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Abstract

Working memory involves the short-term maintenance of information and is critical in many tasks. The
neural circuit dynamics underlying working memory remain poorly understood, with different aspects of
prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analy-
sis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto
ignored aspect of working memory dynamics: information loading. We find that, contrary to common
assumptions, optimal loading of information into working memory involves inputs that are largely or-
thogonal, rather than similar, to the persistent activities observed during memory maintenance, naturally
leading to the widely observed phenomenon of dynamic coding in PFC. Using a novel, theoretically prin-
cipled metric, we show that PFC exhibits the hallmarks of optimal information loading. We also find that
optimal loading emerges as a general dynamical strategy in task-optimized recurrent neural networks.
Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor
or purely sequential dynamics, and reveals a normative principle underlying dynamic coding.

Introduction

Working memory requires the ability to temporarily
hold information in mind, and it is essential to perform-
ing cognitively demanding tasks1,2. A widely observed
neural correlate of the maintenance of information in
working memory is selective persistent activity. For
example, in the paradigmatic memory-guided saccade
task3–13, subjects must maintain the location of one
out of several cues during a delay period after which
they must respond with a saccade to the correct lo-
cation (Fig. 1a). Cells in the lateral prefrontal cortex
(lPFC) show elevated levels of activity that persist dur-
ing the delay period and that is selective to the location
of the now-absent cue3–5,9. However, neurons typi-
cally only reach a steady, persistent level of activity
late in the delay period of a trial6,8,10,11,14–20. In con-
trast, during the cue and early delay period, neurons
in lPFC often exhibit strong transient dynamics during
a variety of working memory tasks3,8,10,11,14–24.

It remains unknown what mechanism underlies the
combination of persistent and dynamically changing
neural activities in lPFC—especially in light of recent
population-level analyses. These analyses, using the
technique of ‘cross-temporal decoding’, place partic-
ularly stringent constraints on any candidate neural
mechanism of working memory maintenance. Cross-
temporal decoding measures how well information
about the cue location can be decoded from neu-
ral responses when a decoder is trained and tested
on any pair of time points during a trial8,10,11,14,15,25

(Fig. 1b). These analyses reveal a consistent but

somewhat puzzling set of results. First, when de-
coder training and testing times are identical, decod-
ability is high (Fig. 1b, dark along the diagonal), con-
firming that information about cue location is indeed
present in the population at all times. Decodability is
also high when both training and testing occurs during
the late delay period, suggesting that even if there are
changes in neural responses during this period, the
coding of cue location remains stable (Fig. 1b, black
inside cyan square). However, decoding performance
remains low when a decoder is trained during the cue
or early delay period and tested during the late delay
period, and vice-versa (Fig. 1b, light gray inside pink
rectangles). This demonstrates that the neural code
for cue location undergoes substantial change be-
tween these these two periods—a phenomenon that
has been called ‘dynamic coding’8,10,14–16,25.

Classically, the neural mechanism of working memory
maintenance is thought to rely on attractor network dy-
namics. Attractor networks5,7,12,28–33, and closely re-
lated ‘integrator’ networks34,35, naturally account for
selective persistent activity (Fig. 1c, left and mid-
dle). However, in these models, neurons show limited
transient activity during the delay period, and cross-
temporal decoding reveals stable coding throughout
the whole trial, lacking the characteristic dynamic cod-
ing seen in experimental data (compare Fig. 1b to c,
right). This behavior emerges across several variants
of attractor networks, whether they express a contin-
uum of persistent activity patterns (‘ring’ or ‘bump’ at-
tractor networks) or a finite number of discrete pat-
terns (Extended Data Fig. 1a–b; see also Supplemen-
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Fig. 1 | Neural dynamics in data and models during working memory. a, Illustration of the memory-guided saccade task. Time line of
task events in a trial (bottom), with the corresponding displays (top). Top: black circle and squares show fixation ring, and the arrangement
of visually cued saccade target locations, respectively (not to scale), red dots and line illustrate gaze positions during fixations and saccade,
respectively. Bottom: yellow ticks show timing of stimulus cue onset and offset, yellow bar shows interval within which the go cue can occur.
b, Schematic pattern of cross-temporal decoding when applied to neural recordings from the lPFC during working memory tasks 8,10,14–16,25.
Gray scale map shows accuracy of decoding cue identity (one out of 6) when the decoder is trained on neural activities recorded at a particular
time in the trial (y-axis) and tested at another time (x-axis). Yellow lines indicate cue onset and offset times. Note poor generalization between
time points inside the pink rectangle (i.e. dynamic coding), but good generalization between time points inside the cyan square (i.e. stable
coding). The gray tick on the color bar indicates chance-level decoding. c, Schematic of neural network dynamics in an attractor network
performing the task shown in a (see also Extended Data Fig. 1a,b). Left: trajectory in a low-dimensional projection of neural state space in
a single cue condition during the cue period (pale purple line, ending in pale purple circle) and delay period (dark purple line). Purple arrow
heads indicate direction of travel along the trajectory, black cross shows attractor state, gray arrow shows overlap between cue input and late
delay activity. Center: time course of firing rates (relative to across-condition mean) of a neuron aligned with dim 1 from left panel for two cue
conditions (purple vs. blue, see also inset). Yellow lines indicate cue onset and offset times. Right: cross-temporal decoding of neural activity
in the network (cf. b; see also Extended Data Fig. 1a,b). d–f, Same as c, but for a linear integrator network with added transient dynamics 6,26

(d; see also Extended Data Fig. 1c), a feedforward network that generates sequential activities 21,27 (e; see also Extended Data Fig. 1d), and
for a network optimized to perform the task shown in a (f; see also Extended Data Fig. 1e).

tary Information S1). Critically, even when external in-
puts were specifically chosen so that neural activity
showed longer transient dynamics6,26 (Fig. 1d), these
inputs still relied on a large overlap with the desired
persistent state (Fig. 1d, left). As a result, these mod-
els also exhibited strongly stable stimulus coding over
time (Fig. 1d, right and Extended Data Fig. 1c) and
the transient dynamics were regarded as being purely
epiphenomenal6,26.

To capture transient dynamics more naturally, a very
different class of models have been developed based
on mechanisms that generate neural activity se-
quences. These models typically rely either on effec-
tively feedforward network connectivity21,27 or chaotic
network dynamics24,36–38. The dynamics of such mod-
els rapidly transition between orthogonal subspaces
over time (Fig. 1e, left), thus cross-temporal decod-
ing is high only between neighbouring time-points
(Fig. 1e, black along diagonal). Although such mod-
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els are ideally suited to capturing transient neural re-
sponses (Fig. 1e, center), they fail to exhibit persistent
activities and stable coding during the late delay pe-
riod (Fig. 1e, right; gray inside blue square). Therefore,
previous work leaves open two interrelated key ques-
tions: how can a neural circuit exhibit early sequential
dynamics followed by stable late-delay dynamics, and
more importantly, why would it use such a counterin-
tuitive dynamical regime?

In order to study the network mechanisms underly-
ing the combination of persistent and dynamic neu-
ral activities during working memory, we build on re-
cent advances in using task-optimized neural net-
works13,17,20,24,36,39–41. We find that the behaviour of
such task-optimized networks unifies attractor and se-
quential activity models, showing both early transient
dynamics and late persistent activities, giving rise to
dynamic coding (Fig. 1f). To understand the princi-
ples and functional significance of this dynamical be-
havior, we focus on a hitherto ignored aspect of the
operation of attractor networks: optimal information
loading. Through numerical simulations and mathe-
matical analyses, we show that inputs that most ef-
ficiently drive network activities into a desired attrac-
tor state tend to be orthogonal to the attractor state
itself (Fig. 1f, left). Critically, this results in an ini-
tial period of strong transient dynamics with dynamic
coding (Fig. 1f, right), which are thus fundamental
and functionally useful features of attractor dynamics
when used with optimal inputs. Based on our theo-
retical results, we develop a specific neural measure
for assessing whether a network uses optimal infor-
mation loading. Using this measure, we demonstrate
key signatures of optimal information loading in neural
recordings from lPFC. Finally, we show that optimal in-
formation loading emerges naturally in task-optimized
neural networks with a variety of architectures, includ-
ing linear integrators, as well as nonlinear discrete and
ring attractor models.

Our results offer a novel, normative perspective
on a core but hitherto ignored component of at-
tractor networks dynamics—information loading—
and challenge long-held assumptions about pattern
completion-like mechanisms in neural circuits.

Results

Pattern completion and optimal information load-
ing in attractor networks

Traditional approaches to studying attractor networks
used models in which the connectivity between
neurons was constrained to be effectively symmet-
ric5,7,28,30,32,34,35,42–45, making the analysis of their
dynamics mathematically more convenient28,34,42,46.
Thus, we first replicated results with such symmetric
networks that were optimized to perform the working
memory task shown in Fig. 1a. In particular, we de-
fined optimal information loading to be achieved by a
set of inputs when they maximize the performance of a
network in terms of how well the cue can be decoded

from its neural activities at the end of the delay period.
For simplicity, we only modelled the intrinsic dynamics
of the network during the delay period and the effect
of the cue was captured by cue-specific initial neural
activities (i.e. neural activities at the beginning of the
delay period35,42,43; Fig. 2b). To study optimal infor-
mation loading, we optimized these initial activities for
cue-decodability at the end of the delay period (Meth-
ods 1.3.1).

Optimal initial activities gave rise to classical pattern
completion dynamics in symmetric networks. First, ini-
tial activities were noisy versions of (and in fact highly
similar to) the desired persistent patterns (Fig. 2b in-
set, and Fig. 2c). Second, the ensuing dynamics were
driven directly into the corresponding persistent state,
resulting in only small and gradual changes in activi-
ties over the delay period (Fig. 2b). Further analysis of
these dynamics showed that the optimal initial activi-
ties aligned well with directions in neural state space
that best distinguished between the desired persistent
activities (Fig. 2d, ‘persistent PC1’ component of pale
arrows and circles; Extended Data Fig. 2b), with only
a comparably small component in orthogonal direc-
tions specific to these initial activities (Fig. 2d, ‘initial
PC1, orthogonalized’) which subsequently changed
little over time (Fig. 2d, dark trajectories). As a result,
cross-temporal decoding performance was high for all
pairs of times (Fig. 2e), and—as a special case—a de-
coder based on templates of neural activity during the
late delay period (i.e. during the steady state of the
network), generalized well to all times and was able to
decode the cue identity from neural activities with high
accuracy throughout the delay period (Fig. 2f, black
line).

The similarity between initial and persistent activities
was critical for these networks. When constrained to
use initial activities that were orthogonal in neural state
space to persistent activities (i.e. lying in the ‘persis-
tent nullspace’), these networks performed substan-
tially more poorly (Fig. 2f, red line) and activity often
did not settle into the correct attractor state (Extended
Data Fig. 2d). In contrast, explicitly enforcing these
networks to use initial activities that were similar to
persistent activities (i.e. lying in the ‘persistent sub-
space’) did not compromise their performance (Fig. 2f,
green line; Extended Data Fig. 2c). Thus, when con-
nectivities were constrained to be symmetric, our ap-
proach using explicitly optimized inputs and connec-
tivities recapitulated earlier results obtained with clas-
sical attractor networks using hand-crafted inputs and
connectivities5,7,12,28,30,33,42.

In contrast, attractor networks optimized without a
symmetry constraint exhibited dynamics distinctly un-
like simple pattern completion (Fig. 2g–l). First, initial
activities resembled persistent activity much less than
in symmetric networks (Fig. 2i), such that their cor-
relation could even be negative (Fig. 2h inset). Sec-
ond, neural activities often underwent substantial and
non-monotonic changes before ultimately settling into
an attractor state (Fig. 2h). This was also reflected in
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Fig. 2 | Pattern completion and optimal information loading in attractor networks. a, A network with symmetric connections. Left: net-
work schematic. Right: the recurrent weight matrix for 10 of the 50 neurons. b–f, Analysis of neural responses in symmetric attractor networks
(such as shown in a) with optimized initial conditions. b, Firing rates in a representative trial. Neurons are ordered according to their rates at
the end of the trial. Inset shows initial vs. final firing rates (mean-centered, i.e. relative to the time-dependent but condition-independent mean)
across neurons in this trial (gray dots) and their Pearson correlation (r; p < 0.001). Gray line is the identity line. c, Distribution of Pearson
correlations between initial and final mean-centered neural firing rates across all 6 cue conditions and 10 networks. d, Sub-threshold activity
for 2 cue conditions in an example network. Horizontal axis (persistent PC1) shows network activity projected on to the 1st principal compo-
nent (PC1) of activities at the end of the delay period (across the 2 conditions shown in the inset), vertical axis (initial PC1, orthogonalized)
shows projection to PC1 of initial activities orthogonalized to persistent PC1. Pale open circles (with arrows pointing to them from the origin)
show the optimized initial conditions, dark traces show activity trajectories, black crosses show stable fixed points, dashed gray line is the
identity line. e, Cross-temporal decoding of neural firing rate activity (cf. Fig. 1b). The black vertical bar on the right indicates the delay-trained
decoder training time period from f. f, Performance of a delay-trained decoder (black bar indicates decoding training time period) on neural
firing rate activity over time starting from optimized initial conditions with full optimization (black), or restricted to the 5-dimensional subspace
spanning the 6 cue-specific attractors (persistent subspace, green), or the subspace orthogonal to that (persistent nullspace, red). Solid lines
and shading indicate mean±1 s.d. across all 6 cue conditions and 10 networks. Gray dotted line shows chance level decoding. Green and
black lines are slightly offset vertically to aid visualization. g–l, Same as a–f, for attractor networks with unconstrained connections. The
Pearson correlation in h (inset) is not significant (p > 0.4).

optimal initial activities (Fig. 2j, pale arrows and open
circles) being strongly orthogonal to persistent activ-
ities (Fig. 2j, black crosses; Extended Data Fig. 2f),
with this orthogonality decaying over the delay period
(Fig. 2j, dark trajectories). Such dynamics are consis-
tent with PFC recordings from primates performing a
variety of working memory tasks8,17,22–24,32,47–49. De-
coding analyses revealed further similarities with ex-
perimental data: a decoder trained on neural activ-
ity from the late delay period generalized poorly to

early times (Fig. 2k, and Fig. 2l, black line) and vice
versa (Fig. 2k), thus exhibiting a fundamental signa-
ture of ‘dynamic coding’8,10,14–16 (cf. Fig. 1b). Impor-
tantly, we found that the orthogonality of initial con-
ditions in these networks was instrumental for high
performance: in a double dissociation from symmet-
rically constrained networks, restricting initial condi-
tions to be in the persistent subspace (Fig. 2l, green
line; Extended Data Fig. 2g), but not in the persistent
nullspace (Fig. 2l, red line; Extended Data Fig. 2h), di-
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minished decodability at the end of the delay period
(cf. Fig. 2f).

The above results were obtained with networks storing
a small number of discrete attractors, corresponding to
the six cue conditions. Previous work found that sev-
eral aspects of working memory dynamics in lPFC are
better captured by networks in which instead a large
number (or even a continuum) of attractor states form
a ring in neural state space5,7,44,45. Thus, we repeated
our analyses on optimized networks while explicitly
encouraging such a ring attractor to form during op-
timization (Methods 1.3.4). We found a highly similar
pattern of results in ring attractor networks as com-
pared with discrete attractor networks (Extended Data
Fig. 3).

Dynamical analysis of optimal information loading

To understand why optimal information loading in clas-
sical symmetrically constrained versus unconstrained
attractor networks is so different, and in particular why
inputs orthogonal to attractor states are optimal for un-
constrained networks, we reduced these networks to a
canonical minimal model class consisting of only two
neurons35,50,51. For analytical tractability, we consid-
ered networks with linear dynamics (i.e. in which neu-
rons had linear activation functions). Critically, with the
appropriate set of synaptic connections, even linear
networks can exhibit persistent activity6,26,34,35,46,52—
the key feature of working memory maintenance in at-
tractor networks.

For our analyses, we again distinguished between
models with symmetric connectivity between neurons
(Fig. 3a; top)34,35,51, and models without this constraint
(Fig. 3a; bottom)6,26. In either case, the specific con-
nection strengths were chosen to create illustrative ex-
amples providing intuitions that—as we show below—
also generalize to large networks with randomly sam-
pled connection strengths (Fig. 3d–e, Fig. 4). The dy-
namics of these networks are fully described in a two-
dimensional neural state space spanned by the activi-
ties of the two neurons (Fig. 3b) and define a flow-field
in this space determining how neural activities change
over time (Fig. 3b; blue arrows). An important sub-
space of the full neural state space of these networks
is the ‘persistent subspace’ corresponding to persis-
tent patterns of activities. In our two-neuron linear net-
works, the persistent subspace simply corresponds to
a line onto which the neural activities ultimately con-
verge over time (Fig. 3b; green lines showing the per-
sistent mode). Therefore, the persistent mode allows
these networks to distinguish between two stimuli de-
pending on which side of the origin the state of the net-
work is. The larger the magnitude of its activity along
this persistent mode at the end of the delay period,
the more robustly the identity of the stimulus can be
decoded (e.g. in the presence of noise, as we show
below).

To understand the mechanisms of information loading,
we considered three distinct stimulus input directions.
We then analysed the time course of the neural ac-

tivities projected onto the persistent mode6,26,30 after
being initialised in each of these directions. First, we
considered inputs aligned with the persistent mode,
the input direction studied in classical attractor net-
works6,26,34,35,51 (Fig. 3b; pale green arrows and open
circles). Second, we considered the ‘most amplifying
mode’, which is defined as the stimulus direction that
generates the most divergent and thus best discrim-
inable activity over time53–57 (Methods 1.7.1; Fig. 3b,
red lines, and pale red arrows and open circles). Third,
we considered a random input direction (Fig. 3b; gray
lines/circles).

We were able to show mathematically that optimal in-
formation loading, in the sense of maximizing overlap
with the persistent mode at sufficiently long delays, is
always achieved with inputs aligned with the most am-
plifying mode (Supplementary Information S2). Equiv-
alently, the most amplifying mode is the input direc-
tion that requires the smallest magnitude initial condi-
tion to achieve a desired level of persistent activity (i.e.
a desired level of performance). More generally, we
could also show both mathematically and in simula-
tions (Extended Data Fig. 4) that the most amplifying
mode is near optimal in achieving a desired level of
performance while minimizing total neural activity over
time (i.e. the total energy used by the network) for suf-
ficiently long delay lengths.

In symmetric networks, the most amplifying mode
is aligned with the most persistent mode (Fig. 3b;
top)58,59, and thus does not generate activity tran-
sients (Fig. 3c; top)—accounting for the simple pattern
completion dynamics seen in classical attractor net-
works with symmetric connectivity5,7,28,30,32,34,35,42,43

(Fig. 2a–f). However, in unconstrained networks, the
most amplifying mode is typically different from the
most persistent mode (Fig. 3b; bottom). Intuitively,
this is because effective feedforward connections ex-
ist in unconstrained networks21,27,50,56,60. For exam-
ple, neurons 1 and 2 in the example network shown
in Fig. 3a (bottom) respectively align strongly with the
persistent and amplifying modes (Fig. 3b, bottom).
Thus, feeding neuron 1 indirectly through the feed-
forward connection from neuron 2 can increase its ac-
tivity more than just feeding it directly. This means
that activity evolving from the most amplifying mode
exhibits a distinct transient behaviour: its overlap with
the most persistent mode is initially low and then in-
creases over time (Fig. 3c; bottom, red line), account-
ing for the richer transients seen in unconstrained at-
tractor networks (Fig. 2g–l). Thus, there is a form
of ‘speed–accuracy’ trade-off between whether inputs
should use the most amplifying or persistent mode:
if information is required immediately following stim-
ulus offset, such as in a perceptual decision-making
task13,40,59, inputs need to use the persistent mode.
However, if there is a time delay until the informa-
tion is needed, as is the case in all working memory
tasks2,61, then the most amplifying mode becomes the
optimal input direction. Indeed, an analogous trade-off
was already apparent between the persistent sub- vs.

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2021.11.16.468360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468360
http://creativecommons.org/licenses/by/4.0/


0 1 2
0

1

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

probability density

0.0

0.5

1.0

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

0 1 2

0

1

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

persistent amplifying random

initial final
         

0 1 2

time (s)

0

2

4

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

probability density

0.0

0.5

1.0

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

0 1 2

time (s)

0

2

4

6

ac
tiv

ity
 a

lo
ng

pe
rs

is
te

nt
 m

od
e

−1 0 1
−1

0

1

ne
ur

on
 2

ac
tiv

ity
 (a

.u
.)

−2 0 2 4

neuron 1 activity (a.u.)

−2

0

2

ne
ur

on
 2

ac
tiv

ity
 (a

.u
.)

amplifying mode

mode

unconstrained network

symmetric networka

neuron 1

neuron 2

neuron 1

neuron 2

cb d e

6

large randomly connected networks

persistent

Fig. 3 | Dynamical analysis of optimal information loading. a, Architecture of a symmetric (top) and an unconstrained network (bottom).
b, Neural state space of the symmetric (top) and unconstrained network (bottom). Pale blue arrows show flow field dynamics (direction and
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in state space happens from those initial conditions.) Filled colored circles indicate final (persistent) neural activity. c, Time course of network
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or random initial conditions (black) for the symmetric (top) and the unconstrained model (bottom). d, Distributions of absolute overlap with
the persistent mode for persistent (pale green), most amplifying (pale red), or random initial conditions (gray) across 100 randomly connected
1000-neuron symmetric (top) or unconstrained networks (bottom). The persistent (and for the symmetric models, also the equivalent most
amplifying) initial conditions produce delta functions at 1 (arrows). Insets show illustration of large networks of neurons with either symmetric
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(bottom). Lines and shaded areas show mean±1 s.d. over the 100 randomly sampled 1000-neuron networks from d.

nullspace inputs in the nonlinear attractor networks we
analysed earlier (Fig. 2l, red vs. green).

The insights obtained in the simple two-neuron net-
work also generalized to large randomly connected lin-
ear integrator networks, with more than two neurons
(Fig. 3d,e; see Methods 1.4.1). Moreover, as network
size grows, in unconstrained (but not in symmetric)
networks, the most amplifying direction becomes in-
creasingly orthogonal to the most persistent mode62,
further accentuating the advantage of amplifying over
persistent mode inputs62 (Fig. 3d–e, Extended Data
Fig. 5a–b; red vs. green). This is because in large un-
constrained networks, there are many effectively feed-
forward motifs embedded in the full recurrent connec-
tivity of the circuit, which can all contribute to tran-
sient amplification21. Random initial conditions be-
come fully orthogonal in both networks and result in
poor overlap with the persistent mode (Fig. 3d–e, Ex-
tended Data Fig. 5a–b; black). Numerical simulations
confirmed that these results also generalized to net-
works with noisy dynamics (Extended Data Fig. 5c).
Moreover, explicitly optimizing the initial condition of
such a network so as to maximize the persistent activ-
ity it generated at the end of a delay period also made
this initial condition overlap strongly with the network’s
most amplifying mode (Extended Data Fig. 5d).

As our mathematical analyses only applied to linear
dynamics, we used numerical simulations to study
how they generalized to nonlinear dynamics. We
found that the same principles applied to the dynamics
of a canonical 2-dimensional nonlinear attractor sys-
tem (analogous to the networks in Fig. 3a–c), when

the persistent and most amplifying directions were de-
fined locally around its ground state (Methods 1.6; Ex-
tended Data Fig. 6, see also Supplementary Informa-
tion S3). Importantly, we also found that large opti-
mized nonlinear neural networks (with discrete or ring
attractors) also showed a similar pattern of results (Ex-
tended Data Fig. 3e, and Extended Data Fig. 7a–c,
see also Supplementary Information S4).

Neural signatures of optimal information loading

Our dynamical analysis suggested that there should
be clearly identifiable neural signatures of a network
performing optimal information loading. To demon-
strate this, and to allow a more direct comparison
with data, we used the same large, randomly con-
nected, unconstrained networks that we analysed ear-
lier (Fig. 3d–e, bottom), with noisy dynamics (as in
Extended Data Fig. 5c–d) and the cue period mod-
elled using temporally extended constant inputs—
mimicking typical experiments3–5,10 (Fig. 4). We stud-
ied the three different information loading strategies
that we identified earlier: inputs aligned with either the
persistent mode, the most amplifying mode, or a cue-
specific random direction.

We began by conducting a decoding analysis using
templates of late delay activity, as is often done for
prefrontal cortical recordings6,8,10,14,15,25 (and also in
Fig. 2f,l). We first verified that for a fixed level of neu-
ronal noise, the most amplifying inputs were indeed
optimal for achieving high decodability at the end of the
delay period (Fig. 4a, compare red line to pale green
and gray lines). We were also able to show mathe-
matically that, in line with our original definition of opti-
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Fig. 4 | Neural signatures of optimal information loading. a, Performance of a delay-trained decoder (black bar indicates decoder training
time period) on neural activity over time. Two cue conditions were used with inputs that were identical but had opposite signs. Lines show
mean across 10 randomly connected 100-neuron linear unconstrained networks. Yellow ticks on horizontal axis indicate cue onset and offset
times and the gray shading indicates the cue period. We show results for inputs aligned with the persistent mode (dark and pale green),
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networks with the same level of noise as in the reference network (red), while dark colors (dark green and black, ‘performance-matched’)
correspond to networks with the same level of asymptotic decoding performance as that in the reference network (red). Gray dotted line
shows chance level decoding. b, Cross-temporal decoding of neural activity for the 3 different information loading strategies (persistent, most
amplifying, and random respectively in left, center, and right panels) for a representative network for the performance-matched condition from
a. Yellow lines indicate cue onset and offset times. Pink rectangles indicate poor generalization between time points (i.e. dynamic coding) and
cyan squares indicate examples of good generalization between time points (i.e. stable coding). The black vertical bars on the right of each
plot indicate the delay-trained decoder training time period from a. c, Percent variance of responses explained by the subspace spanned by
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and error bars show mean±1 s.d. across networks. We show results for inputs aligned with the persistent mode (left), most amplifying mode
(center), or a random direction (right). Gray dotted line shows chance level overlap with a randomly chosen subspace occupying 25% of the
full space.

mal information loading, the most amplifying inputs in
noisy linear networks are optimal for maximizing av-
erage decodability during the delay period (Supple-
mentary Information S2.7). In contrast, random inputs
performed considerably more poorly (Fig. 4a, gray
line). Remarkably, persistent mode inputs achieved
a similarly low level of decodability at late delay times
(Fig. 4a, compare pale green and gray lines).

The level of noise in the networks we have studied
so far was not constrained by data, which typically
shows high decodability6,8,10,14,15,25. This is impor-
tant because the sub-optimal input conditions (Fig. 4a,
pale green and gray lines) could achieve high decod-
ing performance by appropriately reducing the noise
level in our simulations (Fig. 4a, asymptotic values of
dark green and black lines). Thus, asymptotic de-
coding performance alone cannot be used to identify
the information loading strategy employed by a net-
work. To address this, in subsequent analyses, we
used networks in which the level of late-delay perfor-
mance was matched between the three information
loading strategies by appropriately reducing the level
of noise when using persistent or random inputs. Nev-
ertheless, a critical difference emerged between the
different information loading strategies even in these
‘performance-matched’ networks. For both random
and most amplifying input directions, the delay-trained
decoder only performed well when tested late in the
delay period (Fig. 4a, black and red lines), whereas
for inputs aligned with the persistent direction this de-
coder performed near ceiling at all times after cue on-
set (Fig. 4a, dark green line).

Next, in order to more fully characterise the differ-
ences between persistent versus random or most am-
plifying inputs, and for a comprehensive comparison
with experimental data8,10,14,15,25, we also employed
full cross-temporal decoding (Fig. 4b). This anal-

ysis showed that all information loading strategies
led to dynamics in which stimulus information was
present at all times after cue onset (Fig. 4b, diago-
nals are all black). Moreover, for the persistent mode
inputs, stimulus information was maintained using a
‘stable code’10,11,14,16 (Fig. 4b, left, all off-diagonals
are black)—similar to previous integrator models of
working memory34,35 (Extended Data Fig. 1c). In
contrast, random and most amplifying mode inputs
led to poor cross-temporal decodability between early
and late time points after cue onset (Fig. 4b, center
and right, off-diagonals indicated by pink rectangles
are white/gray). This gave rise to the phenomenon
of ‘dynamic coding’8,10,11,14–16, and suggested se-
quential activities during the early-to-late delay transi-
tion21,27,36. These activities then stabilised during the
late delay period as the network dynamics converged
to a persistent pattern of activity (Fig. 4b, center and
right, off-diagonals inside cyan squares are black). In
sum, these decoding analyses were able to clearly dis-
tinguish between persistent mode and random or am-
plifying inputs, but not between the latter two.

To clearly distinguish between networks using most
amplifying inputs or merely a random input direction,
we constructed a targeted measure for identifying net-
works using most amplifying inputs. To achieve this,
we exploited the fact that in large networks, random
inputs typically have negligible overlap with any other
direction in neural state space, including the most am-
plifying mode. Thus, we directly measured the time
courses of the overlap of neural activities with the top
25% most amplifying modes. We quantified this over-
lap as the fraction of across-condition variance of neu-
ral activities that these modes collectively explained
(Fig. 4c, red lines; Methods 1.7.3). For a comparison,
we also measured the overlap of neural activities with
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the top 25% most persistent modes (Fig. 4c, green
lines).

Persistent mode inputs led to constant high and mod-
erate overlaps with the persistent and most amplify-
ing modes, respectively (Fig. 4c, left). Random inputs
started with chance overlap for both modes, which
then increased to the same levels that resulted from
persistent mode inputs (Fig. 4c, right). In contrast,
most amplifying inputs were uniquely characterised by
a cross-over between the time courses of the two over-
lap measures. Initially, neural activities overlapped
strongly with the most amplifying mode, but showed
only chance overlap with the persistent mode (Fig. 4c,
middle). Over time, these overlap measures changed
in opposite directions, such that by the end of the de-
lay period overlap was high with the persistent mode
and lower with the most amplifying mode (Fig. 4c, mid-
dle). Therefore, the cross-over of these overlap mea-
sures can be used as a signature of optimal informa-
tion loading utilizing inputs aligned with the most am-
plifying modes.

To further illustrate how our overlap measures can
distinguish between optimal and random input direc-
tions, we modified an earlier integrator model of work-
ing memory6 (Extended Data Fig. 1c, Extended Data
Fig. 8a,d) so that inputs lay in a purely randomly ori-
ented subspace. This resulted in cross-temporal de-
coding matrices that looked similar to that achieved by
the most amplifying mode (Extended Data Fig. 8b), but
the overlap measures that we developed here clearly
revealed the lack of optimal information loading, even
in this modified model (Extended Data Fig. 8e). In ad-
dition, we confirmed in numerical simulations that the
same signature of optimal information loading remains
detectable (and distinguishable from other information
loading strategies) even under the practical constraints
of experimental data analysis: when the underlying
network dynamics is nonlinear, and only accessible in-
directly by fitting linear dynamical models to the neu-
ral responses they generate (Extended Data Fig. 7d,
Methods 1.4.3 and Supplementary Information S4.4).

Signatures of optimal information loading in mon-
key lPFC

To study whether the PFC shows the dynamical sig-
natures of optimal information loading that our theo-
retical analyses identified, we analysed a data set48

of multi-channel recordings of the lateral prefrontal
cortex (lPFC) in two monkeys during a variable-delay
memory-guided saccade task (Fig. 1a). These record-
ings yielded 438 and 625 neurons (for monkeys K and
T, respectively; Extended Data Fig. 9, Methods 1.1).
We analysed the population dynamics of all recorded
neurons in each monkey and applied the same metrics
to this dataset that we applied to our models. Pop-
ulation dynamics appeared to show rich transient dy-
namics during the cue and early delay period, followed
by relatively stable dynamics during the late delay pe-
riod (Fig. 5a). This was reminiscent of the dynamics

we found in unconstrained attractor networks following
optimal information loading (Fig. 2h).

To further quantify this behaviour, we conducted de-
coding analyses. First, we found that a delay-trained
decoder did not generalize to times outside of the de-
lay period (Fig. 5b). In particular, performance was
near-chance level during the cue period and increased
over the first 1 s of the delay period—in line with previ-
ous studies6,10,14–16,25. This was distinct from the pat-
tern completion dynamics seen in classical attractor
network models of working memory (Fig. 2f,l green
and Fig. 4a green), but similar to that expected from
random or optimal inputs in unconstrained networks
(Fig. 2l black and red; Fig. 4a bottom, black and red).

Full cross-temporal decoding reinforced these results:
decoders trained during the delay period did not gen-
eralize to the cue or go periods and vice versa (Fig. 5c
and Extended Data Fig. 10a, pink rectangles). Thus,
neural activity exhibited dynamic coding14,15 rather
than the stable coding characteristic of simple pat-
tern completion (Fig. 1c right; Fig. 4b left; and Ex-
tended Data Fig. 1a–c right). Importantly, same-time
decoding performance was close to 1 throughout the
cue and delay periods (Fig. 5c and Extended Data
Fig. 10a, orange arrow). This confirmed that the poor
cross-temporal generalization between early and late
periods of a trial was not because the cue informa-
tion had not yet reached PFC, or was maintained by
activity-silent mechanisms11,41,45. At the same time,
also in line with previous studies8,10,14–16, we found
relatively stable coding during the late delay period
(Fig. 5c and Extended Data Fig. 10a, cyan square).
This ruled out purely sequential activity-based dynam-
ics21,27,37,38,63 (Fig. 1d and Extended Data Fig. 1d).

Quantifying the relative alignment of the subspaces
occupied by neural dynamics across time using
PCA6,64 confirmed the orthogonality of neural activ-
ities between different task periods (Extended Data
Fig. 10b–c). Further analyses showed that this orthog-
onality was not simply due to distinct sub-populations
of neurons being active in different task periods (due to
either feedforward connections between these popu-
lations, or single-neuron adaptation mechanisms), but
was instead largely due to changes in population-wide
activities patterns10,49 (Extended Data Fig. 10d–e).

These results, in line with previous findings8,10,15,16,
clearly indicated that activities during the cue period
were largely orthogonal from those during the delay
period. However, these analyses alone were unable to
distinguish between two fundamentally different infor-
mation loading strategies PFC could employ: random
input directions, or optimal input directions. Thus, in
order to clearly identify the information loading strat-
egy underlying the combination of dynamic and stable
coding that we found, we applied our overlap measure
(Fig. 4c) to these PFC recordings. For this, we first fit-
ted a 20-dimensional linear dynamical system model
to the cue and early delay periods of our recordings
(0–1 s after cue onset, Methods 1.4.3). We confirmed
that linear dynamics provided a reasonably accurate
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Fig. 5 | Signatures of optimal information loading in monkey lPFC. a, Top: lPFC recording location. Bottom: neural firing rates (relative
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paradigm. Neurons are ordered according to their firing rate at the end of the period shown. Vertical yellow lines indicate stimulus cue onset
and offset. b, Performance of a delay-trained decoder (black bar indicates decoder training time period) on neural activity over time. Yellow
ticks on horizontal axis indicate stimulus cue onset, offset, and go cue times, and the gray shading indicates the stimulus cue period. Data is
aligned to either stimulus cue onset (first 1.5 s) or to the go cue (final 1.5 s). Gray dotted lines show chance level decoding. c, Cross-temporal
decoding of neural activity for monkey T (see Extended Data Fig. 10a for Monkey K). Yellow lines indicate stimulus cue onset, offset, and go
cue times. Pink rectangles indicate poor generalization between time points (i.e. dynamic coding) and the cyan square indicates examples
of good generalization between time points (i.e. stable coding). The orange arrow indicates good same-time decoding during the cue period.
The black vertical bar on the right indicates the delay-trained decoder training time period from b. d, Cross-validated quality of fits when fitting
20-dimensional linear neural networks to neural activity (blue) and time shuffled controls (dark gray). We also show quality of fits of the data
against itself (‘train vs. test’; light gray). e, Neural activity for each of the 6 cue conditions projected onto the top PC (solid lines) for monkey K
(left) and monkey T (right). Solid lines show held-out test data, dashed lines show predictions of fitted model dynamics. The inset for monkey
T shows which color corresponds to each cue condition. f, Percent variance of responses explained by the subspace spanned by either the
25% most persistent (green) or 25% most amplifying (red) modes as a function of time for the 20-dimensional linear neural networks fitted
to data from monkey K (top) and monkey T (bottom). Gray lines show chance level overlap defined as the expected overlap with a randomly
chosen subspace occupying 25% of the full space (median and 95% C.I. across 200 random subspaces). Comparisons shown in d and f use
two-sided permutation tests (*, p < 0.05; **, p < 0.01; n.s., not significant).

cross-validated fit to the data compared to a time shuf-
fled control (which destroyed the lawful dynamics of
the data; Fig. 5d, dark gray, see also Methods 1.4.3),
and model-free train vs. test performance (which indi-
cated that cross-validated errors were mostly due to
sampling noise differences between the train and test
data; Fig. 5d, light gray) and recapitulated the most im-
portant aspects of the trial-average dynamics in each
condition (Fig. 5e).

We then performed the same overlap analysis on the
fitted linear dynamics of the data that we used on
our simulated networks with linear dynamics (Fig. 4c;
Methods 1.7.3). As expected from our decoding anal-
yses (Fig. 5b,c), the overlap of neural activities with
the most persistent modes was at chance initially and
gradually increased (Fig. 5f, green and Extended Data
Fig. 10i). Critically however, the overlap of neural ac-
tivities with the most amplifying modes was high ini-
tially and decreased with time (Fig. 5f, red and Ex-
tended Data Fig. 10i). Consistent with these results,

we found that at early times, stimulus information was
just as decodable within the amplifying subspace as in
the full space and was more poorly decodable in the
persistent subspace (Extended Data Fig. 10h, t = 0).
Later in the delay period, stimulus information was
significantly better decodable in the persistent sub-
space than in the amplifying subspace (Extended Data
Fig. 10h, t > 0).

We also noted that the overlap with the most amplify-
ing directions became significantly lower than chance
over time. This suggests that PFC circuits may be
more mathematically ‘non-normal’21,27,56,57,60 than the
networks with randomly chosen weights that we used
in Fig. 4. For example, Extended Data Fig. 8f shows
this phenomenon in a highly non-normal (purely feed-
forward) network using optimal information loading
(see also Discussion).

As a control, we repeated the same analyses on time-
shuffled data, or on data taken from the late delay
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period (when the network should already be near an
attractor state). Neither control analyses resulted in
the same cross-over pattern that we found in our main
analysis. In particular, the overlap with the most ampli-
fying modes remained at (or below) chance at all times
(Extended Data Fig. 10f,g,i).

Therefore, these analyses provide strong experimen-
tal evidence that PFC circuit dynamics utilize optimal
information loading with inputs aligning with the most
amplifying modes (compare to Fig. 4c; middle and
Extended Data Fig. 10i, third vs. fourth row) rather
than simply using random input directions (compare
to Fig. 4c; right and Extended Data Fig. 10i, first vs.
fourth row).

Information loading in task-optimized nonlinear
networks

The definition of most amplifying inputs relies on full
access to the algebraic form of the dynamics of a net-
work, something that the brain will not have explicitly
when performing a working memory task. In turn, the
formal equivalence of using the most amplifying input
directions to optimal information loading could only be
established for networks with linear dynamics receiv-
ing instantaneous inputs, while fixing the magnitude of
those inputs. Thus, an important question is whether
optimizing simple task-relevant cost functions in non-
linear networks13,17,20,24,39–41,65, under only a generic
energy constraint13,39–41,65, can be sufficient for such
networks to adopt an optimal information loading strat-
egy.

We trained nonlinear recurrent networks (Fig. 6a;
Methods 1.3.2) on the same memory-guided saccade
task as that which our animals performed (Fig. 1a).
Following previous approaches13,39,40, all recurrent
weights in the network, as well as weights associated
with the input and read-out channels, were optimized,
while only penalizing the average magnitude of neural
responses over the course of the whole trial (Meth-
ods 1.3.3).

To study the generality of optimal information loading,
we first implemented two standard cost functions that
have been widely used in previous work13,17,24,39,40.
These cost functions required networks to maintain
cue information either stably throughout the delay
period, starting immediately after cue onset (cue-
delay; Fig. 6b, left), or only at response time (after-
go; Fig. 6b, center). Both networks achieved high
performance, as measured by a late-delay decoder,
in line with what their respective cost functions re-
quired: immediately after cue onset for the cue-delay
cost (Fig. 6c and Extended Data Fig. 11a, green), or
only shortly before go time for the after-go-time cost
(Fig. 6c orange and Extended Data Fig. 12b).

We then further analyzed the dynamics with which
these networks achieved competent performance. In
particular, we evaluated whether they employed op-
timal information loading, and how well they repro-
duced critical aspects of the empirical data. The cue-

delay network showed signatures of classical attrac-
tor dynamics with simple pattern completion: cross-
temporal decoding was high at all times, including be-
tween the cue and delay periods (Fig. 6d, left; cf.
Fig. 1c, Extended Data Fig. 1a–c), neural activity over-
lapped strongly between the cue and delay periods
(Extended Data Fig. 11c, left), and at the time of cue
offset, neural activity was already very close to its fi-
nal attractor location in state space (Extended Data
Fig. 11d, left). In line with our theory of optimal in-
formation loading, this was achieved by neural activi-
ties during the cue period aligning predominantly with
the most amplifying modes (Fig. 6e, left, red). How-
ever, at the same time, activities were also already
aligned well above chance with the most persistent
modes (Fig. 6e, left, green). This was consistent with
these networks being explicitly required to exhibit sta-
ble coding at all times by the cue-delay cost. These
features also made this network a poor match to the
experimental data, which showed a combination of dy-
namic and stable coding and at-chance overlap of ac-
tivities with the most persistent mode during the cue
period (Fig. 5b–c,f,Extended Data Fig. 10a–b). We
also found similar behavior for networks optimizing a
‘full-delay’ cost, in which cue information must be sta-
bly maintained only after cue offset (Extended Data
Fig. 13, Methods 1.3.3).

At the other extreme, the after-go-time network did not
make particular use of attractor dynamics. Instead,
it generated largely sequential activities, i.e. pure dy-
namic coding akin to the dynamics of a feedforward
network: cross-temporal decoding was only high at
the very end of the delay period (Fig. 6d, center; cf.
Fig. 1d and Extended Data Fig. 1d, right), neural activ-
ity was strongly orthogonal between the cue and delay
periods (Extended Data Fig. 12d, left), and these net-
works did not exhibit attractor states (Extended Data
Fig. 12e, left). This was particularly the case for a
fixed delay task, for which this cost function yielded
purely sequential dynamics (Extended Data Fig. 12c–
e, right). As required by optimal information load-
ing, neural activities also had a strong initial over-
lap with the most amplifying modes in this network
(Fig. 6e, center, green). However, as expected for
sequential dynamics, the overlap with the most per-
sistent modes never significantly exceeded that with
the most amplifying modes (Fig. 6e, center). Again,
the apparent lack of attractor dynamics was well ex-
plained by the cost function not requiring any stable
coding during the delay period. Therefore, this net-
work also deviated from the data in important ways, in
this case by failing to exhibit stable coding and high
overlap with the persistent mode during the late de-
lay period (cf. Fig. 5b–c,f,Extended Data Fig. 10a–
b). In summary, network dynamics trained for stan-
dard cost functions exhibited optimal information load-
ing and recovered classical network models of working
memory (Fig. 1c,d and Extended Data Fig. 1a–d), but
were different from those seen in experimental record-
ings8,10,14–16,25 (Fig. 5b,c,f).
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Fig. 6 | Information loading in task-optimized nonlinear networks. a, Illustration of a recurrent neural network model with unconstrained
connectivity (middle). During the cue period, networks received input from one of six input channels on any given trial depending on the cue
condition (left). Network activity was decoded into one of six possible behavioural responses via six readout channels (right). All recurrent
weights in the network (50 neurons), as well as weights associated with the input and readout channels, were optimized. b, Illustration of
cost functions used for training. Yellow ticks indicate cue onset and offset times, yellow bars indicate range of go times in the variable delay
task. Boxcars show intervals over which stable decoding performance was required in three example trials with different delays for each of
the cost functions considered: cue-delay (left), after-go-time (center), or just-in-time (right). c, Performance of a delay-trained decoder (black
bar indicates decoder training time period on model neural activity over time in trials with a 1.75 s delay. Yellow ticks show stimulus cue onset,
offset, and go times, and the gray shading indicates the cue period. Neural activities were generated by networks optimized for the cue-delay
(green), after-go-time (orange), or just-in-time (red) costs. Solid colored lines and shading indicate mean±1 s.d. across 10 networks. Gray
dotted line shows chance level decoding. d, Cross-temporal decoding of model neural activity for cue-delay (left), after-go-time (center), and
just-in-time (right) trained models. Yellow lines indicate stimulus cue onset, offset, and go times. The black vertical bars on the right of each
plot indicate the delay-trained decoder training time period from c. e, Percent variance of responses explained by the subspace spanned by
either the 25% most persistent (green) or 25% most amplifying (red) modes as a function of time for 20-dimensional linear neural networks
fitted to the model neural activities of nonlinear networks optimized for the cue-delay (left), after-go-time (center), or just-in-time cost (right).
Gray lines show chance level overlap defined as the expected overlap with a randomly chosen subspace occupying 25% of the full space.
Lines and error bars show mean±1 s.d. over 10 networks.

However, we reasoned that neither of these standard
cost functions may be appropriate for understanding
PFC function. The cue-delay cost is well justified when
stimuli need to be decoded potentially instantaneously
after cue onset, and as such it is most relevant for
sensory areas59. Conversely, the after-go-time cost
may be most directly relevant for motor areas, by only
requiring stable coding during the short response pe-
riod65. Therefore, we also considered a third cost
function that required stable coding just in time before
the go cue appeared, i.e. during a period that was di-
vorced from the stimulus or response time windows,
and as such was more consistent with the putative
role of PFC in cognitive flexibility2,25,61 (just-in-time;
Fig. 6b, right).

In contrast to both standard training costs, just-in-time
networks showed the signatures of a combination of
attractor and sequential dynamics which were consis-
tent with its cost function. The performance of a late-
delay decoder was high only after cue offset but re-
mained so for most of the delay period (Fig. 6c and
Extended Data Fig. 11a, red), cross-temporal decod-
ing was poor between early and late periods of a trial,
but high during the late delay period (Fig. 6d, right;
Extended Data Fig. 11b; cf. center, Fig. 5c; see also
Extended Data Fig. 11d for state-space plots), neural
activity was strongly orthogonal between the cue and
delay periods (Extended Data Fig. 12d, right), and at
the time of cue offset, neural activity was far from its

final attractor location in state space (Extended Data
Fig. 11d, right). Critically, the overlap of neural ac-
tivities with the most amplifying and persistent modes
showed the characteristic cross-over that we found ex-
perimentally (Fig. 6e, right; cf. Fig. 5f). Thus, this net-
work both used optimal information loading and repro-
duced the key features of the experimental data.

In summary, all task-optimized networks exhibited a
key feature of optimal information loading: they made
use of most amplifying modes early during the trial
(Fig. 6e, all red lines start high at 0 s). The extent
to which they showed the complete cross-over of am-
plifying and persistent overlaps predicted by our ear-
lier analyses (Fig. 4c, center), and characteristic of
the experimental data (Fig. 5f), was consistent with
how much they were required to exhibit stable cod-
ing8,10,11,14–16. These results suggest that optimal in-
formation loading emerges naturally as a dynamical
strategy in task-optimized networks, without explicit re-
quirements on their inputs.

Discussion
While attractor networks have been proposed
to underlie a number of core cognitive func-
tions12,17,17,28–31,33–35,42,51,66–68, prominently including
working memory5–7,26,29,31–33,69, their operation was
almost exclusively analyzed in terms of how their
intrinsic connectivity supports information mainte-
nance5,7,12,29–31,34,35,70,71 (but see Refs. 6,26, dis-
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cussed below). We instead studied information
loading by external inputs in attractor networks and
showed that optimal information loading provides a
normative account of the widely observed and puz-
zling phenomenon of dynamic coding8,10,14–16. We
predict that these results should also generalize to
more cognitively demanding working memory tasks in
which, unlike in the simple memory-guided saccade
task we studied here, the correct response is unknown
during the delay period, thus requiring the mainte-
nance of stimulus information before a response can
be prepared14,15,23,72,73. Indeed, strongly dynamic
population activity, similar to those that we identified
here, has been observed in monkey PFC10,14–16,23,24,73

and in neural networks20,24,39 trained on such tasks.
To fully test the generality of these principles, it will
also be important to extend the theory and these anal-
yses even further, to tasks with multiple delay peri-
ods8,15.

For understanding the dynamics of optimal informa-
tion loading, we used networks whose connectivity
was constrained to be symmetric as a pedagogical
stepping stone. Some classical attractor and inte-
grator networks indeed used purely symmetric con-
nectivities28,33–35,42, and these continue to form the
basis of our analytical understanding of the capacity,
noise-tolerance, and input amplification of more real-
istic networks46. The perfect symmetry of classical
models has been relaxed by more recent, highly in-
fluential models of working memory that instead used
quasi-symmetric connectivities, i.e. connectivities that
were only weakly non-symmetric. These include mod-
els whose connectivity is not strictly symmetric at the
microscopic level of cell-to-cell connections, but their
macroscopic connectivity (at the level of connections
between groups of similarly tuned cells) is strongly
symmetric71,74, as well as models in which excitatory
cells are connected symmetrically, but perfect sym-
metry is broken by the introduction of effectively a
single inhibitory neuron providing a spatially uniform,
global level of inhibition5,7,12,30,32,44,45. Indeed, pre-
vious analyses of such weakly non-symmetric net-
works5–7,30,44 and our simulations of such networks
revealed largely stable coding dynamics (e.g. see Ex-
tended Data Fig. 1a–b). In contrast, we showed that
dynamic coding naturally arises in networks whose
connectivity is not constrained to be symmetric, and
especially so under optimal information loading.

Our dynamical analysis revealed a novel, theoretically-
grounded aspect of dynamic coding: not only should
neural activities during the cue and early delay pe-
riod be orthogonal to those during the late delay pe-
riod, but they should be orthogonal in the specific di-
rections that are aligned with the most amplifying di-
rections. We found strong evidence for these pre-
dictions of optimal information loading in lPFC dur-
ing a memory-guided saccade task. These results
unify previous, seemingly conflicting models of work-
ing memory maintenance that typically either use at-
tractor dynamics5,7,29 or rely on sequential activities
often generated by non-normal dynamics21,27,36,37.

We found that although both classes of models can
capture select aspects of neural data (e.g. sequen-
tial models can capture early delay activity whereas
attractors are better suited to capturing late delay ac-
tivity), no model could capture the experimentally ob-
served rich combination of sequential and persistent
dynamics72 (Fig. 1; see also39). We showed that op-
timal information loading in attractor models with re-
alistic, unconstrained connectivity, leads to the spe-
cific combination of sequential and persistent dynam-
ics that has been observed in experiments. We found
that this was true across a range of different specific
network architectures: using either hand-set (Figs. 3
and 4 and Extended Data Fig. 5a,b) or optimized stim-
ulus inputs (Extended Data Fig. 5c,d); and linear inte-
grator (Figs. 3 and 4 and Extended Data Fig. 5), non-
linear discrete attractor (Figs. 2 and 6 and Extended
Data Figs. 2, 7 and 11–13) or nonlinear ring attractor
dynamics (Extended Data Fig. 3).

In contrast to our optimal information loading-based
account, previous attempts to reconcile transient and
persistent dynamics specifically proposed that tran-
sient dynamics do not affect the delay (or ‘mnemonic’)
coding of the stimulus information6,26. These stable
delay dynamics are very different from dynamic cod-
ing as observed in experiments3,8,10,11,14–24, and as
predicted by our theory of optimal information load-
ing. Put simply, in previous models, the stimulus in-
put is strongly aligned with the desired persistent state
(Fig. 1d, left). In real data, and in models that exhibit
optimal information loading, stimulus inputs drive net-
work activity strongly orthogonal to the desired persis-
tent state (and specifically in a direction that is aligned
with the most amplifying mode) before activity ulti-
mately settles into the correct state (Fig. 1f, left). In-
deed, previously observed high correlations between
cue and delay periods6, which partially motivates us-
ing inputs aligned with the persistent state, are likely
due to high overall baseline firing rates, and they have
been shown to disappear (and even become nega-
tive) when data is mean-centered across cue condi-
tions8,24.

There are aspects of the data that were not repro-
duced accurately by any of the specific models we im-
plemented. First, the overlap with the most amplify-
ing directions became significantly lower than chance
over time in the data. This suggests that PFC cir-
cuits may be more mathematically ‘non-normal’ (i.e.
include stronger effective feedforward loops21,27,57, or
excitatory–inhibitory interactions53,56) than the net-
works with randomly chosen or initialised weights we
used here60,62. (For example, we found that networks
with strong feedforward connectivity reproduced this
phenomenon; Extended Data Fig. 8f.) Second, the
time evolution of the overlaps with the most persistent
and most amplifying modes seemed to obey different
time constants, with the persistent overlap evolving
substantially slower than the amplifying overlap. This
may be a result of high dimensional, graded dynamical
transitions between multiple amplifying and persistent
modes compared to the less complex dynamical tran-
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sitions that we observed in our models. More gener-
ally, analysing the data at single trial resolution, as op-
posed to the across-trial averages we analysed, may
provide further important constraints on the underly-
ing circuit dynamics72,75,76. Conversely, constraining
the models to be more biologically plausible, e.g. by
using spiking neurons or Hebbian forms of plasticity,
may provide better fits to the data and more detailed
predictions.

There have been multiple mechanisms proposed
to account for some of the features of the data,
most prominently dynamic coding14,15, that previously
seemed to be at odds with basic attractor network dy-
namics. These hypothetical mechanisms include
short-term plasticity11,23,39,41,77, specific changes in
the strength of input and recurrent connections44,78,
and separate stimulus- and delay-responsive cells3,10.
We showed that the core phenomenon of dynamic
coding emerges naturally, without any of these ad-
ditional mechanisms, from the same ultimate prin-
ciple that explains persistent activities (robust mem-
ory maintenance implemented by attractor dynamics).
Moreover, the high initial overlap with the most ampli-
fying modes, which was a core prediction of our theory
confirmed by the data and our optimized networks, is
not specifically predicted by any of these alternative
mechanisms. Nevertheless, these mechanisms are
not mutually exclusive with ours. In fact, they might
help explain the more nuanced aspects of the data
that our specific network implementations did not cap-
ture (see above), as well as aspects of the data that
lie outside the scope of our theory (e.g. activity silent
information maintenance during inter-trial intervals45).

A number of recent studies of neural network dynam-
ics have analysed the relationship between the direc-
tion of inputs and the magnitude of responses they
evoke53,57,59,62. However, these studies focused on
networks with transient dynamics, such as those rel-
evant for perception59, or motor control53,62. In partic-
ular, Ref. 62 found that optimal inputs (resulting in the
largest transients) are typically orthogonal to the ac-
tivity patterns that the network expresses in response
to them, providing a normative account for the exper-
imentally observed orthogonality of preparation and
execution subspaces in motor cortex64,79. Our work
suggests that the use of optimal inputs to drive net-
work dynamics, and the orthogonality of those inputs
to network responses, is a more general principle of
cortical circuits, extending beyond the motor cortex.
In particular, our results demonstrate the importance
of optimal initialization even when the transients fol-
lowing initialization themselves may be irrelevant, as
information is ultimately maintained by stable attractor
states.

In line with our results, previous studies optimizing
networks on related tasks requiring persistent, rather
than transient, responses also exhibited key features
of dynamic coding: neural activities initially pointed
strongly orthogonal to the ultimate attractor location
in state space17; the dynamics during the stimulus pe-

riod had 0 correlation with late delay activity24; and
cross-temporal decoding of time revealed strongly se-
quential dynamics in a variety of tasks20 (see also39,41

for related results). In fact, these features of model
activities were also shown to be reflected in the corre-
sponding experimental data in each case17,20,24. Nev-
ertheless, it remained unclear whether these features
were epiphenomenal or an integral part of the func-
tioning of these networks. Our results suggest optimal
information loading as a unifying principle underlying
these observations.
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1 Methods

1.1 Experimental materials and methods

Experimental methods have been described before48 and largely followed those used in our previous publica-
tions10,80,81. We briefly summarize the methods below.

1.1.1 Subjects and apparatus

We used two female macaques (monkey T, Macaca mulatta, 5 kg; monkey K, Macaca fuscata, 8 kg). Both
monkeys were housed individually. The light/dark cycle was 12/12 hr. (light, from 8:30 a.m. to 8:30 p.m.). The
monkeys sat quietly in a primate chair in a dark, sound-attenuated shield room. During both training and neural
recording sessions, we restrained the monkeys’ head movement non-invasively using a thermoplastic head cap
as described in82. This head cap is made of a standard thermoplastic splint material (MT-APU, 3.2 mm thick,
CIVCO Radiotherapy, IA., USA), and was molded out so that it conformed to the contours of the animals’ scalp,
cheek bone, and occipital ridge. Visual stimuli were presented on a 17 inch TFT monitor placed 50 cm from
the monkeys’ eyes. Eye movements were sampled at 120 Hz using an infrared eye tracking system (ETL-200,
ISCAN, MA.). Eye fixation was controlled within a 6.5◦ imaginary square window. TEMPO software (Reflective
Computing, WA.) was used to control behavioral tasks. All experimental procedures were approved by the Animal
Research Committee at the Graduate School of Frontier Biosciences, Osaka University, Japan and were in full
compliance with the guidelines of the National BioResource Project ‘Japanese Macaques’. Experimental work
performed in non-human primates that was not funded by Wellcome may not adhere to the principles outlined in
the NC3Rs guidance on Non-human Primate Accommodation, Care and Use.

1.1.2 Behavioral task

The monkeys were trained on a memory-guided saccade task requiring them to remember the location of a visual
stimulus cue on a screen and to make a correct eye movement after a delay period (Fig. 1a). Specifically, this
task required monkeys to fixate on a central ring for a period of 2.6–7.4 s followed by a stimulus cue (a white
square) appearing in one of six pre-determined locations for 0.25 s. After a variable delay period of 1.4–7.5 s,
the fixation ring was replaced by placeholders at all six possible stimulus cue locations (go cue). Monkeys were
required to make a saccade within 0.5 s to the placeholder where the original stimulus cue was presented and
maintain their gaze for 0.25 s for monkey T and either 0.25 s or 0.6 s for monkey K (these two gaze maintenance
times were switched in different blocks for monkey K) to receive a juice reward. The monkeys were extensively
trained, with close to perfect performance (monkey T, 96.1%; monkey K, 96.3%, mean across sessions). Fixation
break errors were excluded from the calculation of percent correct rate.

1.1.3 Recordings

After training was completed, we conducted an aseptic surgery under general anesthesia. We stereotypically
implanted a plastic recording chamber on the lateral surface of the prefrontal cortex, under the guidance of
structural MRI images (Extended Data Fig. 9). In monkey T, we implanted a cylindrical chamber (RC-T-S-P,
internal diameter 12.7 mm, Gray Matter Research, MT.) in the right hemisphere (AP = 33, ML = 14.5; AP, anterior-
posterior; ML, medio-lateral). A 32-channel semi-chronic microdrive system (SC-32, Gray Matter Research) was
mounted inside this chamber. In monkey K, we implanted a cuboid chamber (width 12 mm, depth 16 mm, height,
15 mm, S-company ltd., Tokyo, Japan) over the principal sulcus in the left hemisphere.

We collected neural data in a total of 48 daily sessions (21 in monkey T; 27 in monkey K). In monkey T, we used
the 32-ch microdrive (SC-32) that housed 32 single-contact tungsten electrodes with inter-electrode spacing of
1.5 mm. In monkey K, we used a 32-ch linear microelectrode array (Plexon U-Probe, Plexon, TX.) with an
interelectrode spacing of 150 µm along a single shaft. We positioned the U-Probe by using a custom-made grid
(width 12 mm, depth 16 mm, height, 10 mm) which had a total of 165 holes with 1 mm spacing. We advanced
the U-Probe by a custom-made hydraulic microdrive (S-company ltd.).

Raw extracellular neural signals were amplified and recorded in reference to a titanium bone screw at the vertex
(in monkey T) or the shaft of the linear array (monkey K) using a neural signal amplifier RZ2 Bioamp Processor
(Tucker-Davis Technologies, FL.). Behavioral data (task-event information and eye-movement information) were
also sent to the RZ2 Bioamp. Neural data acquisition was performed at a sampling frequency of 24414.08 Hz,
and behavioral data acquisition at 1017.25 Hz. For analysis of spiking activity, the raw neural signal was filtered
(300 Hz to 6 kHz) for offline sorting (Offline Sorter, Plexon). In monkey T, approximately three hours before
each recording session, we took the monkey to the testing room and advanced each electrode in the SC-32
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by a minimum of 62.5 µm in order to ensure recording of new neurons. We then put the monkey back in the
home cage until we brought it out again for the recording session. In monkey K, we adopted the method of the
U-Probe insertion reported in83. We first punctuated the dura using a guide tube (a shortened 23 gauge needle),
and inserted the U-Probe array slowly, usually with a step of 500 µm. We kept monitoring electrocardiogram
(pulsatory fluctuation) on superficial electrodes to identify the point of cortical entry. We usually left 3–5 superficial
channels outside the cortex. After array insertion, we waited 1–1.5 hours until the recorded single-unit and
multiunit activities indicated that the electrode array was stably positioned in the cortex. While waiting, the monkey
watched nature and animal video clips and received a small snack on a monkey chair.

In monkey T only, to determine location of the frontal eye field (FEF), and confirm that our recording area was
outside it, intracortical microstimulations (22 biphasic pulses, 0.2 ms duration at 333 Hz, ≤ 150 µA) were applied
through microelectrodes. When eye movements were elicited below 50 µA, the site was considered to be in the
low-threshold FEF. In monkey T, our recording area did not include the low-threshold FEF.

1.1.4 Pre-processing

We excluded neurons that were recorded in fewer than 10 trials for any cue condition. For each monkey, we
pooled neurons from all recording sessions to create pseudopopulations of 438 neurons for Monkey K (after we
removed 1 neuron from monkey K’s dataset due to an insufficient number of trials) and 625 neurons for Monkey
T (no neurons were removed from monkey T’s dataset). To compute neural firing rates, we convolved spike trains
with a Gaussian kernel with a standard deviation of 25 ms. Trial-averaged trajectories of time-varying mean firing
rates were computed separately for each neuron and each cue condition. For analysis methods that used cross-
validation (see below), we split trials into separate train and test sets with a 1:1 train:test ratio, and computed
trial-averaged trajectories for each training and test set (using 1:1 splits). For non-cross validated analyses, we
either computed trial averages based on all the data, or on a subset of the data (see below). We aligned neural
activity to either stimulus or go cue onset (see also below in Methods 1.7) and shifted activity by -50 ms to allow
for the delay in time for information about these cues to enter PFC. For consistency with our simulations (see
below), we subsampled neural firing rates at a 1-ms time resolution.

1.2 Neural network models: overview

All our simulated networks (Figs. 2–4 and 6 and Extended Data Figs. 2–5, 7 and 11–13) evolved according to a
canonical model of stochastic recurrent neural circuit dynamics40,84:

τ
dx(c)(t)
dt

= −x(c)(t) +Wr(c)(t) +mh(t) h(c) +mg(t) g + b + σ η(c)(t) (1)

with r(c)(t) = f
(
x(c)(t)

)
(2)

where x(c)(t) = (x (c)1 (t), … , x (c)N (t))> corresponds to the vector of (unitless) trial-averaged raw somatic membrane
potentials of the N neurons of the network84 in cue condition c = 1,… ,C (initialised at x(c)(t0) at the beginning of
the simulation t0, which could be at or before stimulus onset at t = 0). r(c)(t) is their momentary firing rates, with
f(x) being the activation function that converts membrane potentials to firing rates, τ is the effective time constant
of the cell), W is the recurrent weight matrix (shown e.g. in Fig. 2a and g), h(c) is the input given to the network
depending on the stimulus cue, g is the stimulus-cue-independent go cue that occurs at the go time tgo, mh(t) and
mg(t) are box car ‘masking’ kernels such that the stimulus and go cues are only effective within a limited period
at the beginning and end of the trial, respectively, b is a cue-independent bias, σ is the standard deviation of the
noise process, and η(c)(t) is a sample from a standard (mean 0 and variance 1) Gaussian white (temporally and
spatially) noise process.

Networks shown in different figures corresponded to different special cases of Eqs. 1 and 2 (see Table 1). Specif-
ically, for linear networks f(x) = x was the identity function. For nonlinear networks fi(x) = [xi]+ was the rectified
linear (ReLU) activation function applied element-wise (except for the ring attractor networks where we used
fi(x) = tanh(xi); Extended Data Fig. 3). Given that the focus of our study was optimal information loading, stimulus
inputs were either optimized numerically (Fig. 2, Fig. 6, Extended Data Figs. 2 and 3, Extended Data Fig. 5c,d,
and Extended Data Figs. 11–13), or set to analytically computed values as dictated by our mathematical analysis
(Figs. 3 and 4, Extended Data Fig. 4c,d, and Extended Data Fig. 5a,b), or as a baseline, set to random values
(Figs. 3 and 4, Extended Data Fig. 4a,b, and Extended Data Fig. 5a,b). For networks used to study the effects of
instantaneous initial conditions (Figs. 2 and 3 and Extended Data Figs. 2–5 and 7), the stimulus masking kernel
was zero and instead the initial condition was set to the stimulus input; for other networks (Fig. 4, Fig. 5e–f,
Fig. 6 and Extended Data Figs. 11–13) the stimulus masking kernel was a boxcar between 0 and 0.25 s. For
task-optimized networks (Fig. 6 and Extended Data Figs. 11–13), the go cue masking kernel mg(t) was a boxcar
starting at go cue onset, tgo and lasting for 0.5 s, for all other networks it was set to 0 everywhere. The networks
used to analyse the dynamics of information loading (Fig. 3, Extended Data Fig. 4, and Extended Data Fig. 5a,b)
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Symbol Fig. 2 Fig. 3a–c Fig. 3d–e Fig. 4 Units Description
N 50 2 1000 100 - number of neurons
t0 0 0 0 -0.5 s simulation start time
tgo - - - - s go cue time
tmax 2 2 2 2.5 s simulation end time
τ 0.05 0.05 0.05 0.2 s e�ective time constant
x(c)(t0) h(c) h(c) h(c) 0 - initial condition
f(·) nonlineara lineara lineara lineara Hz neural activation function
W optimizedb setd iid.∼ N

(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e s weight matrix
C 6 1 1 2 - number of stimuli
h(c) optimizedc1 setf setb setb - stimulus input
g - - - - - go cue
mh(t) 0 0 0 K (0, 0.25)g - stimulus masking kernel
mg(t) 0 0 0 0 - go cue masking kernel
b optimizedb 0 0 0 - cue-independent bias
σ 0.05 0 0 variableb - noise standard deviation
Symbol Fig. 5e–f Fig. 6a–d and

Extended Data
Fig. 1e

Fig. 6e Extended Data
Fig. 2

Units Description

N 20 50 20 50 - number of neurons
t0 0 -0.5 0 0 s simulation start time
tgo - 2 - - s go cue time
tmax 1 3 1 2 s simulation end time
τ 0.05 0.05 0.05 0.05 s e�ective time constant
x(c)(t0) 0 0 0 h(c) - initial condition
f(·) lineara nonlineara lineara nonlineara Hz neural activation function
W �tb optimizedb �tb optimizedb s weight matrix
C 6 6 6 6 - number of stimuli
h(c) �tb optimizedc2 �tb optimizedc1 - stimulus input
g -

∑
c h

(c) - - - go cue
mh(t) K (0, 0.25)g K (0, 0.25)g K (0, 0.25)g 0 - stimulus masking kernel
mg(t) 0 K

(
tgo, tgo + 0.5

)g 0 0 - go cue masking kernel
b �tb optimizedb �tb optimizedb - cue-independent bias
σ 0 0.05 0 0 - noise standard deviation
Symbol Extended

Data Fig. 3
Extended Data
Fig. 7b

Extended Data
Fig. 7c

Extended Data
Fig. 7d

Units Description

N 50 50 50 20 - number of neurons
t0 0 0 0 0 s simulation start time
tgo - - - - s go cue time
tmax 2 2 2 2 s simulation end time
τ 0.05 0.05 0.05 0.05 s e�ective time constant
x(c)(t0) h(c) h(c) h(c) h(c) - initial condition
f(·) nonlineara lineara nonlineara lineara Hz neural activation function
W optimizedb optimizedb optimizedb �tb s weight matrix
C 36 (6)h 6 6 6 - number of stimuli
h(c) optimizedc2 optimizedc1 optimizedc1 �tb - stimulus input
g - - - - - go cue
mh(t) 0 0 0 0 - stimulus masking kernel
mg(t) 0 0 0 0 - go cue masking kernel
b optimizedb optimizedb optimizedb �tb - cue-independent bias
σ 0.05 0 0.05 0 - noise standard deviation

Table 1 |Continued on text page.

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2021.11.16.468360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468360
http://creativecommons.org/licenses/by/4.0/


Symbol Extended Data
Fig. 4a,b

Extended Data
Fig. 4c,d

Extended Data
Fig. 5a,b

Units Description

N 100 100 10, 100, 1000 - number of neurons
t0 0 0 0 s simulation start time
tgo - - - s go cue time
tmax 2 2 2 s simulation end time
τ 0.05 0.05 0.05 s e�ective time constant
x(c)(t0) h(c) h(c) h(c) - initial condition
f(·) lineara lineara lineara Hz neural activation function
W iid.∼ N

(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e s weight matrix
C 1 1 1 - number of stimuli
h(c) iid.∼ N

(
0, 1

N

)
optimizedc4 setb - stimulus input

g - - - - go cue
mh(t) 0 0 0 - stimulus masking kernel
mg(t) 0 0 0 - go cue masking kernel
b 0 0 0 - cue-independent bias
σ 0 0 0 - noise standard deviation
Symbol Extended

Data Fig. 5c,d
Extended Data
Fig. 10f

Extended
Data Fig. 10g

Extended Data
Figs. 11–13

Units Description

N 100 20 20 50 - number of neurons
t0 0 0 tgo − 1 -0.5 s simulation start time
tgo - - 1 2 s go cue time
tmax 2 1 1 3 s simulation end time
τ 0.05 0.05 0.05 0.05 s e�ective time constant
x(c)(t0) h(c) 0 setb 0 - initial condition
f(·) lineara lineara lineara nonlineara Hz neural activation function
W iid.∼ N

(
0, 1

N

)e �tb �tb optimizedb s weight matrix
C 1 6 6 6 - number of stimuli
h(c) optimizedc3 �tb - optimizedc2 - stimulus input
g - - -

∑
c h

(c) - go cue
mh(t) 0 K (0, 0.25)g 0 K (0, 0.25)g - stimulus masking kernel
mg(t) 0 0 0 K

(
tgo, tgo + 0.5

)g - go cue masking kernel
b 0 �tb �tb optimizedb - cue-independent bias
σ 0.05 0 0 0.05 - noise standard deviation

Table 1 | Parameters used in the simulations of our models.
a For nonlinear networks, fi (x) = [xi]+ was the rectified linear (ReLU) activation function. For linear networks fi (x) = xi . The only exception to
this was when we created ring attractor networks (Extended Data Fig. 3) in which we used a tanh nonlinearity fi (x) = tanh(xi ). See also text.
b See text for details.
c Inputs were optimized either with both a norm constraint and an overall energy constraint (c1); only an overall energy constraint (c2); only
a norm constraint (c3); or so that the dynamics produced the mathematically minimal overall energy (c4, see Supplementary Information S2).
See text for more details.
d For the symmetric network, we used W =

(
0.375 0.625
0.625 0.375

)
; for the unconstrained network, we used W = R

( 1 50
0 −11.5

)
R>, where R is the rotation

matrix R =
( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
with θ = 0.1.

e For the symmetric networks, we enforced W ← 1
2 (W + W>). For all networks we also shifted the obtained weight matrix by the identity

matrix multiplied by a constant so that the largest real part in the eigenvalues of W is exactly 1 (i.e., the largest eigenvalue of the associated
Jacobian would therefore be 0 due to the leak term), and we rejected any W’s for which the top eigenvalue (the eigenvalue with largest real
part) had an imaginary component. For Fig. 4, to provide a slightly better agreement between the model dynamics and the experimental
recordings, we rejected any W’s for which the inner product between the most amplifying mode and persistent mode was greater than 0.2 (i.e.
we only kept W’s that were relatively mathematically non-normal).
f We used 3 possible input directions (which all had a Euclidean norm of 1): inputs either aligned with the most persistent mode (xp), the
most amplifying mode (xa), or a random direction (xr). For the symmetric model, xp = xa = [0.707, 0.707]> and we used xr = [0.98, 0.18]>. For
the unconstrained model, xp = [0.995, 0.0998]>, xa = [0.1537, 0.9881]> and we used xr = [0.8453, 0.5343]>.
g K (t1, t2) =

{
1 if t1 ≤ t ≤ t2 s,
0 otherwise. In the table, tgo refers to the timing of the go cue (see text).

h For training, we used C = 36 cue conditions. For our subsequent analyses (Extended Data Fig. 3), we used C = 6 cue conditions to be
consistent with the other models.
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were deterministic by setting σ = 0, all other networks used noisy dynamics (see Table 1). We solved the dynam-
ics of Eqs. 1 and 2 using a first-order Euler–Maruyama approximation between t0 and the simulation end time,
tmax, with a discretization time step of 1 ms.

For analysis methods that used cross-validation (see below), for each cue condition, we simulated network dy-
namics twice with independent realizations of η(c)(t), to serve as train and test data. For other analyses, we used
a single set of simulated trajectories. All analyses involving networks with randomly generated (or initialized) con-
nectivities that also did not require re-fitting their responses with other networks (Fig. 2, Fig. 4, Fig. 6c,d, Extended
Data Figs. 1–3, Extended Data Fig. 7a–c, and Extended Data Figs. 11–13) were repeated a total of n = 100 times,
consisting of 10 different networks and 10 different simulations. For those analyses that did require the re-fitting of
nonlinear networks’ responses with linear deterministic networks (Extended Data Fig. 7d and Fig. 6e), we used
one simulation of the original (stochastic nonlinear) network, so n = 10 simulations in total.

1.3 Nonlinear networks

For the dynamical equations of nonlinear networks, see Methods 1.2. For nonlinear networks (Figs. 2 and 6,
Extended Data Figs. 2 and 3, Extended Data Fig. 7c, and Extended Data Figs. 11–13), we ensured that they
performed working memory maintenance competently by optimizing their free parameters, W, b, and h(c) for
appropriate cost functions (see below, Methods 1.3.3).

1.3.1 Nonlinear networks with instantaneous inputs

Following classical theoretical approaches to attractor network dynamics, we first used nonlinear neural networks
in which stimulus inputs acted instantaneously to determine the initial conditions of the dynamics Fig. 2 and Ex-
tended Data Figs. 2, 3 and 7. These networks were optimized using a ‘just-in-time’ cost function (Methods 1.3.3)
under one or two constraints. First, for all these networks, we constrained stimulus inputs to have a Euclidean
norm of 3 so that we could compare information loading strategies fairly when inputs were constrained to lie in
certain subspaces (see also below): either the persistent subspace, persistent nullspace, locally persistent sub-
space, locally most amplifying subspace, or a random subspace (Fig. 2f,l, Extended Data Fig. 2, and Extended
Data Fig. 7). . We also obtained qualitatively very similar results without this norm constraint, with only a more
general energy-based penalty13,39,40,65 (Fig. 6 and Extended Data Figs. 3 and 11–13, see also Methods 1.3.3).
Second, for symmetric networks, we enforced W← 1

2 (W +W>).

These networks were trained in two epochs. For the first 1000 training iterations, we optimized all free parameters.
After this, we confirmed that our trained networks did indeed have attractors (i.e. that they were attractor networks)
and determined where these attractors were in state space by finding the stable fixed points of the networks’
dynamics (Fig. 2d,j, Extended Data Fig. 2b,f, and Extended Data Fig. 3a)—see below. We then continued for
another 1000 training iterations (without any firing rate regularization, α(2)

nonlin = 0 in Eq. 3) with only optimizing
the initial conditions, h(c), while keeping the other parameters, W (Fig. 2a,g) and b, fixed at the values obtained
at the end of the first 1000 iterations. We did this so that we could fairly compare different initial conditions that
are constrained to lie in different subspaces but which otherwise rely on the same underlying network dynamics.
We considered three possible scenarios for introducing additional constraints on the initial conditions (beside the
one on their norm, see above): they were either projected and then restricted to the persistent subspace or to
the persistent nullspace (see Methods 1.7.1 for how these subspaces were computed), or there was no such
constraint applied so that they could utilize any direction in the full state space of the network. In addition, to
understand the link between the linearized (Methods 1.4.2) and original (above) forms of the dynamics of these
networks, we also considered three more constraints on the initial conditions: constraining them to the most
persistent, most amplifying, or a random subspace of the linearized dynamics (Extended Data Fig. 7a–c).

1.3.2 Nonlinear networks with temporally extended inputs

To more closely follow the experimental paradigms which we modelled, we also used nonlinear networks in
which stimuli provided temporally extended inputs (Fig. 6 and Extended Data Figs. 11–13). To construct these
networks, stimulus inputs and the weight matrix were freely optimized (Methods 1.3.3), without any constraints,
and optimization proceeded for a full 2000 iterations, without dividing training into different epochs.

1.3.3 Cost functions and training for nonlinear networks

To investigate how different cost functions impact network dynamics (Fig. 6), we trained networks using one of
four cost functions: a ‘cue-delay’ cost, a ‘full-delay’, a ‘just-in-time’ cost, and an ‘after-go’ cost. These costs only
differed in terms of the time period in which we applied the cost function. The general form of the cost function
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we used was a cross entropy loss plus a regularisation term:

L =

〈
−α(1)

nonlin

6∑
c=1

(
y(c)
)> ∫ T2

T1

log
(
So�max

(
Wout r(c)(t) + bout

))
dt + α(2)

nonlin

6∑
c=1

∫ tmax

t0

∥∥r(c)(t)∥∥22 dt
〉

(3)

where T1 and T2 determine the time period in which we applied the cost, α(1)
nonlin and α(2)

nonlin control the relative
contributions of the cross-entropy loss and firing rate regularisation, Wout ∈ R6×N and bout ∈ R6 include the 6

sets of ‘readout’ weights and biases, respectively, and y(c) ∈ R6 is a one-hot vector where y (c)i =
{

1 if i = c
0 otherwise

defining the ‘target’ output for each cue condition. We initialized elements of the network parameters W, b, h(c),
as well as the readout parameters Wout and bout from a Gaussian distribution with mean 0 and variance 1/N ,
and then optimized using gradient descent with Adam optimization85, where gradients were obtained from back-
propagation through time. The angle brackets, 〈·〉, denote averaging over batch sizes of 50 random realisations
of r(c). We used a learning rate of 0.0005.

See Table 2 for how we set the parameters of Eq. 3 (T1, T2, t0, α
(1)
nonlin and α(2)

nonlin) depending on the cost function
and the level of regularization. Briefly, the cue-delay cost included both the cue (between stimulus cue onset and
offset) and the delay period (between stimulus cue offset and go cue onset), the full-delay cost the included delay
period but not the cue period, the just-in-time cost started between stimulus onset and the earliest go time and
ended at the onset of the go cue, and the after-go cost started at go cue onset and lasted for the duration of
the go cue (0.5 s). For simulating the random delay task (Fig. 6 and Extended Data Figs. 11–13), analogous to
what animals need to solve (see below), we sampled the go time uniformly between tgo = 0.75 s and tgo = 2 s.
For just-in-time (Fig. 2 and Extended Data Fig. 2) and after-go trained networks (Extended Data Fig. 12), we also
used a fixed delay task with a simulation end time of tmax = 2 s or a go time of tgo = 2 s, respectively. For the other
cost functions, networks trained on the fixed delay task yielded very similar dynamics to their counterparts trained
on the variable delay task (not shown). We set α(1)

nonlin and α(2)
nonlin so that networks could reliably learn the task

(at performance levels comparable across different settings) while also exhibiting relatively stable dynamics (i.e.
if α(1)

nonlin/α
(2)
nonlin is too large, the network dynamics can explode whereas if α(1)

nonlin/α
(2)
nonlin is too small, the network

is not able to learn the task). Note that vanishing gradients during training also impacted the value of α(1)
nonlin that

was required for different networks to exhibit similar performance (Fig. 6c). Nevertheless, α(2)
nonlin was varied by

an order of magnitude between Fig. 6 and Extended Data Figs. 11–13 to specifically test the robustness of our
results to this parameter.

1.3.4 Optimized ring attractor networks

When training to create ring attractor networks (Extended Data Fig. 3), we made three modifications to the
nonlinear networks described above. First, in line with other approaches for optimizing recurrent neural net-
works17,20,24,65, we used a hyperbolic tangent nonlinearity because the saturation of this nonlinearity greatly
encouraged a continuous attractor to form compared with a ReLu nonlinearity. Second, we trained networks
with 36 cue conditions, and then subsequently restricted our analyses to 6 evenly spaced cue conditions to keep
consistency with our other analyses. Third, we used a cost function that measured estimation (or fine, rather than
coarse, discrimination) performance across those 36 conditions, thus encouraging a ring attractor to form:

L =

〈
α(1)
nonlin

36∑
c=1

∫ T2

T1

[
1− cos

(
θ̂ − θ(c)

)]
dt + α(2)

nonlin

36∑
c=1

∫ tmax

t0

∥∥r(c)(t)∥∥22 dt
〉

(4)

with θ̂ = atan2
(
Wy

out r(c)(t) ,Wx
out r

(c)(t)
)

(5)

where θ̂ is the population vector-decoded stimulus angle, such that atan2(y , x) gives the angle that the vector [x , y]
makes with the x-axis, Wx

out,W
y
out ∈ R1×N are 2 sets of ‘readout’ weights defining the plane in which decoded

angles are defined, and θ(c) = 2π c
36 is the target angle for cue condition c. All other terms were the same as those

defined in Methods 1.3.3. See also Supplementary Information S5 for a derivation showing how the cost function
Eq. 4 relates to Fisher information.

1.4 Linear networks

For the dynamical equations of linear networks, see Methods 1.2. Linear networks were either constructed ‘de
novo’ (Figs. 3 and 4 and Extended Data Figs. 4 and 5), obtained by a local linearization of canonical nonlinear
dynamical systems (Extended Data Fig. 6) or of nonlinear neural network dynamics (Extended Data Fig. 3e
and Extended Data Fig. 7a–c), or they were fitted to neural responses obtained from experiments (Fig. 5f, and
Extended Data Fig. 10f,g) or the simulation of nonlinear networks (Fig. 6e and Extended Data Fig. 7d).
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Cost function T1 (s) T2 (s) α(1)
nonlin (1/s) α(2)

nonlin (1) Figures

cue-delay 0 tgo 20
0.00005 Fig. 6 and Extended Data Fig. 11
0.0005 Extended Data Fig. 11

full-delay 0.25 tgo 20
0.00005 Extended Data Fig. 13
0.0005 Extended Data Fig. 13

just-in-time

0.5 tmax 33 0.00005 Fig. 2 and Extended Data Fig. 2

0.75 tgo 33
0.00005 Fig. 6 and Extended Data Fig. 11 and Extended Data

Fig. 1e
0.0005 Extended Data Fig. 11

0.5 tmax 33 0.05 Extended Data Fig. 3

after-go tgo tgo + 0.5 10
0.00005 Fig. 6
0.0005 Extended Data Fig. 12

Table 2 | Parameters for nonlinear network optimization. Times T1 and T2 are relative to stimulus onset at t = 0. Units are shown in
parentheses after the name of the corresponding parameter.

1.4.1 De novo linear networks

We used de novo linear networks to develop an analytical understanding of the dynamics of optimal information
loading. These networks included small 2-neuron networks with hand-picked parameters (see Table 1) chosen to
illustrate the differences between normal (symmetric) and non-normal (unconstrained) dynamics and the effects
of different initial conditions (Fig. 3a–c), as well as large networks (with 10, 100, or 1000 neurons) with randomly
generated parameters (Fig. 3d,e, Fig. 4, Extended Data Fig. 4, and Extended Data Fig. 5a,b; see Table 1).
We always set the largest eigenvalue of the weight matrix to be exactly 1 (thus setting the largest eigenvalue
of the associated Jacobian to 0 due to the leak term) so that these networks had an integrating or ‘persistent’
mode6,26,34,35 (see Table 1)

Initial conditions (Fig. 3, Extended Data Fig. 4, and Extended Data Fig. 5a,b) or temporally extended inputs
(Fig. 4) were determined by computing the most persistent and amplifying direction(s) based on the Jacobian of
the dynamics (Figs. 3 and 4, and Extended Data Fig. 5a,b, see Methods 1.7.1; for how initial conditions were
determined in Extended Data Fig. 4c,d see Supplementary Information S2.8). For the networks in Fig. 4, we
also added a small amount of noise to the input to allow for some transient dynamics for all input directions
(see Fig. 4c at 0 s). Alternatively, we optimized initial conditions for maximal asymptotic overlap with the most
persistent mode (Extended Data Fig. 5c,d; see below). For setting the noise level, σ, in these networks, we
considered two scenarios: noise matched (Fig. 4a, light green and gray) and performance matched (Fig. 4a, dark
green and black). For noise matched simulations, we first determined the highest value of σ that still allowed us to
obtain 100% decodability (using a delay-trained decoder) for all networks when receiving inputs aligned with the
most amplifying mode (Fig. 4a, red). This resulted in σ = 0.1 for symmetric models, and σ = 0.17 for unconstrained
models. We then used the same σ for simulations using inputs aligned with the most persistent and random
directions. For performance matched simulations, we used a different value of σ for each possible input direction
so that all models achieved 100% decodability using a delay-trained decoder. For symmetric models, this required
σ = 0.1 for inputs aligned with either the persistent or most amplifying modes, and σ = 0.005 for random inputs.
For unconstrained models, this required σ = 0.17 for inputs aligned with the most amplifying mode, σ = 0.02 for
inputs aligned with the persistent mode, and σ = 0.005 for random inputs. (Note that, consistent with our theory,
smaller noise levels were necessary to achieve the same desired level of performance for input directions that
were predicted to be increasingly suboptimal by our analysis.)

To demonstrate that the initial conditions along the most amplifying directions, obtained by control theoretic anal-
yses, were indeed optimal for maximising the overlap with the most persistent mode (the measure of optimality
we used for these networks, Fig. 3c,e), we also used a direct numerical optimization approach, analogous to that
used to optimize initial conditions in our nonlinear networks (Figs. 2 and 6, see also Methods 1.3.3). Specifically,
we optimized h(c) (constrained to have unit Euclidean norm) with gradient descent using Adam optimization85 with
gradients obtained from back-propagation through time using the following cost function

L =
∫ 2 s

1.5 s

[
tanh

(
v>1 x(t)

)
− 1
]2

dt (6)

where v1 is the eigenvector associated with eigenvalue 0 of the Jacobian (i.e. the most persistent mode). We
used a learning rate of 0.0001. We performed the above training procedure independently for 100 random noisy
networks (either symmetric or unconstrained) and we show averaged results in Extended Data Fig. 5c,d. We
also used random initial conditions as controls. These had elements that were either sampled from a standard
normal distribution (re-scaled to have unit Euclidean norm) in large networks (Fig. 3d,e, Fig. 4, and Extended Data
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Fig. 5a,b), or in the case of 2-neuron networks, quasi-randomly chosen (with unit Euclidean norm) for illustrative
purposes (Fig. 3a–c).

1.4.2 Local linearization of nonlinear dynamics

To better understand how the dynamics of optimal information loading that we identified in linear networks apply
to nonlinear attractor dynamics, we performed a local linearization of our simulated nonlinear networks (Extended
Data Fig. 3e, Extended Data Fig. 6, and Extended Data Fig. 7a–c). This approach required access to the ‘true’
dynamical equations of the nonlinear networks—which we had by construction.

We performed local linearizations of the original nonlinear network dynamics in x-space (the space of variables
in which the dynamics was defined, Eq. 1) around the origin (we found empirically that initial conditions were
distributed close to the origin)—which served as the reference point with respect to which the norm of optimized
initial conditions was constrained in the networks we linearized (Methods 1.3; analogous to our analysis of infor-
mation loading in linear networks, Fig. 3a–e, and see also Methods 1.7.2). As the ReLU firing rate nonlinearity
of these networks is non-differentiable at exactly the origin, we computed the ‘average’ Jacobian of the system
in the immediate vicinity of the origin instead (this allowed us to use the same linearization and the same set
of amplifying modes for all initial conditions; we obtained similar results by linearizing separately for each initial
condition). Because the derivative of each ReLU is 0 or 1 in half of the activity space of the network, this resulted
in the Jacobian J = 1

2 W
∗ − I, where W∗ is the weight matrix of the original nonlinear network. Note that one

obtains the same result even without averaging, by regarding the ReLu nonlinearity as the limiting case of the

soft-ReLu nonlinearity: [x]+ = lim
β→∞

1
β

ln
(
1 + eβ x), of which the derivative at x = 0 is 1

2 (at any value of the inverse

temperature, β) and thus results in the same Jacobian as above. We confirmed that the resulting dynamics were
always stable (largest real eigenvalue of J was less than 0). We then used this system to identify the locally
(around the origin) most amplifying or most persistent modes (Extended Data Fig. 7a).

For simulating these linearized networks (Extended Data Fig. 7b), we then used the Jacobian we thus obtained
to map the resulting linearized dynamics to a deterministic integrator with the effective weight matrix W = (J + I)−
λmax I, where λmax is the largest real eigenvalue of J. Thus, the resulting dynamics were always marginally stable
(largest real eigenvalue of J was exactly 0). (Note that for subsequent analyses involving most persistent and
amplifying modes, we used the original weight matrix, see more in Methods 1.7.1. Nevertheless, the most
persistent modes of the weight matrices we used for simulation and those we used in subsequent analyses were
identical, as they only relied on the eigenvectors of the weight matrix, or the Jacobian, and the rank order of
their associated eigenvalues, which this stabilization did not affect. We also checked numerically that making the
system marginally stable only had very minor effects on the most amplifying modes, with correlations between
the most amplifying modes of the original and simulated dynamics being above 0.9. Thus, in these respects, our
simulations were representative of the dynamics of the original systems.) The bias parameters, b, were the same
as in the original nonlinear networks. The initial conditions, h(c), were either the ones we originally optimized for
the nonlinear dynamics without any constraints (beside a constraint on their norm), or they were optimized while
constraining them to the most persistent, most amplifying, or a randomly chosen subspace of these linearized
dynamics (all were of the same dimensionality for a fair comparison, Extended Data Fig. 7).

For ring attractor networks (Extended Data Fig. 3), which used a tanh nonlinearity (Methods 1.3.4), the associated
linearized system around the origin was given by the Jacobian J = W− I, which we then used to identify the locally
most amplifying and persistent modes (Extended Data Fig. 3e).

We used the same approach to linearize the dynamics of the canonical minimal nonlinear attractor dynamics that
we used to gain insights into information loading in nonlinear systems (Methods 1.6, see also Supplementary
Information S3 and Extended Data Fig. 6). In this case, the Jacobian was well defined at the origin, so there
was no need to average it. For consistency with the notation and terminology we use in the rest of this paper,
and without loss of generality (as linear dynamical systems and linear neural networks are isomorphic), we refer
to the resulting linear dynamical system as a ‘linear neural network’ and define it by its ‘effective’ weight matrix
(defined via the Jacobian as above). Initial conditions were magnitude-matched and chosen to align with the most
persistent or the most amplifying direction extracted from the Jacobian (Methods 1.7.1), or chosen randomly, or
varied systematically to cover the whole range of possible directions. There were no other parameters for these
linearized ‘networks’.

1.4.3 Fitting linear neural networks to neural responses

In order to be able to apply our theoretically derived measures of optimal information loading without having
access to the true dynamics of the system, we also created linear neural networks whose parameters were fitted
to experimental data (see below). As a control, we repeated the same fitting procedure with simulated nonlinear
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networks to validate that our approach provides meaningful results when 1. we do not have access to the true
dynamics but only to samples of activities generated by those dynamics, and 2. we also cannot assume that the
true dynamics are linear.

We fitted deterministic linear neural networks to 1 s of trial-averaged neural activity (experimentally recorded,
or simulated by a nonlinear neural network model). For the main analyses (Fig. 5d–f, Fig. 6e, and Extended
Data Fig. 7d), we used data starting from the onset of the stimulus cue. For the control analysis of late delay
experimental recordings (Extended Data Fig. 10g), we used the final 1 s of neural activity just prior to the go cue.
For the shuffle control (Fig. 5d; dark gray, and Extended Data Fig. 10f), we again used data starting from stimulus
onset but randomly shuffled neural activity across time and proceeded by fitting this shuffled data instead.

For fitting high dimensional neural data, we first performed principal components analysis on neural activity (di-
mensions: neurons, data points: time points, indexed by t, and cue conditions, indexed by c), and projected it
through the principal components (PCs): x(c)∗ (t) = P r(c)∗ (t), where the columns of P are top 20 principal compo-
nents of the data, and r(c)∗ (t) is trial averaged neural responses (mean-centered, see above) at time t in condition
c. These top 20 PCs captured approximately 75% and 76% of variance for monkeys K and T, respectively during
the cue and early delay period (Fig. 5d–f), 70% and 60% of variance for monkeys K and T, respectively during
the late delay period (Extended Data Fig. 10g), and over 95% of the variance for all simulated neural activities
(Fig. 6e). The projected neural activity time courses of the neural data, x(c)∗ (t), served as the targets that needed
to be matched (after a suitable linear transformation with ‘read-out’ matrix C ∈ R20×20) by the neural activity time
courses generated by the fitted neural network’s dynamics in the corresponding cue conditions, x(c)(t) (Eqs. 1
and 2). For fitting the parameters of the network (W, h(c), b) and the readout matrix (C), we used the following
cost function:

L = ε2 + αlin

[
‖C‖2F + ‖b‖

2
2 +

6∑
c=1

∥∥∥h(c)
∥∥∥2
2

]
(7)

with ε2 =
1
6

6∑
c=1

∫ 1 s

0 s

(
e(c)(t)

)>
De(c)(t) dt being the mean squared error of the fit (8)

and e(c)(t) = Cx(c)(t)− x(c)∗ (t) the momentary error (9)

where D is a diagonal matrix with the variances explained by the corresponding PCs in P on the diagonal (en-
couraging the optimization procedure to prioritize fitting the top PCs), ‖·‖2F is the Frobenius norm of a matrix.

Also note that we had no constraints on W to define stable dynamics. Nevertheless, when fitting experimental
recordings, and responses generated by nonlinear attractor networks, we found that the largest real eigenvalue
of the fitted W was typically within the 0.95 ≤ λmax ≤ 1.05 range, i.e. the dynamics were near marginal stability, in
line with the dynamics of our de novo linear neural networks (Methods 1.4.1), as well as of those that we obtained
by local linearization (Methods 1.4.2). The only exception was when fitting the responses of nonlinear networks
trained on an after-go-time cost (Methods 1.3.3) which resulted in dynamics without attractors and, consequently,
the fitted linear dynamics typically had λmax > 1.05.

We used Adam85 to perform gradient descent optimization of W, h(c), b, and C with gradients obtained from back-
propagation through time, and a learning rate of 0.0001. We initialized elements of all of these parameters from
a Gaussian distribution with mean 0 and variance 1/20 and we set the regularisation parameter to αlin = 1/12.

The stimulus-masking kernel (mh(t), Table 1) was matched to how the responses being fitted were obtained:
with temporally extended or instantaneous inputs. Specifically, when fitting responses to temporally extended
inputs (experimentally measured, Fig. 5f and Extended Data Fig. 10f, or simulated, Fig. 6e), the masking kernel
of the fitted linear network matched the cue period. When fitting responses generated by networks driven by
instantaneous inputs (Extended Data Fig. 7d), or when fitting the late delay period of experimental recordings
(during which no stimulus is present, Extended Data Fig. 10g), the stimulus masking kernel was set to zero, and
instead the initial condition of the fitted linear network was tuned to match the responses (see below).

In most cases (Fig. 5f, Fig. 6e, and Extended Data Fig. 10f), we set the initial condition x(c)(t0) = 0. There were
two exceptions to this. First, when fitting the late delay dynamics in the experimental recordings (Extended Data
Fig. 10g), we set x(c)(t0) = C−1 x(c)∗ (t0) (i.e. we fixed the initial condition of the latent dynamics to the data as no
stimulus is present during the late delay period; we also observed qualitatively similar results when we included
x(c)(t0) as a separate optimizable parameter in this case). Second, when fitting simulated data from models that
used instantaneous stimulus inputs (Extended Data Fig. 7d), we set x(c)(t0) = h(c).
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1.5 Previous working memory models

We used the following dynamics for implementing all previous neural network models of working memory:

x(c) = Wr(c)(t) +mh(t) h(c) +mg(t) g (10)

τr
dr(c)(t)
dt

= −r(c)(t) + f
(
x(c)(t)

)
+ br + σr η

(c)
r (t) (11)

where all symbols refer to the same (or a closely analogous, see below) quantity as in Eqs. 1 and 2. Note that we
use this notation to best expose the similarities with and differences from the dynamics of our networks (Eqs. 1
and 2), rather than the original notation used for describing these models5,6,27, but the dynamics are nevertheless
identical to those previously published. Overall, these dynamics are closely analogous to those that we used
earlier for our networks with the following differences. First, for us, dynamics were defined in x-space, with r
being an instantaneous function of x. Here, the dynamics are defined instead in r-space (Extended Data Fig. 1a–
d and Extended Data Fig. 8), with x being an instantaneous function of r. (There are slightly different assumptions
underlying these rate-based formulations of neural network dynamics when deriving them as approximations of
the dynamics of spiking neural networks46, and the two become identical in the case of linear dynamics.) As a
result, time constants, τr, biases, br, and the variance of noise, σr (as well as noise itself, η(c)

r (t)), are defined for r
rather than x. For nonlinear variants of these networks, there are also differences for the choice of single neuron
nonlinearities, f(·). Furthermore, some of these networks distinguish between excitatory and inhibitory cells, with
different time constants, and noise standard deviations. Thus, each of these parameters is represented as a
diagonal matrix, τr and σr, respectively, with each element on the diagonal storing one of two possible values of
that parameter depending on the type (excitatory or inhibitory) of the corresponding neuron (τE

r and σE
r , or τ I

r and
σI
r, respectively). Most importantly, all of these networks used a set of parameters which were hand-crafted to

produce the required type of dynamics, rather than optimized for a function (or to fit data) as in the case of our
networks. In line with our analyses of experimental data and task-optimized networks (Figs. 5 and 6), simulations
started at t0 = −0.5 s, i.e. 0.5 s before stimulus cue onset (defined as t = 0), the stimulus cue lasted for 0.25 s, and
the go cue appeared at tgo = 2 s and lasted for 0.5 s. (Note that for these networks we considered the fixed-delay
variant of the task as that is what these networks were originally constructed to solve.) As with our networks
(Methods 1.2), we solved the dynamics of Eqs. 10 and 11 using a first-order Euler–Maruyama approximation
between t0 and the simulation end time with a discretization time step of 1 ms.

For analysis methods that used cross-validation (see below), we simulated network dynamics twice (for each
cue condition) with independent realizations of η(c)

r (t), to serve as (trial-averaged) train and test data. For other
analyses, we used a single set of simulated trajectories. All analyses involving these networks were repeated
n = 10 times, using 10 different simulations (non-cross-validated) or simulation-pairs (cross-validated), each time
with independent samples of η(c)

r (t).

Table 3 provides the values of most network and other parameters used for simulating each model. In the following
we provide the additional details for each of these models that are not included in Table 3.

1.5.1 Classical bump attractor model

The bump attractor model that we used (Extended Data Fig. 1a) has been described previously (see Ref. 5). The
model contained separate excitatory and inhibitory populations. As in the discrete attractors model, the weight
matrix was of the form

W =
(
WEE −WIE

WEI −WII

)
(12)

where the elements of WIE,WEI, and WII were set to 6.8/N , 8/N , and 1.7/N , respectively. The excitatory sub-matrix
WEE had a circulant form:

W EE
ij =

6 e1.5 cos
(

4π (i−j)
N

)
∑N/2−1

k=0 e1.5 cos(
4π k
N )

(13)

for cell-pairs i, j = 1,… ,N/2.

Stimulus cue inputs were also analogous to those used in the discrete attractors models and were set to

h(c)i =
200 e1.5 cos(π( 4 iN − 2 c−1

6 ))∑N/2
k=1 e1.5 cos(π( 4 kN − 2 c−1

6 ))
(14)

for cues c = 1,… , 6 and cells i = 1,… ,N/2 (i.e., as above, inputs were only delivered to the excitatory neurons).
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Parameters used in network simulations of previous models
Symbol Extended Data

Fig. 1a
Extended Data
Fig. 1b

Extended Data
Fig. 1c and
Extended Data
Fig. 8a,b,d,e

Extended Data
Fig. 1d and
Extended Data
Fig. 8c,f

Units Description

N 100 108 100 100 - number of neurons
t0 -0.5 -0.5 -0.5 -0.5 s simulation start time
tgo 2 2 2 2 s go cue time
tmax 3 3 3 3 s simulation end time
τ - - 0.05 0.01 s e�ective time constant
τE
r 0.02 0.02 - - s e�ective time constant (E

neurons)
τ I
r 0.01 0.01 - - s e�ective time constant (I

neurons)
r(c)(t0) 0 0 0 0 Hz initial condition
f(·) nonlineara nonlineara lineara lineara Hz neural activation function
W setb setb setb setb s weight matrix
C 6 6 6 6 - number of stimuli
h(c) setb setb setb setb - stimulus input
g

∑
c h

(c) ∑
c h

(c) ∑
c h

(c) ∑
c h

(c) - go cue
mh(t) K (0, 0.25)c K (0, 0.25)c K (0, 0.25)c K (0, 0.25)c - stimulus masking kernel
mg(t) K

(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c - go cue masking kernel
br bE

r = 0.2,
bI
r = 0.5

bE
r = −1.2,
bI
r = 0.28

0 0 Hz cue-independent bias

σr - - 0.02 0.02 Hz noise standard deviation
σE
r 1 2 - - Hz noise standard deviation

(E neurons)
σI
r 3 1 - - Hz noise standard deviation

(I neurons)

Table 3 | Parameters used in previous models.

a For nonlinear networks, fi (x) =

{
[xi]2+ if xi ≤ 1,
√
4xi − 3 otherwise.

. For linear networks fi (x) = xi .

b See text for details.
c K (t1, t2) =

{
1 if t1 ≤ t ≤ t2 s,
0 otherwise.
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1.5.2 Discrete attractors model

The discrete attractors model that we used (Extended Data Fig. 1b) has been described previously (see the
methods of Ref. 5). The model contained separate excitatory and inhibitory populations.

The weight matrix was of the form

W =
(
WEE −WIE

WEI −WII

)
(15)

where the elements of WIE,WEI, and WII were set to 2.4/N , 8/N , and 2.6/N , respectively. The excitatory sub-matrix
WEE was constructed by dividing the population of excitatory cells into six clusters (of 9 neurons each), with each
cluster corresponding to one of the stimulus cue conditions. Connections within each cluster were strong, with a
value of 30/N . Connections between neurons belonging to clusters that corresponded to adjacent stimulus cues
were weaker, with a value of 2.5/N . All other connections were very weak, with a value of 0.02/N . This resulted in
a block circulant structure for WEE.

Stimulus cue inputs were set to

h(c)i ∝
350 e8 cos(π( 4 iN − 2 c−1

6 ))∑N/2
k=1 e8 cos(π( 4 kN − 2 c−1

6 ))
(16)

for cues c = 1,… , 6 and cells i = 1,… ,N/2 (i.e. inputs were only delivered to the excitatory neurons).

1.5.3 Linear integrator model

The linear integrator model that we used (Extended Data Fig. 1c and Extended Data Fig. 8a,d) has been de-
scribed previously (see Ref. 6). There were no separate excitatory and inhibitory populations in this model, and
the weight matrix was constructed such that network dynamics were non-normal, non-oscillatory, and stable with
a single two-dimensional neutrally stable subspace (i.e. a plane attractor). We achieved this by defining W via its
eigen-decomposition:

W = VDV−1 (17)

where the eigenvectors (columns of V, denoted as vj, for j = 1, … ,N , with elements vij, for i, j = 1, … ,N) were
generated by the following process:

1. Generating a random vector:

νi
iid.∼ N (0, 1) (18)

for i = 1,… ,N .

2. Making the first 10% of vectors overlapping so that the resulting matrix is non-normal:

vik = νi + εik (19)

where εik
iid.∼ N

(
0, 0.052

)
(20)

for i = 1,… ,N and k = 1,… ,K with K = 0.1N .

3. Making the the other 90% of vectors orthogonal:

vK+k = the kth column of Nullspace(v1, … vK ) (21)

for k = 1,… ,N − K

4. Unit normalizing each vector:

vk ←
vk
‖vk‖22

(22)

and the eigenvalues (λi, for i = 1, … ,N , the diagonal elements of the diagonal matrix D) were generated by the
following process
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1. Generating random (real) values:

λi
iid.∼ Uniform(0, 0.8) (23)

for i = 1,… ,N − 2.

2. Creating a pair of neutrally stable eigenmodes:

λN−1 = λN = 1 (24)

The stimulus cue inputs were set to

h(c) = K


cos
(

(c−1)π
3

)
sin
(

(c−1)π
3

)
1

 (25)

for cues c = 1,… , 6, and we considered two forms for K: either K =
[
vN−1, vN , vr1

]
+
[
vr2 , vr3 , vr4

]
(Extended Data

Fig. 1c and Extended Data Fig. 8a,d; as in the original formulation6) or K =
[
vr1 , vr2 , vr3

]
(Extended Data Fig. 8b,e),

where r1, r2, r3, r4 were randomly drawn integers over the range 1 to N − 2. The first formulation of K ensured that
stimulus cue inputs partially align with the persistent subspace, whereas the second formulation of K ensured
that stimulus cue inputs align only with random directions.

1.5.4 Feedforward network model

The linear feedforward network model that we used (Extended Data Fig. 1d and Extended Data Fig. 8c,f) has
been described previously (see Refs. 21,27). (For pedagogical purposes, we used the simplest set up consisting
of a feedforward chain of neurons, see below. However, using a more general network model that contained
‘hidden’ feedforward chains21 did not affect our analyses except for Extended Data Fig. 10e which, in contrast to
the simple feedforward chain, could display overlap values greater than 0.5.) There were no separate excitatory
and inhibitory populations in this model, and the weight matrix included a single chain running from neuron 1 to
neuron N :

Wij = δ(i−1),j (26)

for cell-pairs i, j = 1,… ,N .

The stimulus cues provided random inputs delivered to only the first 10 neurons so that each input could pass
through the feedforward network:

h(c)i
iid.∼ N (0, 1) (27)

for cues c = 1,… , 6 and cells i = 1,… , 10.

1.6 Canonical nonlinear systems with two stable fixed points

In order to illustrate the applicability of our analysis of optimal information loading in linear dynamical systems to
the behaviour of nonlinear dynamical systems, we first studied two variants (either symmetric or non-symmetric)
of a canonical nonlinear system that can exhibit two stable fixed points. (These systems are closely related to the
damped, unforced Duffing oscillator which is a classic example of a [non-symmetric] system that can exhibit two
stable fixed points. Additionally, the analysis of these systems also holds for the Duffing oscillator.)

The dynamics of the first system (which has a symmetric Jacobian matrix) are governed by

τc
dx1(t)
dt

= x1(t)− x31 (t)

τc
dx2(t)
dt

= −x2(t)
(28)

and the dynamics of the second system (which has a non-symmetric Jacobian matrix) are governed by:

τc
dx1(t)
dt

= x1(t)− x31 (t) + 3 x2(t)

τc
dx2(t)
dt

= −x2(t)
(29)
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We used a cubic polynomial in Eqs. 28 and 29 because it is the lowest order polynomial that allows a system
to exhibit 2 stable fixed points. Both systems exhibit 3 fixed points: both have a saddle point at the origin and
both have 2 asymptotically stable fixed points at (±1, 0) (see Extended Data Fig. 6 for the state space dynamics
of these two systems).

We solved the dynamics of Eqs. 28 and 29 using a first-order Euler approximation starting from t = 0 with a
discretization time step of 0.02 and a time constant of τc = 0.4 (note time was unitless for this model).

1.7 Analysis methods

Here we describe methods that we used to analyse neural data. Whenever applicable, the same processing
and analysis steps were applied to both experimentally recorded and model simulated data. As a first step in all
our analyses, in line with previous work analysing neural population dynamics86, we removed the stimulus cue-
independent time-varying mean activity from each neuron’s firing rate time series (see Fig. 5a for an example).
(This was done separately for training and test data for cross-validated analyses, see below.) In most of our
analyses, neural activities were aligned to stimulus cue onset defined to be at t = 0. However, due to the variable
delay duration of the task (Fig. 1a), experimentally recorded neural activities were also aligned to go cue onset
for analyses that required incorporating the late delay and go epochs (i.e. beyond the first 1.65 s after the stimulus
cue onset; Fig. 5b–c, Extended Data Fig. 10a–c,g). For simulated neural activities, this was not necessary, as
we always simulated our networks in a fixed-delay task for ease of analysis, even if they were optimized for a
variable-delay task in accordance with how our experimental monkey subjects were trained.

1.7.1 Identifying amplifying, persistent, and other subspaces in network dynamics

In order to understand the dynamics of neural networks with potentially complex and high-dimensional dynamics,
and the way these dynamics depend on initial conditions, we identified specific subspaces within the full state
space of these networks that were of particular relevance for our analyses. These subspaces served dual roles.
First, as ‘intervention tools’, to ascertain their causal roles in high dimensional network dynamics, we used them
to constrain the initial conditions of the dynamics of our networks (see also Methods 1.7.2). Second, as ‘mea-
surement tools’, to reveal key aspects of the high-dimensional dynamics of neural networks, we used them to
project high-dimensional neural trajectories into these lower dimensional subspaces (see also Methods 1.7.3).

Our main analyses relied on identifying the most persistent and most amplifying modes of a network. This re-
quired dynamics that were linear—either by construction, or by (locally) linearizing or linearly fitting dynamics that
were originally nonlinear (see Table 1). We computed the most persistent mode(s) in one of two different ways.
First, for networks that were either guaranteed to have stable dynamics by construction (i.e. those constructed
de novo; Figs. 3 and 4 and Extended Data Figs. 4, 5 and 8), or were confirmed to be always stable in practice
(i.e. those constructed by local linearization; Extended Data Fig. 3e, Extended Data Fig. 6, and Extended Data
Fig. 7), we simply used the eigenvector(s) of the weight matrix W associated with the eigenvalue(s) that had the
largest real part(s). Second, for networks that were fitted to nonlinear dynamics or recorded data, and whose
dynamics could thus not be guaranteed to be stable (Fig. 5f, Fig. 6e, Extended Data Fig. 7d, and Extended Data
Fig. 10f–h), we used the eigenvectors of W associated with the largest real eigenvalues that were less than or
equal to 1 + δ (with δ = 0.05) (i.e. we find the slowest, or most persistent, modes of the network—the δ was mostly
relevant only for the after-go-time networks of Fig. 6 and Extended Data Fig. 12 which exhibited eigenvalues
substantially greater than 1 and setting δ less than 0.05 did not substantially change our results). (Note that an
eigenvalue of 1 for W corresponds to an eigenvalue of 0 for the associated Jacobian of the dynamics due to the
leak term.)

For computing the most amplifying modes, we performed an eigen-decomposition of the associated Observability
Gramian Q53,62. Specifically, we obtained Q by solving the following Lyapunov equation:(

W̃− I
)> Q +Q

(
W̃− I

)
+ C>C = 0 (30)

where W̃ is the ‘stabilized’ weight matrix of the dynamics (and the −I terms represent the effect of the leak on the
Jacobian of the dynamics, Eq. 1) and C is the read-out matrix of the network. The most amplifying mode(s) of the
network are given as the eigenvector(s) of Q associated with the largest eigenvalue(s). Again, for networks that
were guaranteed to have stable dynamics by construction (Figs. 3 and 4, Extended Data Fig. 7a–c, Extended
Data Fig. 5, and Extended Data Fig. 8), W̃ = W − ε I, where W is the original weight matrix of the dynamics
and ε = 0.01 (to ensure dynamical stability). For other networks, i.e. either linear networks fitted to experimental
data (Fig. 5f and Extended Data Fig. 10f–h), linear networks fitted to simulated nonlinear dynamics (Fig. 6e and
Extended Data Fig. 7d), or local linearizations of nonlinear dynamics (Extended Data Fig. 6, Extended Data
Fig. 3e, and Extended Data Fig. 7a–c), we used W̃ = W unless the largest eigenvalue λmax of W was greater than
or equal 1, in which case we used W̃ = W− (λmax − 1 + ε) I, to ensure that the linear dynamics with W̃ were stable
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(which is required for calculating Q). For networks obtained by fitting neural responses (experimentally recorded
or simulated; Fig. 5f, Fig. 6e, Extended Data Fig. 7d, and Extended Data Fig. 10f–h), C was obtained by fitting
those responses (Methods 1.4.3), as we wanted to understand how the fitted dynamics taking place in a latent
space can generate the most discriminable fluctuations in (the principal components of) the neural responses to
which they are related by this read-out matrix (although using C = I did not change our results substantially). For
all other networks (Figs. 3 and 4, Extended Data Fig. 7a–c, Extended Data Fig. 3e, Extended Data Fig. 5, and
Extended Data Fig. 8), we simply used C = I, as the activity of these networks was supposed to be read out in
the same space within which their dynamics took place.

We also applied methods which did not rely on the linearization (or linear fitting) of network dynamics. Our goal
was to develop basic intuitions for how much the dynamics of the different simulated nonlinear networks of Fig. 2
and Extended Data Fig. 2 used the persistent subspace of their dynamics. For this, we determined the ‘persistent
subspace’ as the subspace spanned by the 5 principal components of the final 500 ms of neural activities (x)
across all 6 cue conditions, corresponding to 6 distinct attractors, and the ‘persistent nullspace’ of the network as
the 45-dimensional subspace orthogonal to the persistent subspace. For plots showing the projection of network
activities within the persistent subspace (Extended Data Fig. 2b,f and Extended Data Fig. 2c–d and g–h, bottom)
we used the first two principal components of the full, five-dimensional persistent subspace of the network, as
determined above. For plots showing the projection of network activities to persistent vs. cue-aligned directions
(Fig. 2d,j, and Extended Data Fig. 2c–d and g–h, top right), ‘persistent PC1’ was determined as the direction
spanning the two persistent states corresponding to the two cue conditions being illustrated (i.e. as above,
spanning the final 500 ms of neural activities across the two cue conditions), and ‘initial PC1 (orthogonalized)’
was determined as the the direction spanning the two initial conditions corresponding to the two cue conditions
being illustrated, orthogonalized with respect to the corresponding persistent PC1.

1.7.2 Subspace-constrained initial conditions

When using the subspaces identified above as ‘intervention tools’, to constrain the initial conditions of our net-
works, we either used the single top most persistent or amplifying mode for linear networks with low-dimensional
coding spaces (including the linearized canonical nonlinear attractor dynamical system; Figs. 3 and 4 and Ex-
tended Data Figs. 5 and 6), or numerically optimized initial conditions within the corresponding higher-dimensional
subspaces (Fig. 2f,l, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 7; see also Methods 1.3 and Methods 1.4).
When the persistent subspace was extracted from neural responses (rather than from the dynamical equations
of the network, Methods 1.7.1; Fig. 2f,l, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 7a) we used different
sets of simulations to generate data from which we could estimate the persistent subspace (as explained above),
and to analyse network dynamics when initialized within these subspaces. In all cases, for a fair comparison, the
magnitude of initial conditions was fixed (Methods 1.3.1, Methods 1.4.1), and only their direction was affected by
constraining them to one of these subspaces.

1.7.3 Measures of subspace overlap

In order to measure the overlap of high dimensional neural dynamics with the subspaces we identified, we used
one of two methods. First, for analysing network dynamics across two conditions chosen to correspond to ‘op-
posite’ stimulus cues (Fig. 2d,j, Fig. 3c,d,e, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 6c,d, and Extended
Data Fig. 5), such that the coding part of the persistent subspace was one-dimensional, we simply measured
the projection of neural dynamics onto the first eigenvector (i.e. the eigenvector associated with the largest real
eigenvalue) of the corresponding subspace using a dot product:

activity along mode(t) = u>x(t) (31)

where u may correspond to the most persistent, or the most amplifying mode, or the first PC of the persistent-
orthogonalized cue subspace (as defined above). We also used the same measure for visualising the quality of
fit of linear neural network dynamics to experimental data (Methods 1.4.3) with u being the first PC of the full
state space of neural firings rates (Fig. 5e). In those cases, when u had to be estimated from neural responses
(Fig. 2d,j, Fig. 5e, Extended Data Fig. 2c,d,g,h), we used a cross-validated approach, using different subsets of
the data to determine u and x(t) (from a single split of the data). In other cases, u was determined from the truly
deterministic dynamics of the system and thus there was no need for cross-validation.

Second, to measure subspace overlaps for d-dimensional neural activities across multiple conditions and time
points within coarser time bins (Fig. 4c, Fig. 5f, Fig. 6e, Extended Data Fig. 7d, Extended Data Fig. 8d–e, Ex-
tended Data Fig. 11c, Extended Data Fig. 12d, Extended Data Fig. 13d, and Extended Data Fig. 10b,c,f,g), thus
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corresponding to high-dimensional coding sub-spaces, we used the following properly normalized measure:

across-condition variance explained
(
t , t ′
)
=
Tr
(
U>(t ′

)
Σ(t) U(t ′

))
Tr
(
P>(t) Σ(t) P(t)

) (32)

where Σ(t) is the covariance matrix of neural activities across conditions and raw (1-ms) time points within time bin
t, the columns of P(t) are the first principal components of neural activities within time bin t (i.e. the eigenvectors of
Σ(t) associated with the largest eigenvalues), and U(t ′

)
is the subspace of interest with respect to which overlaps

are computed (which itself may or may not depend on time, see below). The time resolution of t and t ′ (i.e. the
duration of time bins within which data was used to compute the corresponding terms at a given t or t ′), the
choice of U(t ′

)
, and the number of vectors used for constructing U(t ′

)
and P(t) depended on the analysis (see

below).

Specifically, for measuring subspace overlap between neural activity and persistent vs. amplifying modes (Fig. 4c,
Fig. 5f, Fig. 6e, Extended Data Fig. 7d, Extended Data Fig. 8d–e, and Extended Data Fig. 10f,g), we set U(t ′

)
= U

where the columns of U are the first d/4 eigenvectors of the most persistent or amplifying subspace (orthogo-
nalized using a QR decomposition for the most persistent modes—this was not necessary for most amplifying
modes which are orthogonal by construction), or d/4 randomly chosen orthonormal vectors as a control (shown
as ‘chance’; computed analytically as 1/4 for ‘de novo’ linear networks (Fig. 4c and Extended Data Fig. 8d–e),
and numerically for fitted linear networks, also yielding values of approximately 1/4, Fig. 5f, Fig. 6e, Extended
Data Fig. 7d, and Extended Data Fig. 10f). P(t) contained the first d/4 principal components. In this case, a value
of 1 for this metric implies that the d/4 directions of greatest variability in neural activity overlap exactly with the
d/4-dimensional subspace spanned by U. The time resolution of t was 20 ms (for clarity, bins to be plotted were
subsampled in the corresponding figures). Note that when this analysis was performed on linear networks fitted
to neural data (experimentally recorded or simulated), U, P(t), and Σ(t) were all obtained from the same fitted
linear network (i.e. no cross-validation). Specifically the parameters of the network were used to determine U
(see Methods 1.4.3), and the neural responses these fitted linear dynamics generated (rather than the original
neural responses that were fit by the linear model) were used to determine Σ(t) and thus P(t). See Methods 1.8
for computing the significance of these overlaps (and their differences). When analysing optimized ring attractor
networks (Extended Data Fig. 3e), we used 2-dimensional subspaces (rather than d/4-dimensional subspaces)
because we found empirically that the obtained ring attractors lay in a 2-dimensional subspace.

For analyzing subspace sharing between different task epochs (Extended Data Fig. 11c, Extended Data Fig. 12d,
Extended Data Fig. 13d, and Extended Data Fig. 10b), U(t ′

)
contained the top k principal components (PCs) of

neural activity within the time bin indexed by t ′ (we used k = 10 for the monkey data and k = 4 for our models
because the models typically exhibited lower dimensional dynamics), while P(t) included all PCs within the time
bin indexed by t. For these, we performed principal components analysis with dimensions corresponding to
neurons and data points corresponding to time points and cue conditions. The time resolution of both t and t ′

was 250 ms, such that the time periods (relative to cue onset) that we used were −500 to −250 ms (spontaneous
epoch), 0 to 250 (cue epoch), 1250 to 1500 ms (delay epoch), and the first 250 ms after the go cue, i.e. tgo to
tgo + 250 ms (go epoch). In this case, U(t ′

)
, P(t) and Σ(t) were obtained by fitting all the available neural data (i.e.

no cross-validation). See also Ref. 64 for an ‘alignment index’ metric that is closely analogous to this use of this
metric.

For showing how much variance the top 2 delay epoch PCs capture over time (Extended Data Fig. 10c), in line
with Ref. 6, we set U(t ′

)
= U where the columns of U are the first 2 principal components of neural activities over

the time period 750 to 250 ms before the go cue, i.e. tgo−0.75 to tgo−0.25 s, and P(t) also includes the top 2 principal
components. The resolution for t was 10 ms (for clarity, bins to be plotted were subsampled in the corresponding
figure). In this case, we estimated U and P(t) in a cross-validated way (as in Ref. 6)—we estimated U using
training data and P(t) and Σ(t) using test data, and we show results averaged over 10 random 1:1 train:test splits
of the data. See also Ref. 6 for a measure that is closely related to this use of this metric, but uses the number of
neurons in the denominator instead of the total variance.

1.7.4 Linear decoding

We fitted decoders using linear discriminant analysis to decode the stimulus cue identity from neural firing rates
(Fig. 2e,f,k,l, Fig. 4a,b, Fig. 5b,c, Fig. 6c,d, Extended Data Fig. 7c, Extended Data Fig. 3d, Extended Data Fig. 8a–
c,Extended Data Fig. 10a,h, Extended Data Fig. 11a,b, Extended Data Fig. 12b,c, and Extended Data Fig. 13b,c).
We constrained the decoders to be 2-dimensional (in line with previous studies6) because this was a sufficient
dimensionality to decode responses. (We also trained decoders using logistic regression in the full activity space
and obtained qualitatively similar results; not shown.) We primarily considered two types of decoding analyses:
we either trained decoders on late delay activity and tested on all time points (‘delay-trained decoder’, e.g. Fig. 4a),
or we trained decoders separately at every time point and tested on all times (‘full cross-temporal decoding’, e.g.
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Fig. 4b). In all cases, we measured decoding performance in a cross-validated way, using separate sets of neural
trajectories to train and test the decoder, and we show results averaged over 10 random 1:1 train:test splits of
the data. For delay-trained decoders, training data consisted of pooling neural activity over a 500 ms time interval
(the time interval is shown by a horizontal black bar in all relevant figures), and tested the thus-trained decoder
with data in each 1 ms time bins across the trial (for clarity, test bins to be plotted were subsampled every 10 ms
in the corresponding figures). For full cross-temporal decoding, we binned neural responses into 10 ms time bins
and trained and tested on all pairs of time bins (specifically, we plotted mean decoding performance across the
10 1-ms raw time bins corresponding to each 10-ms testing bin). We used a shrinkage (inverse regularisation
parameter on the Euclidean norm of decoding coefficients) of 0.5 (we also tested various other values and found
qualitatively similar results; not shown). Chance level decoding was defined as 1/C, where C = 2 or 6 is the
number of cue conditions that need to be decoded (Tables 1 and 3).

1.7.5 Quality of fit for linear models fitted to neural responses

When fitting linear models to neural data (experimentally recorded or simulated; Methods 1.4.3) we used a cross-
validated approach for measuring the quality of our fits, with a random 1:1 train:test split of the data (Fig. 5d). For
this, we first fitted the model on training data (x(c)∗ = x(c)train in Eq. 9). The quality of fit was then computed on the
test data, x(c)test, as the fraction of variance of x(c)test(t) explained by the simulated responses (after the appropriate
projection, i.e. Cx(c)(t)), across all 20 dimensions weighted by D (all parameters, including P, C and D, were set
to their values obtained by fitting the training data). In other words, we computed the Pearson R2 with respect
to the identity line using the mean squared error, ε2 in Eq. 8, with the momentary error in Eq. 9 computed using
x(c)∗ = x(c)test. Once the quality of fit for this split was thus established, we conducted all further analysis involving
fitted linear models with the model that was fit to the training half of this split.

As a meaningful lower bound on our quality of fit measure, we also computed the same measure (i.e. fitting a
linear neural networks to training data and calculating the quality of fit using test data) for 100 different time-shuffled
controls of the original train:test split of the data (Methods 1.4.3), such that we shuffled time bins coherently
between the training and the test data, across neurons and conditions (Fig. 5d, dark gray).

To calibrate how much our fits were limited by the noisiness of the data, we also computed the quality of fit directly
between x(c)train(t) and x(c)test(t) (i.e. using the mean squared error, ε2 in Eq. 8, with the momentary error redefined
as e(c)(t) = x(c)train(t) − x(c)test(t)) for 100 random 1:1 train:test splits of the data (Fig. 5d, light gray). The extent to
which the R2 computed with this control was below 1 reflected the inherent (sampling) noise of the experimental
data that limited the quality of fit obtainable with any parametric model, including ours that was based on linear
dynamics. Moreover, a cross-validated R2 computed with our fits that was higher than the R2 obtained with this
control (Fig. 5d dark and light blue vs. light gray) meant that the inherent assumption of linear dynamics in our
model acted as a useful regularizer to prevent the overfitting that this overly flexible control inevitably suffered
from. See more in Methods 1.8 on statistical testing for our quality of fit measure.

When fitting to simulated neural data, we obtained high quality of fits using the same measure (R2 > 0.95, not
shown).

1.7.6 Overlap between the coding populations during the cue and delay epochs

To test whether separate neural populations encode stimulus information during the cue and delay epochs (Ex-
tended Data Fig. 10e), we trained (non-cross validated) decoders to decode cue identity using logistic regression
on either cue-epoch activity (‘cue-trained’; the first 250 ms of activity after cue onset) or delay-epoch activity
(‘delay-trained’; 1250–1500 ms after cue onset). We used an L2 regularisation penalty of 0.5 (we also tested other
regularisation strengths and observed no substantial changes in our results). We took the absolute value of de-
coder weights as a measure of how strongly neurons contributed to decodability (either positively or negatively).
We then binarized the absolute ‘cue-trained’ and ‘delay-trained’ weights using their respective median values as
the binarization threshold. (This binarization reduces a potential bias effect from large or small weight values in
our analysis.) Our measure of overlap between the coding populations during the cue and delay epochs, was
then simply the inverse normalized Hamming distance between these two sets of binarized weights:

overlap = 1−
〈∣∣wcue

n,c − wdelay
n,c

∣∣〉
n,c (33)

where wcue
n,c (‘cue trained’) and wdelay

n,c (‘delay trained’) is the binarized weight of neuron n in cue condition c during
the cue and delay epochs, respectively, and 〈·〉n,c denotes taking the mean across neurons and cue conditions. For
completely overlapping populations, this measure takes a values of 1, for completely non-overlapping populations,
it takes a values of 0, and for random overlap (shown as ‘chance’) it takes a values of 0.5.
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For the shuffle controls, we randomly permuted the neuron indices of the delay-trained weights (such that using
the median as a threshold thus resulted in values close to 0.5, i.e. chance level; Extended Data Fig. 10e). We
show results (for both the original analysis and shuffle control) for 10 random halves of the data (equivalent to
the training halves of 10 different 1:1 train:test splits). We also tested a variety of percentile values other than the
median and our results did not change substantially (choosing a threshold other than the median causes both
the data and shuffle controls to have overlap values lower than those that we obtained with the median as the
threshold, but it does not substantially affect the difference between them). As an additional control, we also
removed neurons that did not contribute to decodability: we removed neurons that had a thresholded weight of
0 for all 6 cue conditions in both the cue and delay epochs. This resulted in removing 13.3 neurons on average
for monkey K and 33.5 neurons for Monkey T (when using the median as the threshold) and our results did not
change substantially (not shown).

1.7.7 Finding fixed / slow points

For finding the fixed / slow points of nonlinear network dynamics (Fig. 2d,j, Extended Data Fig. 2b,f, Extended
Data Fig. 3a, and Extended Data Fig. 11d), we used a slow-point analysis method17 that searches for an x for
which the L2 norm of the gradient determined by the autonomous dynamics of the network is below a threshold.
Note that this was only possible in model neural networks as the method requires access to the equations (and
parameters) defining the true (nonlinear) dynamics of a system.

Specifically, for network dynamics governed by (cf. Eqs. 1 and 2)

dx(t)
dt

= ψ(x(t)) , (34)

for some function ψ, we sought to find points x∗ such that ‖ψ(x∗) ‖2 is small. To achieve this, we drew 1000
x’s from a spherical Gaussian distribution with mean 0 and variance 10 (the large variance helps to ensure that
we cover a large part of state space) and we optimized each x to minimize ‖ψ(x) ‖2 using gradient descent with
gradients obtained by back-propagation with an Adam optimizer85. We used an adaptive learning rate (which we
found worked substantially better than a fixed learning rate in this scenario) that started at 0.1 and halved every
1000 training iterations (we used 5000 training iterations in total). Finally, we identified the x’s obtained at the
end of optimization as asymptotically stable fixed points, x∗, if ‖ψ(x) ‖2 < 0.001 and if the largest real part in the
eigenvalues of the linearization of ψ(x) around x∗ was less than 0.

1.7.8 Correlations between initial and final neural firing rates

To measure correlations between initial and final simulated activities, we used the Pearson correlation coefficient
(with respect to the identity line) between initial and final mean-centered firing rates across neurons within the
same simulation (i.e. no cross-validation; Fig. 2b,h; insets). Histograms show the distribution of this correlation
across 6 cue conditions (and the 10 different networks, each simulated 10 times, see above) using a kernel-
density estimate (Fig. 2c,i, Extended Data Fig. 2c,d,g,h, and Extended Data Fig. 3c).

1.8 Statistics

We performed statistical hypothesis testing in two cases.

First, we tested whether the quality of fit of linear models to experimental data was sufficiently high using permu-
tation tests. To construct the distribution of our test statistic (cross-validated R2, see also Methods 1.7.5) under
the null hypothesis, we used n = 200 different random time shuffles of the data (Fig. 5d, dark gray), such that we
shuffled time bins coherently between the training and the test data, across neurons and conditions, and for each
shuffle used the same random 1:1 train:test split as for the original (unshuffled) data. For additional calibration,
we also constructed the distribution of our test statistic under the alternative hypothesis that all cross-validated
errors were due to sampling noise differences between the train and test data. For this, we used n = 200 random
1:1 train:test splits of the (original, unshuffled) data, and measured the quality of fit directly between the test data
and the training data (rather than a model fitted to the training data, see also Methods 1.7.5; Fig. 5d, light gray).
In both cases, we computed the two-tailed p-value of the test statistic as computed on the real data (Fig. 5d, blue
lines) with respect to the corresponding reference distribution.

Second, we also used a permutation test-based approach to test whether the experimentally observed overlaps
with persistent and amplifying modes (or their differences) were significantly different from those expected by
chance. For testing the significance of overlaps in a given time step, we constructed the distribution of our
test statistics (the overlap measures; Methods 1.7.3) under the null hypothesis by generating n = 200 random
subspaces within the space spanned by the 20 PCs we extracted from the data (Methods 1.4.3), dimensionality
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matched to the persistent and amplifying subspaces (i.e. 5 orthogonal dimensions), and computed the same
subspace overlap measures for the data in the given time step with respect to these random subspaces (Fig. 5f
and Extended Data Fig. 10f–g; gray line and shading). For testing the significance of differences between overlaps
(amplifying vs. persistent at a given time step, or amplifying or persistent between two different time steps), our
test statistic was this difference (i.e. a paired test), and our null distribution was constructed by measuring it for
n = 200 pairs of random subspace overlaps at the appropriate time step(s). Once again, in all these cases we
computed the two-tailed p-value of the test statistic as computed on the real data (Fig. 5f and Extended Data
Fig. 10f–g, green and red lines) with respect to the corresponding reference distribution.

Note that we did not compute p-values across multiple splits of the data because this led to p-value inflation
as we increased the number of splits. Instead, we repeated all relevant analyses on 10 different random 1:1
train:test splits to see if our results were robust to the choice of data split. Indeed, we obtained qualitatively and
quantitatively (in terms of p-values for quality of fits, and overlaps) similar results for all these splits.

Permutation tests do not assume that the data follows any pre-defined distribution. No statistical methods were
used to predetermine experimental sample sizes. Sample sizes for permutation tests (n above) were chosen so
as to be able to determine p-values to a precision of 0.01 (quality of fits) or 0.01 (subspace overlaps).
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Extended data figures
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Extended Data Fig. 1 | Dynamics of network models of working memory. a, Neural network dynamics in a bump attractor network 5

performing the task shown in Fig. 1a. Left: trajectory in neural state space in a single cue condition during the cue period (pale purple line,
ending in pale purple circle) and delay period (dark purple line). Purple arrow heads indicate direction of travel along the trajectory, black
cross shows attractor state. Center: time course of relative (i.e. mean-centered) firing rates of one neuron for two cue conditions (purple
vs. blue, see also inset). Yellow lines indicate cue onset and offset times. Right: cross-temporal decoding of neural activity produced by the
network across all 6 cue conditions. Pink rectangles indicate generalized decoding between the cue/early delay period and the late delay
period and cyan square indicates generalized decoding between time points in the late delay period. The gray tick on the color bar indicates
chance-level decoding. b, Same as a but for a discrete attractors model 5,31,69. c, Same as a but for a linear integrator model with transient
dynamics that are orthogonal to the attractor subspace 6. d, Same as a but for feedforward network model 21,27. e, Same as a but for a
network whose parameters (including recurrent, input, and readout weights) were optimized to perform the task shown in Fig. 1a (cf. Fig. 6d,
right).
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Extended Data Fig. 2 | Attractor network dynamics with or without constraints on the initial condition of the dynamics. a, Illustration
of an attractor network with symmetric connections. b–d, Analysis of neural responses in symmetric attractor networks (such as shown in a).
b, Sub-threshold activity (colored trajectories) for all 6 cue conditions (color coded as in Fig. 5e) with initial conditions optimized within the
full state space (Methods 1.3.1). Open circles show the optimized initial conditions and crosses show stable fixed points. We show neural
activity projected onto the top two principal components of the persistent subspace. c, Analysis of neural responses when initial conditions are
constrained to lie within the 5-dimensional persistent subspace. Top left: distribution of Pearson correlations between initial and final mean-
centered neural firing rates across all 6 cue conditions and 10 networks (same as Fig. 2c, but for persistent subspace-constrained inputs,
corresponding to green line in Fig. 2f). Top right: sub-threshold activity for 2 cue conditions in an example network (colored trajectories;
same as Fig. 2d, but for persistent subspace-constrained inputs, corresponding to green line in Fig. 2f). Open circles (with arrows pointing
to them from the origin) show the optimized initial conditions, black crosses show stable fixed points, dashed gray line is the identity line.
Horizontal axis (persistent PC1) shows neural activity projected on to the 1st principal component (PC1) of network activities at the end of
the delay period (across the 2 conditions shown), vertical axis (initial PC1 (orthogonalized)) shows projection to PC1 of initial neural activities
orthogonalized to persistent PC1. Bottom: same as b, but for persistent subspace-constrained inputs, corresponding to green line in Fig. 2f.
d, Same as c, but for persistent nullspace-constrained inputs. Note that the distribution of Pearson correlations of neural firing rates (top left)
is distinct from a delta function at 0 because we constrained the initial conditions in the space of sub-threshold activities (rather than firing
rates). In the bottom panel, which shows sub-threshold activity, we see that indeed all the colored circles overlap at the origin, indicating
orthogonality of the initial conditions to the persistent subspace. e–h, Same as a–d but for attractor networks without a symmetric connection
constraint (i.e. panels f, g, and h, respectively correspond to the networks shown by the black, green, and red lines in Fig. 2). Note initial
conditions being near the origin in f mean that they are strongly orthogonal to the persistent subspace (as in d, but without constraining them
explicitly to be in the persistent nullspace).
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Extended Data Fig. 3 | Dynamics of optimized ring attractor networks. a, Neural activity (colored trajectories) in a ring attractor network
with unconstrained connectivity and optimized initial conditions (see Methods 1.3.1 and 1.3.4) for 6 cue conditions (color coded as in Fig. 5e).
Open circles show the optimized initial conditions and black crosses show fixed points. We show neural activity projected onto the top two
principal components of the persistent subspace. Thus, all circles being near the origin means that initial conditions are strongly orthogonal to
this subspace (cf. Extended Data Fig. 2f). b, Tuning curves at t = 1 s for 6 example neurons (colored curves) whose preferred angles (colored
crosses) correspond to the 6 cue conditions shown in a. c, Distribution of Pearson correlations between initial and final mean-centered
neural firing rates across the 6 cue conditions and 10 networks (cf. Fig. 2i). d, Cross-temporal decoding of neural firing rate activity (cf.
Fig. 2k). Note that only the first second of the delay period is shown on both axes because the dynamics of these networks, using a tanh
nonlinearity, are faster than those shown in other figures (e.g. Fig. 2), using a ReLu nonlinearity (but the same time constant; Methods 1.2, and
Table 1). e, Overlap (mean±1 s.d. across 10 networks) of the 2 locally most persistent (green), most amplifying (red), or random directions
(black), obtained using a local linearization around the origin, with the ‘persistent subspace’ and ‘persistent nullspace’ of the original nonlinear
dynamics, obtained without linearization, and the subspace spanned by the ‘optimal’ initial conditions of the original nonlinear dynamics (cf.
Extended Data Fig. 7a, bottom; see Methods 1.4.2 and 1.7.3). We used 2-dimensional subspaces from the local linearization because we
found empirically that the ring attractor lay in a 2-dimensional subspace (see also a).
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Extended Data Fig. 4 | Analysis of the total energy produced by different initial conditions in linear networks. a, The norm of
neural activity integrated over time (i.e. a measure of total energy used by the network) for each of 1000 random initial conditions (10 initial
conditions for each of 100, 100-neuron networks) relative to the energy produced by the most amplifying initial condition, plotted as a function
of their overlap with the persistent mode for symmetric (top) and unconstrained (bottom) linear integrator networks. A positive value on
the y-axis means that the total energy produced by the given random initial condition is greater than that produced by the most amplifying
initial condition. Initial conditions are scaled so that they all produce the same level of persistent activity (i.e. the same level of performance)
after 2 s of simulation. b, Same as a, but initial conditions are plotted as a function of their overlap with the most amplifying mode. Note
that overlap with the most amplifying mode (but not in general with the most persistent mode) is strongly predictive of total energy (with an
inverse relationship between the two). c, Overlap (mean±1 s.d. across the 100 networks from a and b) of optimal initial conditions (Eq. S40),
producing an overlap of 1 with the persistent mode after a given delay length (x-axis) while using the minimal total energy over time (Eq. S39),
with either persistent (green), most amplifying (red), or random (black) directions, for symmetric (top) and unconstrained (bottom) networks. In
unconstrained networks, for very short delay lengths, initial conditions must align exactly with the persistent mode, by necessity (green lines at
0 s). For longer delay lengths, initial conditions make greater use of the most amplifying direction (red lines). d, Total energy (mean across the
100 networks from a and b; we do not show error bars for visual clarity) for dynamics starting from initial conditions that produce an overlap
of 1 with the persistent mode after a given delay length (x-axis) in symmetric (top) and unconstrained (bottom) networks. Initial conditions
were chosen to be optimal (blue; i.e. using the least energy, cf. panel c), or aligned with the most persistent (green), most amplifying (red),
or a random direction (black). In unconstrained networks, for very short delay lengths, initialising along the most persistent mode achieves
near-optimal energy-efficiency (green is close to blue), but for longer delay lengths, initialising along the most amplifying mode becomes more
energy efficient (red is closer to blue). (Note that for symmetric networks, top, we have offset the curves for the most amplifying, persistent,
and optimal directions because these 3 directions are the same and therefore produce the same total energy.)
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Extended Data Fig. 5 | Analysis of linear networks of different sizes. a, Distributions of absolute overlap with the persistent mode for
persistent (pale green), most amplifying (pale red), or random initial conditions (gray) across 100 randomly sampled linear symmetric (top)
and unconstrained networks (bottom) consisting of either 10 (solid), 100 (dashed), or 1000 (dotted) neurons (cf. Fig. 3d). The persistent
initial conditions produced delta functions at 1 (arrows). Results for persistent and most amplifying initial conditions are identical in symmetric
networks (top). b, Time course of mean (across the 100 networks from a) absolute overlap with the persistent mode when starting network
dynamics from persistent (green), most amplifying (red), or random initial conditions (black) in symmetric (top) and unconstrained networks
(bottom) consisting of either 10 (solid), 100 (dashed), or 1000 (dotted) neurons (cf. Fig. 3e). Results for persistent and most amplifying initial
conditions are identical in symmetric networks (top). c, Mean (across 100 networks) overlap of initial conditions that were optimized so as to
generate maximal persistent activity in 100-neuron noisy symmetric (top) and unconstrained (bottom) networks with 100 orthogonal modes
ordered by their persistence (green) or amplification (red) (i.e. corresponding to the rank ordered eigenvectors of the weight matrix, green, or
of the observability Gramian of the dynamics, red; Methods 1.7.1). In symmetric networks (top), the optimized initial conditions overlap only
with the most amplifying mode and no other mode (note that the most persistent mode is identical to the most amplifying mode in this case).
In unconstrained networks (bottom), optimized initial conditions overlap strongly with the most amplifying mode and only weakly with other
modes. (The non-zero overlap with the most persistent mode is simply due to the fact that there is a non-zero overlap between the most
persistent and amplifying mode in random networks, and it is at the level that would be expected based on this overlap.) d, Time course of
mean (across 100 networks) absolute overlap with the persistent mode for the same 100-neuron noisy symmetric (top) and unconstrained
networks (bottom) as those shown in c when the network is started from optimized initial conditions (blue), and for comparison for the most
amplifying (red dashed) initial conditions (cf. Fig. 3e). Note the close agreement between the two indicating that the most amplifying mode is
indeed optimal in these networks. Horizontal black bar on x-axis shows the time period in which we applied the cost function to optimize the
initial conditions (Methods 1.7.3).
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Extended Data Fig. 6 | Analysis of canonical nonlinear attractor systems. a, State space of a canonical nonlinear system with two
attractors and a symmetric (top) and non-symmetric Jacobian (bottom, see also Methods 1.6, Supplementary Information S3; cf. Fig. 3b).
Pale blue arrows show flow field dynamics (direction and magnitude of movement in the state space as a function of the momentary state).
Black crosses indicate asymptotically stable fixed points (i.e. attractor states), dashed black line shows the separatrix (the manifold separating
the basins of attraction of the two attractors). Thin green and red lines indicate the locally most persistent and amplifying modes around the
origin, respectively (lines are offset slightly in the top panel to aid visualisation). Pale green, red, and gray arrows with open circles at the
end indicate most persistent, amplifying, and random initial conditions, respectively. Blue ellipses show the fixed initial condition norm around
the origin to highlight the different axis scales. Dark green, red, and black arrows show neural dynamics starting from the corresponding
initial condition. b, Time course of dynamics of the system along the persistent mode (i.e. the projection onto the green line in a) when
started from the persistent (green), most amplifying (red), or random (black) initial conditions for the symmetric (top) and the unconstrained
system (bottom). c, Late overlap with the locally persistent mode as a function of initial overlap with the locally most amplifying mode in the
canonical nonlinear systems shown in panels a–b (solid gray line) and, for comparison, in the linear networks of Fig. 3a–c (dashed gray line)
for symmetric (top) and unconstrained systems (bottom). Late overlap is measured as the mean overlap of activity along the persistent mode
(panel b, from t = 0.8 to t = 2 for the canonical nonlinear system; Fig. 3c, from t = 0.8 s to t = 2 s for the linear networks). Open circles and
squares indicate the random (gray), persistent (pale green), and most amplifying (pale red) initial conditions used respectively in panels a and
b for the canonical nonlinear system, and in Fig. 3b–c for the linear networks.
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Extended Data Fig. 7 | Linear analyses of the nonlinear attractor networks of Fig. 2. a, Overlap (mean±1 s.d. across 10 networks) of
the 5 locally most persistent (green), most amplifying (red), or random directions (black) of the symmetric (top) and unconstrained (bottom)
networks from Fig. 2, obtained using a local linearization around the origin, with the ‘persistent subspace’ and ‘persistent nullspace’ of the
original nonlinear dynamics, obtained without linearization (as used in Fig. 2f and l, red and green), and the 5-dimensional subspace spanned
by the 6 ‘optimal’ initial conditions of the original nonlinear dynamics (used in Fig. 2b–e, h–k, and f and l, black). For comparison, we also
show the overlap (mean±1 s.d. across 100 networks) of the single most persistent (pale green), most amplifying (pale red), and random
(gray) direction with the optimal initial condition of the linear networks from Extended Data Fig. 5c,d (‘optimal (lin. model)’). b, Time course
of the overlap (mean±1 s.d. across 10 networks, s.d. not shown in bottom for visual clarity) of the linearized dynamics of symmetric (top)
and unconstrained networks (bottom) with the subspace spanned by their most persistent modes when started from initial conditions that
were optimized for the decoding accuracy of the nonlinear dynamics while constrained to be within the locally most persistent (green), most
amplifying (red), or a random subspace (black). The linear dynamics, the persistent subspace wrt. which overlap is measured, and the
subspaces within which initial conditions were constrained while being optimized, were all based on a local linearization of the nonlinear
dynamics around the origin. Compare with Fig. 3e for the analogous plots for linear networks. For reference, blue line shows overlap of
the same linearized dynamics when started from the initial conditions directly optimized for the decoding accuracy of the nonlinear dynamics
without subspace constraints (used in Fig. 2b–e, h–k, and f and l, black). For consistency with Fig. 3b–e (where initial conditions were
constrained to have unit norm), we scaled activity by the norm of the initial condition (which was constrained to be 3 here; Methods 1.4.2). c,
Performance (mean±1 s.d. across 10 networks) of a delay-trained decoder (black bar indicates decoder training time period; Methods 1.7.4)
on neural activity in stochastic nonlinear symmetric (top) and unconstrained networks (bottom) over time. Colors indicate initial conditions as
in b. (Blue line shows same data as black line in Fig. 2f and l). Gray dotted line shows chance level decoding. Green, red, and blue lines are
vertically offset slightly in the top panel to aid visualization. Compare with Fig. 4a (noise matched) for the analogous plots for linear networks
(though with non-instantaneous inputs). d, Percent variance of responses explained (mean±1 s.d. across 10 networks) by the subspace
spanned by either the 25% (i.e. 5) most persistent (green) or 25% (i.e. 5) most amplifying (red) modes as a function of time for 20-dimensional
linear neural networks fitted to the neural responses generated by the symmetric (top) and unconstrained (bottom) nonlinear networks when
started from the same (optimized) initial conditions analyzed in b–c: constrained to be within the locally most persistent (far left), most
amplifying (center left), or a random subspace (center right), as determined by the local linearization of the dynamics, or without subspace
constraints (far right). Gray lines show chance level overlap defined as the expected overlap with a randomly chosen subspace occupying
25% of the full space (i.e. 5 dimensions). Compare with Fig. 4c for the analogous plots for linear networks (though with non-instantaneous
inputs, and performance-matched levels of noise, see also Supplementary Information S4) and with Fig. 5f and Extended Data Fig. 10f,g for
analogous plots of linear neural networks fitted to experimental data.
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neural activity (cf. Fig. 2e,k, Fig. 4b, and Fig. 5c) for a linear integrator model 6 (cf. Extended Data Fig. 1c and Methods 1.5). Yellow lines
indicate cue onset, offset, and go times. b, Same as a for the same model but for inputs aligned with purely random directions (as opposed
to inputs aligned with both persistent and random directions as in the original formation of Ref. 6). c, Same as a but for a linear feedforward
network model 21,27 (cf. Extended Data Fig. 1d). d, Percent variance of responses explained by the subspace spanned by either the 25%
most persistent (green) or 25% most amplifying (red) modes as a function of time for the linear integrator model from a (cf. Fig. 4c,b, Fig. 5f,
and Fig. 6e). Yellow lines indicate cue onset, offset, and go times. Gray dotted line shows chance level overlap with a subspace spanned by
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a linear feedforward network model 21,27.
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Extended Data Fig. 9 | Recording locations for the two monkeys. Left: recording locations in monkey K (T1-weighted image). In order to
image the interior of the chamber, we filled the chamber with cut cottons soaked in iodine. In the upper picture, the yellow arrow indicates the
principal sulcus. In the bottom picture, locations of the 11 by 15 grid holes were superimposed over the MR picture. Right: recording locations
in monkey T (T2-weighted image). The bottom picture shows the location for the grid of the 32 semi-chronic electrodes. Yellow dots indicate
electrode penetrations and recording sites, red dots indicate non-visited sites.
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Extended Data Fig. 10 | Supplemental analysis of experimental data and comparison to models. a, