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Abstract

With the emergence of hundreds of single-cell RNA-sequencing (scRNA-seq) datasets,

the number of computational tools to analyse aspects of the generated data has grown

rapidly. As a result, there is a recurring need to demonstrate whether newly devel-

oped methods are truly performant – on their own as well as in comparison to existing

tools. Benchmark studies aim to consolidate the space of available methods for a given

task, and often use simulated data that provide a ground truth for evaluations. Thus,

demanding a high quality standard for synthetically generated data is critical to make

simulation study results credible and transferable to real data.

Here, we evaluated methods for synthetic scRNA-seq data generation in their ability to

mimic experimental data. Besides comparing gene- and cell-level quality control sum-

maries in both one- and two-dimensional settings, we further quantified these at the

batch- and cluster-level. Secondly, we investigate the effect of simulators on clustering

and batch correction method comparisons, and, thirdly, which and to what extent qual-

ity control summaries can capture reference-simulation similarity.

Our results suggest that most simulators are unable to accommodate complex designs

without introducing artificial effects; they yield over-optimistic performance of inte-

gration, and potentially unreliable ranking of clustering methods; and, it is generally

unknown which summaries are important to ensure effective simulation-based method

comparisons.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) has become an established tool for studying the transcriptome at

individual cell resolution. Since the first scRNA-seq study’s publication in 2009[1], there has been a rapid

increase in the number of scRNA-seq datasets, number of cells and samples per dataset[2], and a corresponding5

growth in the number of computational methods to analyse such data, with over one thousand tools catalogued

to date[3,4]. With the development of new methods comes the need to demonstrate their performance, and

to consolidate the space of available methods through comprehensive and neutral benchmark studies[5,6,7].

In this context, simulations have become an indispensable tool, for example, to investigate how methods

respond to varying parameter inputs and quantify their scalability in terms of computational cost, as well10

as ensuring that a method is performant across a range of scenarios and in comparison to other available

tools. The attractiveness of simulation studies is largely due to being able to specify a ground truth, which

is often challenging or infeasible to establish in experimental data[8]. For example, evaluation of methods

to group cells into biologically meaningful subpopulations (clusters) relies on ‘true’ labels to be compared

against. While these may be attainable (e.g., through cell-sorting) or derived (e.g., manual annotation15

by an expert), simulations enable testing methods across a wide range of scenarios where the number of

clusters, between-cluster (dis)similarity and effects of other covariates can be deeply explored. As a result,

simulations have been applied to benchmark methods across a wide range of tasks, including differential

expression analysis[9,10,11], trajectory inference[12], and data integration[13,14].

By definition, simulations generate synthetic data. On the one hand, conclusions drawn from simulation20

studies are frequently criticized, because simulations cannot completely mimic (real) experimental data. On

the other hand, it is often too expensive, or even impossible, to generate experimental data that is suitable

for formal performance comparison. Nonetheless, setting a high quality standard for simulations is all the

more important to ensure results based on them are transferable to corresponding experimental datasets.

Typically, new simulation methods come with minimal (non-neutral) benchmarks that focus on one-25

dimensional evaluations, i.e. how similarly a set of summaries is distributed between a reference and simulated

dataset (e.g., Zappia et al.[15]). In some cases, two-dimensional relationships (e.g., gene expression mean-

variance) are explored (e.g., Assefa et al.[16]). However, the faithfulness of the full complexity of the simulated

scRNA-seq data, including batch effects and clusters, is rarely evaluated. To date, there has been only one

neutral evaluation of how well scRNA-seq data simulators recapitulate key characteristics of the counts,30

sample- and subpopulation-effects present in real data[17]; in particular, they proposed a novel kernel density

metric to evaluate similarity of real and simulated data summaries. However, to what extent simulators affect

the results of method comparisons is not considered.

Methods for simulating scRNA-seq data may be categorized according to various factors. Most impor-

tantly, there is a dichotomy between methods that generate synthetic data de novo, and those that rely on a35

reference dataset. The former depend on user-defined parameter inputs to generate counts, and introduce ar-

tificial effects between, e.g., different groups of cells or samples. Conversely, reference-based methods estimate

parameters to mimic the gene expression profiles observed in the reference dataset. However, many methods

employ a hybrid framework where, e.g., baseline parameters are estimated from a ‘singular’ reference (i.e., a

homogeneous group of cells), and additional layers of complexity (e.g., batch effects, multiple clusters and/or40

experimental conditions) are added post hoc. Both strategies have their advantages and disadvantages: de

novo simulators offer high flexibility in varying the strength and specificity of different effects, but might not

generate realistic data; in contrast, reference-based methods are limited to the complexity of the input data

and consequently less flexible, but are by default more realistic. Taken together, there is a trade-off between

how applicable methods are in benchmarking single-cell analysis tools across a wide range of scenarios versus45

whether simulation study results are directly transferable to real data.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468676
http://creativecommons.org/licenses/by/4.0/


