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Abstract 

 

Background: Population-centric frameworks of biomarker identification for psychiatric 

disorders focus primarily on comparing averages between groups and assume that diagnostic 

groups are (1) mutually-exclusive, and (2) homogeneous. There is a paucity of individual-centric 

approaches capable of identifying individual-specific ‘fingerprints’ across multiple domains. To 

address this, we propose a novel framework, combining a range of biopsychosocial markers, 

including brain structure, cognition, and clinical markers, into higher-level ‘fingerprints’, 

capable of capturing intra-illness heterogeneity and inter-illness overlap.  

 

Methods: A multivariate framework was implemented to identify individualised patterns of 

brain structure, cognition and clinical markers based on affinity to other participants in the 

database. First, individual-level affinity scores defined each participant’s “neighbourhood” 

across each measure based on variable-specific hop sizes. Next, diagnostic verification and 

classification algorithms were implemented based on multivariate affinity score profiles. To 

perform affinity-based classification, data were divided into training and test samples, and 5-fold 

nested cross-validation was performed on the training data. Affinity-based classification was 

compared to weighted K-nearest neighbours (KNN) classification. K-means clustering was used 

to create clusters based on multivariate affinity score profiles. The framework was applied to the 

Australian Schizophrenia Research Bank (ASRB) dataset.  

 

Results: Individualised affinity scores provided a ‘fingerprint’ of brain structure, cognition, and 

clinical markers, which described the affinity of an individual to the representative groups in the 

dataset Diagnostic verification capability was moderate to high depending on the choice of 

multivariate affinity metric. Affinity score-based classification achieved a high degree of 

accuracy in the training, nested cross-validation and prediction steps, and outperformed KNN 

classification in the training and test datasets. 

 

Conclusion: Affinity scores demonstrate utility in two keys ways: (1) Early and accurate 

diagnosis of neuropsychiatric disorders, whereby an individual can be grouped within a 
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diagnostic category/ies that best matches their fingerprint, and (2) identification of 

biopsychosocial factors that most strongly characterise individuals/disorders, and which may be 

most amenable to intervention.  
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Introduction 

 

Population-centric frameworks of biomarker identification focus primarily on comparing 

averages between groups and assume that diagnostic groups are (1) independent, and (2) 

homogeneous. However, there is a considerable overlap in symptoms across psychiatric 

disorders, and variability within the spectrum of symptoms of specific disorders1–3. Furthermore, 

there is now increasing understanding of intra-illness heterogeneity, in which individuals who 

share a diagnosis can present with a varying array of symptoms and disabilities across a range of 

clinical, cognitive, adaptive behaviour, and social domains4,5. Intra-illness heterogeneity, 

combined with overlap of symptoms and frequent comorbidity of psychiatric disorders, can lead 

to clinically significant delay in receiving the most appropriate treatment, resulting in increased 

social and functional disability, family burden and accruing societal economic burden6. 

Consequently, in recent years, there has been an increased focus on the identification of 

biomarkers that may characterise specific disorders, and aid in diagnosis, subgrouping, and 

treatment planning. 

 

Various approaches have been developed to identify hierarchical biomarkers using individual 

base-level measures, such as regional brain volumes, stress measures and cognitive variables. 

Such approaches can be broadly classified into three categories: 1) multivariate pattern 

identification, 2) clustering analyses for machine learning and prediction, and 3) normative 

models. Although these approaches have contributed strongly towards increasing our 

understanding of biopsychosocial underpinnings of psychiatric disorders, they offer limited 

clinical translation. Group-level analyses (e.g., pattern identification, clustering) fail to capture 

individual complexity spanning over multiple clinical domains, whereas normative approaches 

are typically performed within a single domain of interest and are based on the assumption that 

there is a true healthy population to act as a reference group.  

 

Recent approaches have attempted to address some of these limitations by taking a more 

individual-centric approach to disease identification and classification. One method, developed 

for use in Alzheimer’s disease, is the Disease State Index (DSI)7. The DSI is a statistical 

modeling and data visualisation system that computes an estimate of an individual’s Alzheimer’s 
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disease state by comparing their biomarker data to previously diagnosed cases. This approach 

enables individualised multivariate quantification of the disease state; however, an important 

limitation is that scores are referenced to multiple target populations whilst incorporating 

information from the entire distributions, and are, therefore, less sensitive to the localised 

information most closely relevant to the individual-of-interest8. One method sensitive to 

localised information in the data with respect to the participant-of-interest is K-Nearest 

Neighbours (KNN), a supervised machine learning algorithm9,10. The KNN algorithm assumes 

that similar data points (e.g., diagnoses) are close to each other, and therefore classifies new data 

points based on their proximity to K nearest neighbours. This approach offers limited reliability 

in the presence of outliers, as their nearest neighbours could be situated far from them. The 

weighted KNN algorithm attempts to minimize this effect by applying inverse distance weights 

to the neighbours. Conversely, in densely populated neighbourhoods, selecting only first K 

neighbours leads to exclusion of information from other nearby neighbors, which can lead to 

suboptimal performance, especially when there is large information overlap between diagnostic 

groups.  

