal hyperparameters are then simply determined as k* = argmax, fi. Concretely, in
this work we use N = 4 metrics, namely, (i) in-distribution alignment F1 score, (ii) out-of-
distribution alignment F1 score, (iii) in-distribution homology detection AUPRC for remote
homologs (PID < 0.1) and (iv) out-of-distribution homology detection AUPRC for remote
homologs. In all cases, these metrics are computed on the validation splits, which have no
overlap with the held-out test set.
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S2 Supplementary Results

S2.1 Ablation study

We implemented six variations of DEDAL, each aiming to probe the effect on alignment and
homology detection performance of one specific aspect of the model. These share training
protocol and hyperparameters with the original DEDAL model, when applicable. To further
reduce the computational footprint of these experiments, all models, including the original,
were trained for half the number of steps and a single replicate was used for each ablation.

Figures [S4) and [S5 display the alignment F; scores and homology detection AUPRC values for
all approaches under study.
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Figure S4: Alignment Fj score of the original DEDAL model alongside six ablations. Overall
performance (not stratified by PID) is displayed in the legend. Results for the original model
were averaged over 10 replicates, with error bars describing 95% confidence intervals. Ablation
results are based on a single replicate for computational considerations. (a) Pfam extended
domains, in-distribution split. (b) Pfam extended domains, out-of-distribution split (held-out
Pfam clans). (c) Pfam domain, in-distribution split. (d) Pfam domain, out-of-distribution split
(held-out Pfam clans).

Position-independent gap penalties. Unlike DEDAL, traditional parameterizations of the
SW algorithm use unique gap open and gap extend penalties that are shared across all positions.
We tested a version of DEDAL that learns scalar, position-independent gap open and gap extend
parameters instead of computing these as a function of the residue embeddings. Our findings
suggest that this variant performs within the margin of error of the original model, achieving
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Figure S5: Homology detection AUPRC of the original DEDAL model alongside six ablations.
Overall performance (not stratified by PID) is displayed in the legend. Results for the original
model were averaged over 10 replicates, with error bars describing 95% confidence intervals.
Ablation results are based on a single replicate for computational considerations. (a) Pfam
extended domains, in-distribution split. (b) Pfam extended domains, out-of-distribution split
(held-out Pfam clans). (c) Global alignment, in-distribution split. (d) Global alignment, out-
of-distribution split (held-out Pfam clans).

slightly superior alignment F) scores in the in-distribution split yet marginally inferior results
for out-of-distribution sequence pairs.

Linear gap penalty model. DEDAL uses an affine gap penalty model, allowing it to assign
different costs to opening or extending gaps in an alignment. We explored an alternative version
of DEDAL based on a linear gap penalty model instead. This simplification leads to a small
performance drop for remote homologs that is most pronounced in the out-of-distribution split.

Regularization-based relaxation. In this work, we proposed two different techniques to
relax the SW algorithm during training for end-to-end differentiability. While the final DEDAL
model makes use of perturbations to accomplish this, we also experimented with a variant
based on smoothing via regularization . Our results hint that both approaches perform com-
parably well, with the regularization-based version of DEDAL having slightly better alignment
Iy scores and somewhat inferior homology detection AUPRC values, albeit not by a statistically
significant margin.
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Trained on Pfam domains. We tried training DEDAL on the original Pfam-A seed se-
quences, whose ground-truth alignments are predominantly global or close to global, instead of
on the extended Pfam domains we use to train DEDAL normally. As expected, this training
regime enhances the performance of DEDAL when aligning Pfam domains even further, with
in-distribution F scores for the smallest PID bin (< 0.1) being up to 311% superior to those of
the best-performing substitution matrix baseline. However, this comes at the cost of poor gen-
eralization in scenarios where the model must predict local alignments, such as when aligning
extended Pfam domains, where it only outperforms substitution matrices by a moderate margin
(81% as opposed to 219% for PID below 0.1). In contrast, when DEDAL is trained on the more
diverse set of extended Pfam domains, it performs consistently well both in situations requiring
local alignments and those for which the sought-after alignments happen to be approximately
global.

Frozen sequence encoder. To train DEDAL, we jointly tune the parameters of the trans-
former encoder network that continuously embeds input sequences and the (differentiable) align-
ment layer that scores and aligns them. To examine the importance of end-to-end, joint training,
we first fit a transformer encoder network on a masked language modelling task and then tuned
the differentiable alignment layer’s parameters while keeping the sequence encoder’s weights
constant. We find this to have a small, mostly negative effect on out-of-distribution perfor-
mance. However, in-distribution performance is significantly affected, with e.g. alignment Fj
scores dropping by up to 33% for the hardest setting (PID < 0.1).

No sequence encoder. Finally, we take a step further relative to the previous ablation and
eliminate the sequence encoder altogether. This setting is equivalent to using our differentiable
alignment layer and training scheme to learn a substitution matrix alongside scalar gap open and
gap extend penalties. Unsurprisingly, we observed this to perform comparably, if not somewhat
worse, than the best-performing substitution matrices from the literature.

All in all, our ablation study indicates that DEDAL is surprisingly robust to changes in
many aspects of the model. Notably, the specific way in which gap penalties are parameterized
appears to have only a small effect on performance, as does the choice of approach to relax
the SW algorithm during training. In contrast, we found end-to-end, joint training of a flexible
sequence encoder and the differentiable alignment layer to be instrumental in realizing DEDAL’s
full potential.

S2.2 Results on the TAPE benchmark

We follow the Tasks Assessing Protein Embeddings (TAPE) benchmark [12] to probe whether
using pairwise sequence alignment as supervision leads to better sequence embeddings for down-
stream tasks. TAPE provides standardized train, validation and test splits for five heterogeneous
tasks. In a nutshell, these tasks are:

Secondary structure: A per-residue, 3-way (helix, strand, other) classification task, using the
data from |13, |14]. It consists of 8,678, 2,170 and 513 sequences for training, validation
and testing, respectively.

Residue-residue contacts: This task requires predicting residue pairs that are “in contact”,

defined as being less than 8A apart. It relies on the data from [15], which provides 25,299
training sequences alongside a test set of 40 sequences (CASP12 |16]) and an additional
set of 224 sequences for validation.

Fold classification: A per-sequence, 1, 195-way classification task aiming to predict the SCOP
hierarchy fold [17] each protein belongs to. Data is taken from [18] and is divided into
12,312 training, 736 validation and 718 test sequences.
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Fluorescence landscape: A per-sequence regression task whose goal is to predict the log-
fluorescence intensity of variations of a green fluorescent protein (GFP). It contains 21, 446
training, 5,362 validation and 27,217 testing sequences obtained from [19].

Stability landscape: Another per-sequence regression task aiming to predict a proxy for the
intrinsic stability of proteins. It uses 53,614 training, 2,512 validation and 12,851 testing
sequences from [20].

We aim to reproduce the experimental setup used in the TAPE benchmark suite [12]. Namely,
we use the same output head and losses as [12] for most tasks and fine-tune the sequence
encoder while training the output head. Rather than exactly following TAPE, we chose to
simplify the output heads for the secondary structure and residue-residue contact prediction
tasks for computational considerations. Concretely, for secondary structure prediction, we did
not employ NetSurfP-2.0 [13]. Instead, we used a simpler model consisting of a stack of two 1D
convolutional layers followed by an affine mapping with output dimension three, corresponding
to the number of classes (helix, strand, other). The convolutional layers have 256 and 128
filters respectively, with kernel size 10, ReLLU activations and dropout with rate 0.1. Similarly,
for contact prediction we simplify the RaptorX-based output head [21] used in TAPE by (i)
applying linear dimensionality reduction layer that halves the dimensionality of the residue
embeddings and (ii) reducing the number of ResNet blocks from 30 to 6.

For each task in the TAPE benchmark suite, we consider three different initializations for
the sequence encoder: (i) random, (ii) pretrained on masked language modelling only and (iii)
pretrained with DEDAL. In all cases, we use the Adam optimizer with a fixed learning rate,
treated as a hyperparameter to choose from {1073,107%,107°}, and apply early stopping to
select the number of training steps. Both are tuned independently for each task to maximize
the task’s corresponding metric on its validation set.

Task Measure Random Language modelling DEDAL
SS Accuracy | 0.700 (0.001) 0.755 (0.001) 0.756 (0.001)
Contact AUPRC | 0.158 (0.008) 0.380 (0.020) 0.375 (0.024)
Folds Accuracy | 0.096 (0.009) 0.232 (0.011) 0.240 (0.008)
Fluorescence MSE 0.413 (0.132) 0.153 (0.009) 0.198 (0.040)
Stability MSE 0.213 (0.027) 0.296 (0.052) 0.294 (0.056)

Table S2: Performance on downstream tasks from the TAPE benchmark suite for different
initializations of the sequence encoder: (i) random (from scratch), (ii) pretrained on masked
language modelling only and (iii) pretrained on alignment, homology detection and masked
language modelling (DEDAL). The secondary structure (SS) and fold classification (Folds) tasks
are evaluated in terms of classification accuracy (higher is better). The protein engineering tasks
(fluorescence and stability) are quantified according to the mean squared error (MSE, lower is
better). Finally, the residue-residue contact prediction task (Contact) uses AUPRC for medium
range contacts (higher is better). All results are averaged over 10 replicates, with the standard
deviation indicated in parenthesis.

The results for all five problems are summarized in Table We find that both the masked
language modelling and DEDAL succeed in learning sequence representations that are trans-
ferable to downstream tasks. Indeed, initializing the model from scratch is only the superior
strategy in one of the five problems, stability landscape prediction, which happens to be that
which has the largest amount of training data. When it comes to comparing masked lan-
guage modelling to DEDAL, our results suggest that both strategies perform similarly, with the
DEDAL-based initialization being marginally better at secondary structure prediction and fold
classification, and marginally worse at predicting contacts and the fluorescence landscape

13


https://doi.org/10.1101/2021.11.15.468653
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.15.468653; this version posted November 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

S3 Supplementary Figures
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Figure S6: A kernel density estimate of the PID distribution for sequence pairs with and without
data augmentation. 128,000 sequence pairs from the training set were used to estimate each
distribution.
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Figure S7: Alignment precision of DEDAL and the best-performing substitution matrix baseline,
in the in- and out-of-distribution settings (respectively, left and right columns), and for Pfam
extended or raw domains (respectively, top and bottom rows).
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Figure S8: Alignment recall of DEDAL and the best-performing substitution matrix baseline,
in the in- and out-of-distribution settings (respectively, left and right columns), and for Pfam
extended or raw domains (respectively, top and bottom rows).
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baseline, in the in- and out-of-distribution settings (respectively, left and right columns), and
for Pfam extended or raw domains (respectively, top and bottom rows).
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