Here, we evaluated 16 scRNA-seq simulation methods in their ability to replicate important aspects

of a real reference dataset. We considered various global, gene- and cell-level summaries, and compared

them between reference and simulated data, in both one- and two-dimensional settings. In addition to

global distributions (i.e. across all cells), we made batch- and cluster-level comparisons to capture structural50

differences in the summaries.

Our results suggest that there is a noticeable shortage of simulators that can accommodate complex

situations, and that popular simulators do not adequately mimic real datasets. In particular, some current

methods are able to simulate multiple groups of cells (e.g., batches and/or clusters), but do so in an ad

hoc manner, e.g., by introducing arbitrary differences based on parameter inputs. Few methods attempt to55

estimate and mimic group effects from reference datasets, but this comes at a loss of supplying a ground

truth.

Results

Benchmark design. We evaluated simulators based on 12 published datasets (see Reference datasets), from

which we generated a variety of subsets that serve as references for simulation (Supp. Tab. 1). We labelled60

references as one of three types according to their complexity: type n are ‘singular’ references that contain

cells from a single batch and cluster; type b contain cells from multiple batches; and type k contain cells from

multiple clusters (Supp. Fig. 1-3). Here, batches can be either biological or technical replicates; clusters refer

to cell subpopulations or types as annotated in the original data; and groups can be either batches, clusters,

or experimental conditions. In total, we used 10, 8, and 8 references of type n, b, and k, respectively.65

To objectively cover the space of currently available simulators, we browsed the scRNA-seq tools database[3,4],

which, at the time of writing, catalogued over 1000 tools for analysing scRNA-seq data, 65 of which hold a

“simulation” tag. We included all methods that i) could be installed and run after at most minor manual

adjustment(s); and, ii) were reference-based, i.e., supported parameter estimation from a real dataset. We

selected a total of 16 methods, 10/8 of which could accommodate batches/clusters (Tab. 1). A brief summary70

of each method’s model framework, capabilities and limitations, as well as the parameter settings used in

this study is given under Methods.

Because different simulators can generate different levels of complexity (two groups, multiple clusters or

batches, both or neither), we tagged each method according to their capabilities (type n, b and/or k). Each

method was only run on corresponding reference datasets. A more detailed overview of the computational75

pipeline for this study is given in Fig. 1 (see also Computational workflow).

In order to investigate how widely and for what purpose different simulators are applied, we browsed

the literature for benchmark studies that compare tools for a specific scRNA-seq analysis task. Depending

on the task, such comparisons often rely on simulation studies where a ground truth is known (by design),

or a combination of simulated and real data, where an experimental ground truth exists. For each bench-80

mark, we summarized the task of interest and, if any, which simulator(s) are used. Across all considered

benchmarks, these amounted to only five, namely: muscat (1), scDesign (1), powsimR (2), scDD (3), and

splatter (13). Benchmark tasks included batch effects[13,14], clustering[18,19,20], doublet detection[21], differen-

tial expression[9,10,11,22], dimensionality reduction[23,24], imputation[25,26], isoform quantification[27], marker

selection[28,29], normalization[30], pipelines[31,32], cell type assignment[33], and trajectory inference[12].85
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Batches Clusters Type(s) Parallelization Availability Year Model Benchmark(s)

BASiCS[34] 3 7 b 3 7 R/Bioc 2015 NB

ESCO[35] 3 3 n,b,k 3 3 R/GitHub 2020 Gamma-Poisson

hierarchicell[36] 3 7 n,b 7 7 R/GitHub 2021 NB

muscat[37] 3 3 n,b,k 7 7 R/Bioc 2020 NB [32]

POWSC[38] 7 3 n,k 7 7 R/Bioc 2020
zero-inflated,

log-normal Poisson

mixture

powsimR[39] 7 (3) n*(,k) 3 3 R/GitHub 2017 NB [10,31]

scDD[40] 7 7 n* 3 3 R/Bioc 2016
Bayesian NB mixture

model
[9,11,29]

scDesign[41] 7 (3) n(,k) ◦ 3 R/GitHub 2019
Gamma-Normal

mixture model
[21]

scDesign2[42] 7 3 n,k 3 7 R/GitHub 2020

(zero-inflated) Poisson

or NB + Gaussian

copula for gene-gene

correlations

SCRIP 3 3 n,b,k 7 7 R/GitHub 2020

(zero-inflated) Poisson

or NB + Gaussian

copula for gene-gene

correlations

SPARSim[43] 3 7 n,b 7 7 R/GitLab 2020
Gamma-multivariate

hypergeometric

splatter[15] (3) (3) n(,b,k)† 7 7 R/Bioc 2017 Gamma-Poisson
[13,14,18,19,22,23,24]

[25,26,28,30,33,12]

SPsimSeq[16] 3 7 n,b ◦ 7 R/Bioc 2020

log-linear model-based

density estimation +

Gaussian copula for

gene-gene correlations

SymSim[44] 3 7 n,b 7 7 R/GitHub 2019
kinetic model using

MCMC

ZINB-WaVE[45] 3 3 n,b,k 7 7 R/Bioc 2018 zero-inflated NB

zingeR[46] 7 7 n 7 7 R/GitHub 2017 zero-inflated NB

Table 1: Overview of scRNA-seq simulators compared in this study. Methods are ordered alphabetically and

annotated according to their (in)ability to accommodate multiple batches and/or clusters, support for parallelization

(parameter estimation and data simulation, respectively), software availability, and publication year. The right-most

column catalogues neutral benchmark studies where each simulator was used. ( 3 = yes, 7 = no, (3)= yes, but

based on user input parameters, i.e. no support for parameter estimation, *requires random splitting of cells into

two groups, †type b/k accommodated by joining type n simulations of each group (batch/cluster), ◦ = no separate

estimation step).

In order to summarize how well each simulator recapitulates key characteristics of the reference scRNA-seq

dataset, we computed a range of gene- and cell-level summaries for both reference and simulated datasets.

These include average and variance of log-transformed counts per million (CPM), coefficient of variation,

gene detection frequency, gene-to-gene correlation, log-transformed library size (total counts), cell detection

frequency, cell-to-cell correlation, local density factor, cell-to-cell distance, and k-nearest neighbor (KNN)90

occurrences (see Quality control summaries).

Since some summaries (e.g., detection frequency) can vary between batches (e.g., sequencing depths may

vary between protocols) and clusters (e.g., different cell types may differ in their overall expression), we

computed them globally, i.e. across all cells, as well as for each batch and cluster. Thus, for a given dataset

with B batches and K clusters, we obtain 1, 1 + B, and 1 + K results per summary for type n, b, and95

k, respectively. Two additional summaries were computed across all cells – namely, the percent variance

explained (PVE) at the gene-level (i.e. expression variance accounted for by batch/cluster for type b/k); and

the silhouette width and cell-specific mixing score (CMS) at the cell-level (considering as group labels the

batch/cluster for type b/k) – that aim to capture global batch or cluster effects on gene expression variability
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and cell-to-cell similarity, respectively.100

To evaluate simulator performance, we compared summaries between reference and simulated data in

one- and two-dimensional settings by computing the Kolmogorov-Smirnov (KS) distance[47] and Wasserstein

metric for each summary (Supp. Fig. 5-7), and the KS distance and earth mover’s distance (EMD) for each

relevant pair of summaries (Supp. Fig. 8-10). In general, these metrics quantify how dissimilar a pair of

(univariate or bivariate) distributions are (see Evaluation statistics). Test statistics were generally consistent105

between KS test and Wasserstein metric, as well as KS test and EMD (Supp. Fig. 4). Thus for brevity,

method performances are hereafter reported as one- and two-dimensional KS statistics.

Figure 1: Schematic of the computational workflow used to benchmark scRNA-seq simulators. (1) Methods are

grouped according to which level of complexity they can accommodate: type n (‘singular’), b (batches), k (clusters).

(2) Raw datasets are retrieved reproducibly from a public source, filtered, and subsetted into various datasets that

serve as reference for (3) parameter estimation and simulation. (4) Various gene-, cell-level and global summaries

are computed from reference and simulated data, and (5) compared in a one- and two-dimensional setting using

two statistics each. (6) Integration and clustering methods are applied to type b and k references and simulations,

respectively, and relative performances compared between reference-simulation and simulation-simulation pairs.

Simulators vary in their ability to mimic scRNA-seq data characteristics. Across all simulation

types, cell-level quality control summaries were generally poorly recapitulated (Fig. 2a), with the largest

deviance in cell-to-cell correlation. The silhouette width, CMS and PVE gave amongst the highest KS110

distances for most methods, indicating that, while group-level (i.e., within a batch or cluster) summaries

might be preserved well during simulation, the global data structure (e.g., inter-group relations) is not.

Despite its popularity, splatter ranked in the middle for the majority of summaries, with a noticeably weak

performance in cell-to-cell distance and silhouette width. scDD ranked poorly for most summaries, preceded

by hierarchicell and ESCO . Considering all summaries, ZINB -WaVE , scDesign2 , and muscat were among115

the best performing simulators, yielding low KS test statistics across a large number of metrics and datasets

(Fig. 2b).
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A BCD EF GHI J KL M NO P

A B CDE FHI JK L M NO P

AB CDEF GH I JK LM NO P

A BCD EF GHI J KLM NO P

A BCDE F GHI J KLM NO P

A BCD EI J K LM NO

A BCD EF GHI J KLM NO P

A B CD EF GHI JK LM NO P

AB CDEI J K LM NO

A BCD EF GHI J KLM NO P
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AB CD EI JK LM NO

A BC DE FGH IJ K LMNO P

A B CD E F GHI JK LM NO P
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B variance of logCPM

C coefficient of variation
D gene detection frequency
E gene − to − gene correlation
F log − library size

G cell detection frequency

H cell − to − cell correlation
I local density factor

J cell − to − cell distance
K KNN occurences
L percent variance explained
M cell − specific mixing score

N silhouette width

b

Figure 2: Kolmogorov–Smirnov (KS) test statistics comparing reference and simulated data across

methods and summaries. Included are datasets and methods of all types; statistics are from global comparisons

for type n, and otherwise averaged across cluster-/batch-level results. (a) Data are colored by method, and stratified

by summary. For each summary (panel), methods (x-axis) are ordered according to their average. (b) Data are

colored by summary, and stratified by method. For each method (panel), metrics (x-axis) are ordered according to

their average from best (small) to worst (large KS statistic). Panels (methods) are ordered by increasing average

across all summaries.

Finally, we ranked simulators according to their overall performance. In order to weight datasets equally

and independently of the number of subsets drawn from them, we first averaged statistics across subsets,

then datasets. Secondly, because simulators ranked similarly in both one- and two-dimensional comparisons,120

and performances were often linked for certain metrics, we limited rankings to one-dimensional evaluations

only, and averaged across all gene- and cell-level metrics. This resulted in three independent rankings, one

for each set of methods that can accommodate a given simulation type (Fig. 3). Notably, subpopulations

(batches/clusters) may vary in size and complexity. Thus, for types other than n, we averaged across group-

level results (instead of using global test results).125

For type n, ZINB -WaVE , scDesign2 , muscat , and SPsimSeq performed similarly well, with POWSC ,

ESCO , hierarchicell , and scDD ranking last across various summaries. ZINB -WaVE and muscat were also

the most performant among type b and k simulators, joined by SPARSim and scDesign2 , respectively. LDF,

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468676
http://creativecommons.org/licenses/by/4.0/


cell-to-cell distance and correlation (across all types) and global summaries (PVE and silhouette width for

type b and k) were poorly recapitulated.130

silhouette width
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cell detection frequency
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1
KS

Figure 3: Average performance in one- (upper row) and two-dimensional evaluations (bottom row) for (a,d) type

n, (b,e) type b, and (c,f) type k simulations. For each type, methods (x-axis) are ordered according to their average

performance across summaries in one-dimensional comparisons. Except for type n, batch- and cluster-level results

are averaged across batches and clusters, respectively. Boxes highlight gene-level (red), cell-level (blue), and global

summaries (green).

To measure the scalability of methods, we repeatedly timed estimation and simulation steps across varying

numbers of genes and cells (see Methods). Runtimes varied across several orders of magnitude (Supp. Fig.

11). Some methods did not offer separate estimation and data generation steps, while others can generate

multiple simulations from one-time parameter estimates. Specifically, the estimation step of scDesign2 ,

splatter , ZINB -WaVE and zingeR was relatively slow, but data simulation was not. In contrast, scDD ,135

SPsimSeq and SymSim took longer for simulation than estimation. Overall, BASiCS was by far the slowest.

scDD , scDesign2 , SPsimSeq , SymSim, ZINB -WaVE , and zingeR were approximately ten fold faster. The

remaining methods (ESCO , hierarchicell , muscat , POWSC , and splatter) were the fastest. While some

methods provide arguments for parallelization (see Tab. 1), all methods were run on a single core for

comparability.140

Batch simulators yield over-optimistic but faithful integration method performance. Ideally,

benchmark results (i.e. the ranking of computational tools for a given task) should be the same for experi-

mental and simulated data. In order to investigate how method comparison results are affected by simulation,
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we used the 8 type b references to compare 6 scRNA-seq batch correction methods. To evaluate method

performances, we computed: i) cell-specific mixing scores (CMS); and, ii) difference in local density factors145

(∆LDF) before and after integration[48]. In order to make metrics comparable across datasets, we zero-

centered CMS (denoted CMS*), and zero-centered and range-one scaled ∆LDF (denoted ∆LDF*). Finally,

we computed a batch correction score BCS = |CMS*| + |∆LDF*|, where small values indicates ideal mix-

ing (CMS* of 0 on average) while retaining the data’s internal structure (∆LDF* centered at 0), and large

values indicates batch-specific bias (high CMS* density at ±1) and changes in overall structure (∆LDF*150

non-symmetric).

∆LDF* were largely consistent between references and simulations (Supp. Fig. 13), whereas CMS* were

much less correlated for most methods (Supp. Fig. 12). BCSs were overall similar for simulated compared to

reference data, and well correlated between most reference-simulation and simulation-simulation pairs (Supp.

Fig. 12). Simulations from SPsimSeq , ZINB -WaVE , SPARsim, and SCRIP gave results most similar to real155

data, followed by BASiCS and splatter , and lastly muscat and SymSim. Notably, Harmony and ComBat

failed to correct for batch-effects in splatter simulations (see also Supp. Fig. 14-21). This is presumably due

to the fact that splatter generates batches independently, i.e., separately simulated subsets are concatenated

into a multi-batch dataset.

Cluster simulators affect the performance of clustering methods. Secondly, we used the 8 type k160

references to evaluate 9 scRNA-seq clustering methods that were previously compared in Duò et al.[19]. To

evaluate method performances, we computed cluster-level F1 scores, after using the Hungarian algorithm[49]

to match cluster assignments to ‘true’ labels.

Across all methods and datasets, F1 scores were consistently higher for simulated compared to real data

(Fig. 4a-b). In addition, for similarly performant simulators, clustering methods rankings were more depen-165

dent on the underlying reference dataset than the specific simulator used (Fig. 4c). And, some simulators

(e.g., splatter) gave almost identical F1 scores and rankings independent of the reference. Overall, method

rankings (according to F1 scores) were lowly correlated between simulated and reference data, as well as

between simulations (Fig. 4d), with scDesign2 and scDesign giving the most and least similar ranking,

respectively.170

Taken together, these results suggest that simulations do not achieve the same level of complexity in terms

of intra- and inter-subpopulation effects (i.e., batches and clusters). Consequently, methods to correct of such

effects (integration) or group together similar cells (clustering) perform over-optimistically in simulated data

compared to more complex and noisy experimental data, and are almost indistinguishable in their performance

for ‘simple’ datasets.175
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Figure 4: Comparison of clustering results across (experimental) reference and (synthetic) simulated data. (a)

Boxplot of F1 scores across all type k references, simulation and clustering methods. (b) Boxplot of difference (∆) in

F1 scores obtained from ref erence and simulated data. (c) Heatmap of clustering method (columns) rankings across

datasets (rows), stratified by simulator (panels). (d) Heatmap of Spearman’s rank correlation (ρ) between F1 scores

across datasets and clustering methods.

Meta-analysis of summaries. Inevitably, summaries used to assess whether simulated data mimics real

data may be redundant, and we expect that some summaries are more important than others. To quantify the

relationship between summaries, we correlated all comparable summaries, i.e., gene- and cell-level summaries,

respectively, excluding those that include sampling, i.e., correlations and cell-to-cell distances (Fig. 5a). Gene

detection frequency and average expression were highly similar (r ∼ 1), and correlated well with expression180

variance (r > 0.5). At the cell level, detection frequencies and library sizes were most similar.

Next, we correlated the KS test statistics obtained from comparing reference-simulation pairs of summaries

across all datasets (Fig. 5b). Summaries grouped together according to their type (global, gene- or cell-level),

indicating that simulators recapitulated each type of summary to a similar degree, and that one summary

per type could be sufficient to distinguish between method performances.185

To investigate the overall similarity of summaries, we performed multi-dimensional scaling (MDS) on KS

statistics across methods and datasets (Fig. 5c and Supp. Fig. 22). In line with the observed correlation

structure, summaries grouped together by type, with gene-level summaries being most similar to one another.

Next, we performed principal component analysis (PCA) on test statistics of summaries across methods

and datasets (Fig. 5d and Supp. Fig. 23-25), thus representing each method-dataset as a linear combination190

of statistics for each summary. For all types, the largest fraction of variance (PC1: >40%) was attributable

to differences in overall method performance, followed by (PC2: >15%) differences in summary type-specific

performance (global, gene-, cell-level).

Taken together, our analyses suggest that several summaries convey similar information, with gene-level

summaries being particularly redundant, and global summaries the least redundant. Accordingly, simulator195

performance may be sufficiently quantifiable by a combination of one gene-level, few cell-level, and various
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global summaries. However, the number (and nature) of summaries to comprehensively cover the inherent

data structure is dependent on its complexity (e.g., global summaries are void for type n, but all the more

relevant for type b and k); and there may exist other informative summaries not considered here.
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Figure 5: Comparison of quality control summaries and KS statistics across datasets and methods. Spearman rank

correlations (r) of (a) gene- and cell-level summaries across reference datasets, and (b) KS statistics across methods

and datasets. (c) Multi-dimensional scaling (MDS) plot, and (d) principal component (PC) analysis of KS statistics

across all and type b/k methods, respectively, averaged across datasets.

Discussion200

In this study, we compared scRNA-seq data simulators in their ability to generate synthetic data that can

recapitulate key characteristics of real reference datasets. We considered a range of gene- and cell-level

summaries, as well as ones specific to capturing local and global group-effects (i.e. intra- and inter-variability

of batches and clusters). By comparing the distribution of summaries as well as pairs thereof between

reference and simulated data, we evaluated how well simulations capture the structure exhibited by a given205

reference dataset. We ranked methods by averaging their performance across summaries and simulations,

thus evaluating each method across a multifaceted range of criteria (covering gene-, cell- and group-specific

summaries) and datasets (from various tissues and technologies). Finally, we investigated whether the choice

of simulator affects method comparison results.

Overall, simulations have proven paramount for the development of computational tools for the analysis210
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of single-cell data. However, they are often implemented for a specific task, e.g., evaluating clustering, batch

correction, or DE analysis methods; an ‘all-rounder’ simulator is currently lacking, and most methods are

limited to simple designs. The arguably most sobering observation of this study is that, without introducing

arbitrary effects that depend on user inputs (e.g., the frequency of DE genes and magnitude of changes in

their expression), the vast majority of methods can simulate only one group of cells (i.e., one batch, one215

cluster). As a result, most current simulators are rather limited in their applicability.

Both neutral benchmark studies as well as non-neutral comparisons performed alongside newly presented

methods rely on a ground truth for evaluation. Thus, future work should be focused on the development of

flexible, faithful simulation frameworks to fill this gap, especially in scenarios where an experimental ground

truth is challenging or infeasible to establish. For example, which genes and cell subpopulations are affected220

by batch effects cannot be controlled, independent of whether control samples might be used to quantify

these effects. Similarly, intra- and inter-cluster effects are unclear, even if cluster annotations might be

obtained through cell-sorting or manual annotation by an expert. And, effects on gene expression remain

unknown, despite controlled perturbation or time-series studies through which discrete labels might be given.

Taken together, although some level of ground truth may be experimentally attainable, simulations remain225

indispensable owing to: i) their feasibility; and, ii) the information they provide (e.g., which genes and cell

subpopulations are affected).

The most truthful model for real data is real data. Artificial data alterations (e.g., applying fold changes

to a specified subset of gene expression means in certain subsets of cells) are unlikely to mimic biological

differences. Even if founded on a thorough investigation of realistic changes, non-reference based simulations230

are difficult to evaluate, and conclusions drawn from de novo simulations in terms of method evaluations

should be treated with caution.

While tools to evaluate the quality of simulated data exist, they are seldomly taken advantage of. For

example, scater [50] offers a range of gene- and cell-level quality control summaries; countsimQC [51] can

generate a comprehensive report comparing an input set of count matrices (e.g., real against synthetic data);235

and, many dataset summaries are easy to compute and compare manually. Having such reference-simulation

comparisons in every (non-neutral) benchmark would add credibility to the results.

In addition to evaluating the faithfulness of simulated data, we investigated whether and to what extent

benchmark results are affected by the simulator used. Our results suggest that method performances for

integration and clustering of scRNA-seq data deviate from those obtained from real data; in addition, simu-240

lators that better mimic reference datasets do not necessarily yield more similar method comparison results.

For example, muscat was among the highest ranked simulators in our study, but integration and clustering

method ranking obtained from muscat simulations were rather inconsistent with those from real data. On

the other hand, SPsimSeq ranked mediocre in terms of mimicking real datasets, but gave the most faithful

integration method ranking. In the context of clustering, there was a consistent over-optimistic performance245

of methods, independent of the simulator used.

This discrepancy between the faithfulness of simulated data and benchmark results brings to question

which set of summaries is sufficient to capture relevant data structure. Here, simulators were ranked by their

average performance across summaries. However, many of these may be redundant (see below), or differ

in their suitability to capture group-related structures (e.g., batch-/cluster-effects). Thus, simulators that250

are performant ‘overall’ are not guaranteed to be suitable for evaluating methods for a specific task (e.g.,

integration/clustering), where global structure should take priority over gene-/cell-specific summaries. An

open question that needs to be answered is what summaries are important for a given task.

Besides the capabilities each method has to offer and its performance, i.e. how realistic its simulations are,

there are other criteria we did not explore thoroughly. For example, splatter offers a well-documented, easy-255

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.15.468676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468676
http://creativecommons.org/licenses/by/4.0/


to-use framework that is both flexible and interpretable. While other methods might outperform splatter ,

they return parameters that are less applicable to benchmarking computational tools. For example, artificially

introducing DE genes provides a binary ground truth (e.g., whether a gene is DE), whereas estimating and

mimicking cluster effects might not (i.e., the user defines which genes are DE based on gene-wise parameters

returned by the simulator).260

Here, we have focused on methods that generate a single group or multiple groups of cells; in particular, we

distinguished between ‘singular’ (type n), multi-batch (type b), and multi-cluster (type k) datasets. However,

there are various methods that are aimed at simulating data where gene expression profiles evolve along a

discrete or continuous trajectory or time-course (e.g., dyngen [52], PROSSTT [53], SERGIO [54]). These have

been applied in, for example, benchmarking methods for trajectory inference[12].265

The combination of scRNA-seq with CRISPR/Cas9 genome editing has enabled the joint readout of gene

expression and cell lineage barcodes[55]. Salvador-Mart́ınez et al.[56] have proposed a simulator for lineage

barcode data that, however, does not generate gene expression data. A recent method, TedSim [57], is capable

of outputting combined readouts, and can be used to study tools for either or both data types, including

more genuine investigation of trajectory inference methods.270

Most of these methods employ fairly sophisticated and well-designed models for data generation, but

require a complex set of inputs that is specific to each method and difficult to justify. Meanwhile, very

few trajectory simulators support the estimation of simulation parameters from a reference dataset, making

it challenging to evaluate them and opening the question of how faithful performance assessments based

on them are. Overall, validating the faithfulness of synthetically generated trajectories in single-cell data275

remains challenging.

Taken together, while a set of performant methods to generate synthetic scRNA-seq data exist, current

methods are: i) limited in the level of complexity they are able to accommodate; ii) often reliant – in full or in

part – on inputs by the user to introduce (artificial) expression differences; iii) more or less suitable to evaluate

other tools, depending on the data characteristics they can capture faithfully. Secondly, simulation-based280

benchmark studies are affected by the simulator used, and more performant simulators do not necessarily

yield more reliable readouts of, e.g., integration and clustering methods. And thirdly, the chosen quality

control summaries and their prioritization have an impact on the assessment of simulations and, consequently,

the conclusions drawn from them. Thus, identifying the nature, number, and significance of summaries to

faithfully capture scRNA-seq data structure warrants future work in order to improve method evaluations.285

Methods

Reference datasets

Each reference dataset was retrieved from a publicly available source, including Bioconductor’s ExperimentHub[58],

the Gene Expression Omnibus (GEO) database, and public GitHub repositories. Raw data were formatted

into objects of class SingleCellExperiment [59,60] and, with few exceptions, left as is otherwise. Datasets cover290

various organisms, tissue types, technologies, and levels of complexity (i.e. number of genes and cells, clusters

and/or batches and/or experimental conditions). A summary of each dataset’s characteristics and source is

given in Supp. Tab. 1.

References underwent minimal filtering in order to remove groups (clusters, batches) with an insufficient

number of cells, as well as genes and cells of low quality (e.g., low detection rate, few counts overall). Secondly,295

we drew various subsets from each reference to retain a reduced number of observations (genes and cells), as

well as a known number of batches, clusters or neither (see Supp. Tab. 2 and Preprocessing).
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Simulation methods

With few exceptions, methods were run using default parameters and, if available, following recommen-

dations given by the authors in the corresponding software documentation. All packages were avail-300

able from a public GitHub repository, through CRAN, or Bioconductor[61]. A brief overview of each

method’s model framework and support for parallelization is given in Tab. 1. For the explicit argu-

ments used for parameter estimation and data simulation, we refer to the method wrappers available at

https://github.com/HelenaLC/simulation-comparison(snapshot at DOI:10.5281/zenodo.5679075).

Quality control summaries305

We computed a set of five summaries at the gene-level: average and variance of logCPM, coefficient of varia-

tion, detection frequency (i.e. proportion of non-zero counts), as well as gene-to-gene correlation of logCPM.

Here, logCPM correspond to log1p-transformed counts per million computed with scater ’s calculateCPM

function[50]. We also computed six summaries at the cell-level: library size (i.e. total counts), detection fre-

quency, cell-to-cell correlation (of logCPM), local density factors (LDF), cell-to-cell distance (in PCA space),310

and the number of times a cell occurs as a k-nearest neighbor (KNN). For datasets other than type n, each

summary was computed for each of three cell groupings: globally (i.e. across all cells), at the batch-, and at

the cluster-level. Three additional summaries – the percent variance explained (PVE) at the gene-, and the

cell-specific mixing score (CMS) and silhouette width at the cell-level – were computed globally. Summaries

are described in more detail in Supp. Tab. 3.315

Evaluation statistics

For each reference-simulation pair of summaries, we computed the Kolmogorov-Smirnov (KS) test statistic

using the ks.test function of the stats R package, and the Wasserstein metric using the wasserstein metric

function of the waddR R package[62]. In addition, we computed the two-dimensional KS statistic[63] and

earth mover’s distance (EMD) between relevant pairs of summaries, i.e. between unique combinations of320

gene- and cell-level summaries, respectively, excluding global summaries (PVE, CMS and silhouette width)

as well as gene-to-gene and cell-to-cell correlations. One- and two-dimensional evaluations are detailed under

Evaluation statistics.

Runtime evaluation

To quantify simulator runtimes, we selected one reference per type, and drew five random subsets of 400-325

4,000 genes (fixing the number of cells) and 100-2,600 cells (fixing the number of genes). For each method

and subset (eight in total), we separately measured the time required for parameter estimation and data

simulation. For each step, we set a time limit of 106 seconds after which computations were interrupted.

Integration evaluation

Integration methods were implemented as in Chazarra-Gil et al.[64] (see Integration). To evaluate method330

performances, cell-specific mixing scores (CMS) and the difference in local density factors (∆LDF) were

computed using the cms and ldfDiff function, respectively, of the CellMixS package[48]. To make metrics

more interpretable and comparable across datasets, we i) subtracted 0.5 to center CMS at 0 (denoted CMS*);

and, ii) centered (at 0) and scaled (to range 1) ∆LDF (denoted ∆LDF*). Overall integration scores correspond

to the unweighted average of CMS* and ∆LDF*. Thus, for all three metrics, a value of 0 indicates ‘good’335
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mixing for a given cell. When aggregating results (e.g., for heatmap visualizations), metrics were first averaged

across cells within each batch and, secondly, across batches.

Clustering evaluation

Clustering methods were implemented as in Duò et al.[19] (see Clustering). If applicable, the number of

clusters was set to match the number of true (annotated respective simulated) clusters. To evaluate the340

performance of each method, we matched true and predicted cluster labels using the Hungarian algorithm,

and computed cluster-level precision, recall, and F1 score (the harmonic mean of precision and recall).

Data availability

All reference scRNA-seq datasets are available through Bioconductor’s ExperimentHub[58], the Gene Expres-

sion Omnibus (GEO) database, or public GitHub repositories; see Supp. Tab. 1 for dataset-specific sources.345

R objects (.rds files) to reproduce key results of this study are available at DOI:10.5281/zenodo.5678872.

These include global, gene- and cell-level quality control summaries of reference and simulated data for dif-

ferent cell groupings, one- and two-dimensional test statistics across all datasets and methods, clustering and

integration results for reference and simulated data, and runtimes for 5 replicates per gene- and cell-subsets

for one dataset per type; see Supplementary data for a comprehensive description.350

Code availability

All analyses were run in R v4.1.0[65], with Bioconductor v3.13[61]. The computational workflow was im-

plemented using Snakemake v5.5.0[66], with Python v3.6.8. Package versions used throughout this study

are captured in the session info.txt file at DOI:10.5281/zenodo.5678872. All code to reproduce the re-

sults presented herein is accessible at https://github.com/HelenaLC/simulation-comparison (snapshot355

at DOI:10.5281/zenodo.5679075).
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