 

In order to address the limitations of current approaches, we propose a novel framework capable 

of capturing intra-illness heterogeneity and inter-illness overlap through combining a range of 

biopsychosocial markers into higher-level biopsychosocial ‘fingerprints’. In this framework, 

each individual is scored based on their biopsychosocial marker affinity to different diagnostic 

groups within a fixed sized neighbourhood, thereby generating overlapping indices of group 

membership. In the current study, ‘affinity scores’ represent biopsychosocial patterns of 

treatment-responsive and treatment-resistant schizophrenia, whereby we capture each 

individual’s affinity to multiple diagnostic groups across a wide range of variables. This 

individual-level approach will have translational value as it allows clinicians to acknowledge 

comorbidity, indicate severity, disability and prognosis, and tailor intervention strategies to each 

person’s clinical and biopsychosocial ‘fingerprint’. Additionally, we integrate our affinity score 

framework into two distinct diagnostic verification and classification/prediction algorithms, 

which can be used as a clinical decision support system designed to enable clinicians to establish 

a diagnosis and determine a likely prognosis. Our framework will also be compared with an 

existing framework, K-Nearest Neighbours (KNN) classification, in order to determine the 
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prediction accuracy of our affinity-based classification. Finally, k-means clustering will be 

applied to multivariate Affinity Score profiles in order to assess the separability of treatment-

resistant individuals from healthy controls and individuals with chronic schizophrenia. 

 

Methods 

 

Participants 

 

Data from 186 individuals with chronic schizophrenia (age: 37.99 � 09.98, 69.9% males) and 

168 healthy controls (age: 39.74 � 13.97, 48.2% males) were obtained from the Australian 

Schizophrenia Research Banks (ASRB), a register of research data collected between 2007-2011 

by scientific collaborators across five Australian sites11. For the purpose of the current study, 

participants receiving treatment with clozapine (n = 37, age: 36.62 �  09.86, 81.1% males) were 

designated as having treatment-resistant schizophrenia (TRS)12–14. ASRB exclusion criteria for 

participants included: i) a history of organic brain disorder; ii) electroconvulsive therapy in the 

previous 6 months; iii) current substance dependence; iv) movement disorders; or v) brain injury 

with post-traumatic amnesia. Healthy controls with a personal or family history of psychosis or 

bipolar I disorder were also excluded. Detailed information regarding the consent procedures 

have been published previously11. The Diagnostic Interview for Psychosis (DIP)15 was used to 

obtain clinical symptom ratings and confirm diagnoses according to ICD-10 or DSM-IV criteria. 

Study procedures were approved by the Melbourne Health Human Research Ethics Committee 

and written informed consent was obtained from all participants. 

 

Participants with at least one missing variable were excluded from the study, resulting in a total 

sample size of 182 individuals with chronic schizophrenia (Scz), 136 healthy controls (HCs) and 

34 TRS individuals.    

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.15.468749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.15.468749


Clinical and cognitive measures 

 

The Schizotypal Personality Questionnaire (SPQ)16 was used to measure schizotypal symptoms 

in all participants. The Global Assessment of Functioning (GAF)17 was administered to assess 

current functioning.  

 

Current IQ was measured using the Vocabulary and Matrix Reasoning subtests of the Wechsler 

Abbreviated Scale of Intelligence (WASI)18. Premorbid IQ was measured using the Wechsler 

Test of Adult Reading (WTAR)19. Additional cognitive tasks included Letter Number 

Sequencing (LNS)20, the Controlled Oral Word Association Test (COWAT)21, and five subscales 

(immediate memory, delayed memory, construction, language, attention) from the Repeatable 

Battery for Assessment of Neuropsychological Status (RBANS)22.  

 

MRI acquisition and processing 

 

T1-weighted (MPRAGE) structural scans were acquired using Siemens Avanto 1.5T scanners 

located at five different sites in Australia. The same acquisition sequence was used at each site 

and a Siemens phantom was periodically imaged at each site to evaluate potential inter-site 

differences. T1-weighted images comprised 176 sagittal slices of 1 mm thickness without gap; 

field of view = 250 × 250 mm2; repetition time = 1980 ms, echo time = 4.3 ms; data matrix size 

= 256 × 256; voxel dimensions = 1.0 × 1.0 × 1.0 mm3. 

 

To estimate cortical thickness, volume, and surface area, images were processed with the 

FreeSurfer software package version 5.1 (https://surfer.nmr.mgh.harvard.edu)23. In brief, 

preprocessing included intensity normalization, removal of non-brain tissue, transformation to 

Talairach-like space, segmentation of gray-white matter tissue, and tessellation and smoothing of 

the white matter boundary. White matter surfaces were then deformed toward the gray matter 

boundary at each vertex. The entire cortex of each study participant was visually inspected, and 

inaccuracies in segmentation were manually edited. The cortical surface was then parcellated 

into 68 regions based on the Desikan-Killiany atlas24. Subcortical volumes (thalamus, amygdala, 
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and hippocampus) and estimated total intracranial volume (ICV) were also obtained using the 

Freesurfer ‘aseg’ parcellation. 

 

Variable-wise affinity scores 

 

The variable-wise affinity scores are calculated on the combined sample from all diagnostic 

groups. Each variable is converted into z-scores using mean and standard deviation from the 

pooled data. The variable-specific affinity scores are calculated using the following algorithm. 

 

1. A variable-specific hop-size, �, is determined in the standard deviation units as, 

� � ∑ |�������
�
��� |

��
,   (1) 

where, �
�

is the mean z-score of group �, � � 1, . . . , �, and � is the number of diagnostic 

groups in the study. � is a scaling constant.  

 

2. For each participant, �, the distance from every other participant in the dataset is 

calculated in the standard deviation units, and a neighbourhood, �	
� , of size 2� is 

defined centered at the z-score of the participant �, (�	 � ��. Participants within the 

neighbourhood �	
�  contribute towards the group-wise affinity score, �	,�� , calculated as, 

�	,��  � ��

��
� 

��
∑ ���
��  ,   (2) 

where, �� is the number of participants from group � within �	
� , � � 1, . . . , �, ��is the 

group sample size and �� is the total number of participants in the data, �� � ∑ ���
�� . 

The affinity scores can be used for diagnostic verification (participant � is included in 

�	
�) or classification (participant � is excluded from �	

�).  

 

3. A variable-specific adjacency matrix, ��, is defined as: 

          ��,�
� � 1, � � ��

�, � �    (3) 

                                                                 � 0, otherwise. 

�� is a matrix of size �� ! ��and  , � �  1, . . . , ��. 
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Multivariate affinity  

 

Multiple metrics can be calculated to assess the multivariate distribution of a participant’s 

affinity to each diagnostic group in the data.  

 

Composite multivariate affinity  

 

For each participant, a group-specific composite affinity score is calculated by averaging the 

affinity scores across all variables, 

�	,��� � 

�
∑ �	,���
�� .    (4) 

The composite affinity scores quantify the average affinity of �th participant to each diagnostic 

group, �, in the data. �is the number of diagnostic groups in the data and "is the total number of 

variables.  

 

Rank-based multivariate affinity  

 

For each variable and participant, affinity scores can be ranked based on the affinity strength to 

each diagnostic group, such that the group with least affinity score is ranked the lowest. The 

group-wise rank-based average affinity score is calculated as: 

     �	,��� � 

�
∑ #	,���
�� ,    (5) 

#	,��  is the variable-wise group rank for �th participant and takes values in the range 1 $ #	,�� $
�.  
 

Vote-based multivariate affinity  

 

The vote-based affinity score for the �th participant is based on a voting system such that each 

variable votes (%	
�) towards the diagnostic group with maximum affinity: 

   %	
� � &'( )#	,�� �.    (6) 

The multivariate vote-based affinity score is calculated using the vote-count, such that the 

diagnostic group with the most votes scores the highest.  
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Common neighbourhood-based affinity 

 

The multivariate common neighbourhood is defined as the number of variables in which a pair of 

participants share a common neighbourhood. The multivariate common neighbourhood 

adjacency matrix of size �� ! ��is defined as 

�� � ∑ ���
�� .    (7) 

The group-wise common neighbourhood-based affinity for the �th participant is calculated as: 

 

     �	,��  � 

��
∑ �	,�

���

��
 ,     (8) 

where � � 1, . . . , �. 
 

Common community-based affinity  

 

The adjacency matrix of each variable �� can be used to identify within-variable communities 

using a clustering algorithm, such as graph clustering with modularity maximization described in 

(Blondel et al, 2008)25. Each participant is assigned a community, and a participant cannot be a 

member of multiple communities. The participants within the community share maximum 

affinity to each other, and each community shares least affinity to other communities. The 

common community-based affinity scores are calculated by the following algorithm: 

1. Within variable communities are identified in the adjacency matrix �� using a graph 

clustering algorithm, such as (Blondel et al, 2008)25, to construct the matrix *�of size 

�� ! ��, such that the subjects within a community are assigned the same label. 

          +�,�� � 1,  , � � ,� , � �     (8) 

                                                                � 0, otherwise,  

 , � � 1, . . . , �� and - � 1, . . . , ��
�, ��

� is the number of communities within variable ..  
2. The multivariate common community is defined as the number of variables in which a 

pair of participants share a common community. The multivariate common community 

adjacency matrix of size �� ! ��is defined as 
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��� � ∑ *��
�� .    (9) 

3. The group-wise common community-based affinity for the �th participant is calculated 

as: 

 

�	,���  � 

��
∑ �	,�

����

��
 ,     (10) 

where � � 1, . . . , �. 
 

Implementation on the ASRB data 

 

Data from a total of 195 variables, adjusted for age and sex through generalized linear 

regression, was used to calculate affinity scores, covering clinical, cognitive, psychosocial and 

brain structural domains, including cortical and subcortical structures. A complete list of 

variables and their description is presented in Table 1.  

 

Diagnostic Verification 

 

The diagnostic verification algorithm was applied to the whole dataset to calculate variable-wise 

affinity scores using Eqs. 1-2, with each participant included in its neighbourhood. HCs, Scz and 

TRS individuals were assigned a unique group label. Two diagnostic verification frameworks 

were developed: a two-group framework (HCs and Scz) and a three-group framework using all 

three groups. Multivariate metrics of diagnostic accuracy were calculated as described in Eqs. 3-

10 to assign affinity-based labels to each individual in the dataset. An individual’s diagnosis was 

considered verified if the original and affinity-based labels were identical, and atypical if the 

affinity-based label differed from the original label.  

 

Classification 

 

To perform affinity-based classification, individuals with TRS were relabeled as Scz, leading to 

binary classification with groups: HC (n=136) and Scz (n=216). The relabeled data was split into 

training (110 HCs, 170 Scz) and test (26 HCs, 46 Scz) sets. 5-fold nested cross-validation was 

performed on the training set, with hyper-parameter tuning performed in the inner loop on the 
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scaling parameter,� (Eq. 1), using grid search: � � /1, . . ,100. In each inner iteration, training data 

were used to calculate affinity scores, and multivariate affinity-based metrics were calculated 

(composite affinity, common neighbourhood-based and common community-based metrics). In 

the validation step, each participant’s affinity-based measures were calculated with reference to 

the training data, and common neighbourhood-based affinity was used to determine classification 

accuracy: the number of correctly labelled participants in the validation set divided by the total 

sample size. The outer loop was used to calculate average classification accuracy across folds.  

 

For comparison, weighted K-nearest neighbours (KNN) classification was performed using 

MATLAB’s fitcknn function, and nested cross-validated on the same partitions of the training 

data. For weighted KNN classification, weighting was performed using the ‘inverse distance’ 

option on the standardized Euclidean distance between a participant and its 1th neighbour, and 

hyper-parameter tuning was performed on the number of neighbours, K, using grid search: 

2 � /5, . . . ,150. A schema of the nested cross-validation algorithm is presented in Supplementary 

Figure S1.  

 

The affinity-based and weighted KNN models were tuned again on the entire training dataset to 

set hyperparameters, instead of selecting the best-tuned model from the nested cross-validation. 

As both affinity-based and weighted KNN classifiers are sensitive to the local neighbourhood 

composition, changes in sample-size require re-tuning of hyperparameters to ensure optimal 

performance. � � 6 and 2 � 6 showed highest accuracy on the training set. The tuned models 

were applied to the independent test set and prediction accuracy of both classifiers was 

calculated. 

 

Post-hoc analyses 

 

To assess the classification separability of the TRS participants, the original group labels were 

re-applied post-hoc to the multivariate affinity scores from the training data. K-means clustering 

was performed in MATLAB26, and three separate clusters were identified using multivariate 

composite affinity, common-neighbourhood and common-community scores as features. The 
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within cluster group composition was assessed to determine the separability of TRS individuals 

from other groups.  

 

Results 

 

Diagnostic Verification 

 

In the two-group diagnostic verification framework, the HCs had verified diagnostic status more 

frequently when compared to the chronic schizophrenia participants (Table 2). The composite 

multivariate affinity metric was most sensitive to the heterogeneity within the Scz group, with 

64.83% of individuals receiving a verified diagnosis. The vote-based affinity metric was least 

sensitive to within group heterogeneity, leading to ~100% verified diagnoses.  

 

In the three-group diagnostic verification framework, the HCs and TRS participants had the most 

frequently verified group membership (Table 3). Similar to the two-group framework, the Scz 

participants were least likely to achieve a verified diagnosis, potentially due to a higher degree of 

overlap with both HC and TRS groups and imbalanced sample-sizes, except when the vote-based 

affinity metric was used (99.5% diagnostic verification). The common community-based affinity 

metric was the strictest metric, with only 39.56 % verified Scz participants.   

 

For each individual, the variable-wise affinity scores form a multidomain ‘fingerprint’ 

demonstrating within variable affinity of that individual to each diagnostic group in the data 

(Figure 1). The exemplar affinity fingerprint from a healthy participant explains the 

individualized attributes, with predominantly healthy structural, cognitive and clinical affinities. 

In contrast, the exemplar fingerprints from chronic schizophrenia and TRS individuals reveal a 

more heterogeneous pattern of group affinities, providing the evidence for an individual-centric 

multi-domain multivariate pattern capable of taking intra-illness heterogeneity and inter-illness 

overlap into account.  
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Classification  

 

The affinity scores-based classification achieved a high degree of accuracy in the training, nested 

cross-validation and prediction steps (Table 2). The common neighbourhood (cross-validated 

accuracy: 81.79%, prediction accuracy: 84.72%) and common community based (cross-validated 

accuracy: 79.64%, prediction accuracy: 87.50%) metrics outperformed the weighted KNN 

algorithm (cross-validated accuracy: 77.86%, prediction accuracy: 77.78%), with the exception 

of nested cross-validated accuracy in the Scz samples where the weighted KNN classifier 

achieved slightly higher accuracy (77.65%) than the common-neighbour (75.29%) and common-

community (74.12%) affinity-based classification. In the prediction dataset, affinity-based 

classification achieved higher sensitivity (common-neighbour: 96.15%; common-community: 

96.15%) and specificity (common-neighbour: 78.26%; common-community: 82.61%) and more 

robust positive predictive value (PPV; common-neighbour: 71.43; common-community: 75.76) 

and negative predictive value (NPV; common-neighbour: 97.30; common-community: 97.44), 

when accounted for group prevalence in the prediction sample (Table 3).  

 

Separability of TRS participants 

 

In the classification step, the separability of TRS participants from the healthy controls and 

chronic schizophrenia participants was assessed post-hoc by relabeling the TRS participants 

from Scz to TRS in the training data (Figure 2).  On average, TRS participants showed low 

affinity to both HCs and Scz participants (Figure 2 A-B), suggesting that TRS participants are 

separable from these groups. To establish the degree of separability of the TRS participants, k-

means clustering was performed on the training dataset using multivariate composite affinity, 

common-neighbourhood and common-community scores. Three clusters were identified, with 

cluster 1 predominantly occupied by Scz participants, cluster 2 by TRS participants and cluster 3 

by HCs (Figure 2 C-D).  
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Discussion  

 

In this study, we introduce the affinity score framework and examine its utility for accurate 

verification and classification of schizophrenia-spectrum disorders. An individual’s affinity 

profile provides a snapshot of their biopsychosocial marker affinity to different diagnostic groups 

across a wide range of measures, including clinical, cognitive, social, and neuroimaging 

domains. Furthermore, the classification accuracy of both our verification and classification 

algorithms was high. Specifically, our verification algorithm was successfully able to verify 

~100% of study participants using the voting-based affinity metric, and our classification 

algorithm successfully classified 91% of healthy controls and 72% of schizophrenia participants.  

 

Traditional mean-centric approaches are based on assumptions of mutual exclusivity between 

diagnoses and intra-illness homogeneity and are therefore incapable of taking into account 

individual-level variation across biopsychosocial measures. Our affinity score framework, on the 

other hand, takes an individual-centric approach to understanding psychiatric disorders, and is 

therefore capable of accounting for factors such as comorbidity, and intra-and inter-group 

heterogeneity and overlap. Across a range of measures, each individual is considered to be the 

centre of their own unique neighbourhood, with no assumption that the composition of these 

neighbourhoods will be the same across measures. Thus, one individual may have high affinity 

to individuals with TRS on one measure, and high affinity to healthy individuals on another. 

Such an approach allows clinicians to identify not only the most salient treatment targets for any 

given individual, but also the areas of strength that might be leveraged to enhance treatment 

efficacy. This approach also allows clinicians to visualise at a glance the diagnostic group/s to 

which an individual is most closely aligned across multiple variables, aiding in the verification or 

confirmation of diagnoses and potential comorbidities.  

 

In two-group analyses, our diagnostic verification approach, which incorporates cognitive, 

clinical, functioning, and neuroimaging measures, showed very high capability for the 

verification of schizophrenia and healthy control groupings using the voting-based metric (100% 

for both groups). However, other metrics, including common neighbourhood- and common 

community-based affinity were more sensitive to within group heterogeneity, particularly for 
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individuals with schizophrenia, resulting in lower verification capability (73.07% and 74.17% 

respectively). Similar findings were observed for the three-group analysis, which included TRS 

individuals. Here, the vote-based metric again showed very high diagnostic verification 

capability across all three groups. As with the two-group analysis, verification capability was 

lowest for individuals with schizophrenia, particularly for common neighbourhood- and common 

community-based metrics, suggesting a greater degree of heterogeneity among individuals with 

schizophrenia compared to healthy controls or individuals with TRS. Together, these findings 

suggest that the composite affinity, common neighbourhood- and common community-based 

frameworks might be useful for identifying intra-diagnosis heterogeneity within the 

schizophrenia subgroup, where a proportion of patients more closely resemble healthy 

individuals when the strength of their affinity scores are taken into account. The vote-based 

metric, on the other hand, while less sensitive to intra-diagnosis heterogeneity, may be 

particularly useful for diagnostic verification. Together, these metrics would serve as particularly 

useful clinical decision support tools as they would allow clinicians to determine the overlap 

between their proposed diagnosis for an individual and the likely diagnosis or diagnoses 

determined by that individual's affinity scores. In cases where there is a discrepancy between the 

clinician’s diagnosis and the diagnosis provided by the verification algorithm, the clinician 

would be able to determine whether the individual is an atypical presentation of their proposed 

diagnosis, or whether there may be comorbidities or a differential diagnosis relevant to the 

individual.  

  

Using all the available biopsychosocial measures, the accuracy of our classification algorithm 

was also very high. Due to the sample size requirements of classification algorithms, the small 

number of TRS individuals included in this study were merged with the larger schizophrenia 

group for the purposes of classification. Unlike the verification algorithm, in which individuals 

are considered part of their own neighbourhoods, classification requires that individuals are not 

counted towards their affinity scores, and they are therefore not included in their neighbour 

counts. In our test sample of 66 schizophrenia participants and 26 healthy controls, our overall 

classification accuracy was 87.5% for common community-based affinity and 84.72% for 

common neighbourhood-based affinity, which can be compared to 77.78% for the KNN 

algorithm. The high level of accuracy observed using our classification algorithm suggests this 
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framework has potential as a diagnostic prediction tool in a clinical setting. Of note, when TRS 

individuals were re-labeled as TRS following affinity score calculation, they did not have high 

affinity to either the healthy control group or the schizophrenia group. Thus, our algorithm 

demonstrates the capability of identifying disease subgroups or under-represented populations.  

 

Due to a high degree of conceptual and algorithmic overlap, we compared the performance of 

affinity-based classification with the weighted KNN classification algorithm. Both algorithms 

are sensitive to localised information in the data, in contrast to other popular classifiers such as 

support vector machines, which attempt to identify separation boundaries between classes27. 

Further, prior to classification, no feature selection was performed, and all available variables 

were included in the diagnostic verification and classification algorithms. Although a more 

efficient feature selection strategy can potentially lead to improved classification accuracy, less 

discriminant features still contain clinically-relevant information and excluding such features 

contradicts the aim of developing a clinically-focused diagnostic support system based on the 

affinity scores.  

 

In a final step, k-means clustering was applied to multivariate affinity score profiles in order to 

assess the separability of treatment-resistant individuals from healthy controls and individuals 

with chronic schizophrenia. The three clusters derived from individual biopsychosocial Affinity 

profiles included a largely healthy cluster, and two clusters dominated by the schizophrenia and 

TRS groups. The first of these clusters appears to represent moderate illness severity: the largest 

contribution to this cluster comes from individuals with schizophrenia, although there is also a 

relatively large contribution from the TRS group. Without adequate symptom measures it is 

difficult to fully characterise this group, however, it is possible that the TRS individuals in this 

cluster are those who have responded to clozapine treatment and are thus functioning at a higher 

level than those who do not respond to clozapine. The final cluster is largely made up of TRS 

individuals, with a smaller group of individuals with schizophrenia also present. This cluster 

most likely represents the most severe illness phenotype, and the individuals with schizophrenia 

within this cluster may be missed TRS individuals due to the use of clozapine prescription as our 

grouping measure, or simply a more severely affected subgroup of individuals with treatment-

responsive schizophrenia. Thus, as with our verification and classification frameworks, this 
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clustering analysis highlights that, while healthy individuals tend to cluster together, 

heterogeneity in biopsychosocial profiles exists across the schizophrenia-spectrum.  

 

The affinity score framework has several benefits over more traditional population-based 

approaches. One important benefit is that this framework is entirely data-driven and does not 

require individual scores to fall into any particular type of distribution - there is no assumption of 

“normality”. Furthermore, unlike traditional statistical frameworks, outliers will not have a 

negative impact on the affinity score algorithm and are considered to be data points of interest 

rather than scores to be removed or adjusted. Affinity scores can also be dynamic, both at the 

individual and the population level. At the individual level, affinity scores and ‘fingerprints’ can 

change over time as an individual’s illness evolves, and could potentially be used to predict 

illness-related outcomes over time. At the population level, the affinity score framework is 

capable of dealing with the addition of new diagnostic groups and new individuals within 

existing diagnostic groups, providing a flexible approach to biomarker identification. Thus, 

although we have developed the affinity score framework in a sample of individuals with 

schizophrenia, it could be equally applied to other clinical populations, including adolescents and 

adults, and would have particular utility in the early stages of psychiatric illness where symptoms 

are often less specific. There is no limit to the number of diagnoses that could be included in a 

model. This system therefore represents a significant breakthrough in knowledge and practice, 

substantially improving diagnosis and treatment of psychiatric disorders across diagnostic 

boundaries. 

 

          Our findings should be considered in the context of several limitations. In this sample, 

TRS was defined based on clozapine prescription, however it is possible that some individuals 

with schizophrenia who are actually treatment-resistant may not have been prescribed clozapine, 

and therefore would have incorrectly been included the schizophrenia group. Furthermore, given 

the small sample size of the TRS group, it was not possible to include these individuals as a 

separate diagnostic group for the purpose of diagnostic classification and they were therefore 

merged with the schizophrenia group for this step. However, given that affinity scores are 

calculated in standardised space, it will be possible to merge in new datasets for future testing 

and development of the algorithm. In addition, recent developments in harmonization techniques 
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for neuroimaging data, such as the ComBat pipeline28,29, will allow for the inclusion of MRI data 

acquired on different scanners. It is also possible to construct partial fingerprints using only the 

available measures for a single individual, ensuring missing data does not preclude someone 

from being included in the Affinity Framework.  

 

The historical categorical, diagnostic approach contrasts with the hierarchical taxometric 

dimensional method in the description of psychopathology and mental illness30. Both systems, 

however, are based on the grouping of individual symptoms and characteristics, constraining 

them alternatively to a defined disorder, or to a statistical pattern of characteristics, hierarchically 

shared by all. Both, consign the individual to a collective. They fail to adequately capture the 

individual nature of either their comorbidity and heterogeneity or their specific biopsychosocial 

aetiology, phenomenology, treatment specificity, and developmental pathway. The individual is 

lost in the collective of both the categorical and dimensional attempts to understand 

psychopathology. Individual affinity “fingerprinting” aims to bring an individual focus to the 

categorical and dimensional approaches to understanding psychopathology and thus inform 

research and clinical practice. 
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Tables and Figures 

 

   Table 1: Metrics of clinical and cognitive assessments. 
 

Variable (Description) Domain Test 

LNS (Working memory) Cognition WMS 

Attention  Cognition RBANS 

Constructional  Cognition RBANS 

Delayed memory  Cognition RBANS 

Immediate memory  Cognition RBANS 

Language  Cognition RBANS 

Total  Cognition RBANS 

Total scale  Cognition RBANS 

Matrix reasoning Cognition WASI 

Vocabulary  Cognition WASI 

Premorbid IQ Cognition WTAR 

Verbal fluency Cognition COWAT 

Global functioning Clinical GAF 

Cognitive perceptual  Clinical SPQ 

Interpersonal  Clinical SPQ 

Disorganized  Clinical SPQ 

Social functioning  Clinical Demographics 

Social task  Clinical Demographics 

LNS, Letter Number Sequencing; WMS, Wechsler Memory Scale; RBANS, Repeatable 
Battery for Assessment of Neuropsychological Status; WASI, Wechsler Abbreviated Scale 
of Intelligence; WTAR, Wechsler Test of Adult Reading; COWAT, Controlled Oral Word 
Association Test; GAF, Global Assessment of Functioning; SPQ, Schizotypal Personality 
Questionnaire 
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Table 2: Performance evaluation of affinity-based diagnostic verification framework across two 
diagnostic groups 

 
 

Metric 

Diagnostic verification (%) 

HC Scz 

Verified Atypical Verified Atypical 

Composite multivariate affinity 97.05 02.95 64.83 35.17 

Common Neighbourhood-based 
affinity 

94.85 05.15 73.07 26.93 

Common Community-based affinity 92.64 07.36 74.17 25.83 

Vote-based multivariate affinity 100.00 0.00 100.00 0.00 
 
Table 3: Performance evaluation of affinity-based diagnostic verification framework across three 
diagnostic groups 
 
 

Metric 

Diagnostic verification (%) 

HC Scz TRS 

Verified Atypical Verified Atypical Verified Atypical 

Composite multivariate 
affinity 

97.79 02.21 65.93 34.07 97.05 02.95 

Common Neighbourhood-
based affinity 

92.64 07.36 43.40 56.60 67.64 32.36 

Common Community-
based affinity 

89.70 10.30 39.56 60.44 91.17 08.83 

Vote-based multivariate 
affinity 100.00 0.00 99.45 0.55 100.00 0.00 
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Table 4: Classification accuracy of affinity-based and weighted KNN classifiers in the training, nested 
cross-validated and prediction datasets. Common neighbourhood and community-based classification 
outperform composite multivariate affinity and weighted KNN classification. 

Classifier Metric 

Accuracy (%) 

Training  Nested Cross-
validation  Prediction  

HC Scz Total HC Scz Total HC Scz Total 

Affinity-
based 

Classifier 

Composite 
multivariate 

affinity 
95.45 58.82 73.21 90.91  70.59 78.57 

 
100.00 

 
60.87 75.00 

Common 
Neighbourhood-

based affinity 
94.55 71.76 80.71 91.82  75.29 81.79 96.15 78.26 84.72 

Common 
Community-
based affinity 

95.45 71.18 80.71 88.18  74.12 79.64 96.15 82.61 87.50 

K-Nearest 
Neighbours 

Standardized 
Euclidean 
distance 

100.00 100.00 100.00 82.73  77.65 77.86 
    
80.77 
  

76.09 77.78 

 
Table 5: Performance evaluation of affinity-based and weighted KNN classification in the prediction 
dataset 
 

Classifier Metric 
Prediction  

Accuracy Sensitivity Specificity PPV* NPV* 

Affinity-based 
Classifier 

(4=6) 
 

Composite 
multivariate affinity 

75.00 100.00 60.87 59.09 100.00 

Common 
Neighbourhood-

based affinity 
84.72 96.15 78.26 71.43 97.30 

Common 
Community-based 

affinity 
87.50 96.15 82.61 75.76 97.44 

K-Nearest 
Neighbours 

(K=6) 
 

Standardized 
Euclidean distance 

77.78 80.77 76.09 65.62 87.50 

 
*Adjusted for prevalence in the predict set.  
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Figure 1: Exemplar individual-centric affinity fingerprints. The cortical pattern describes 

maximal group affinity within each region. In the circular bar graphs, the variable-wise 

subcortical, cognitive and clinical affinity scores are plotted on the log-scale with 95% 

confidence intervals (absent bar: zero affinity score, dotted errorbar: zero lower CI). Shading on 

the bars is based on the log p-value quantifying score reliability. Within each variable, the largest 

bar corresponds to the group to which the individual shows strongest affinity, followed by the 

group with second-highest affinity and so on. 

st 
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Figure 2: Classification separability of TRS participants from healthy controls and Scz 

participants in the training dataset (metric: common neighbourhood-based affinity). TRS 

individuals showed low affinity to both (A) HCs and (B) Scz groups. C) Post-hoc K-means 

clustering on the multivariate scores from the training dataset used for classification. Three 

clusters were identified based on affinity to HC and Scz groups using scores from composite 

affinity, common neighbourhood and common community-based metrics. D) Group-wise 

composition of the three clusters (number of participants per group divided by group sample size 

in the training data).  

 

 

 

ze 
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Supplementary Material 

 

Methods 

 

Sample-size requirements of affinity-based classification 

 

Sample size calculations of the affinity-based classification were performed using the method 

described in (Figueroa et al. 2012). 

 

Permutation testing  

 

To assess the interchangeability of variable-wise affinity scores between groups, permutation 

testing was performed with the null hypothesis that affinity scores are interchangeable between 

groups. An iterative algorithm was implemented: 

1. For each iteration, the group labels of all subjects were randomly permuted using 

MATLAB's randperm function.  

2. Variable-wise affinity scores were calculated, as described in the Methods section. 

3. Steps 1-2 were repeated 10,000 times, with each iteration having randomly permuted 

group labels. 

4. A p-value for the �th subject, �th group and .th variable was calculated based on the 

total number of times the permuted affinity score was greater than or equal to the 

estimated affinity score: 

�	,�,� � 1
�	���� 5 1 ) 6 )|�	,�� | 8 |�	,��� |�  5 1�,

��	�
�

��

 

where �is the original group label and ��is the permuted group label.  

 

Bootstrapping 

 

Bootstrapping was performed to estimate confidence intervals of the variable-wise affinity 

scores, using an iterative algorithm: 
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1. In each iteration, random sampling with replacement was performed to generate samples 

from the original data from all variables. The number of samples per group was the same 

as the original data.  

2. For each bootstrap sample, the variable-wise affinity scores were calculated, and the 

process was repeated 10,000 times to generate a sampling distribution of the variable-

wise affinity scores.  

3. The 95% confidence intervals were calculated from the sampling distribution. 

 

Nested Cross-validation 

 

Figure S1: Nested cross-validation. 5-fold nested cross-validation was performed on the training 

set, with hyper-parameter tuning performed in the inner loop on the scaling parameters, and K 

for the affinity-based and K-nearest neighbours algorithms, respectively. The outer loop was 

used to calculate average classification accuracy across folds.  

e 

g 
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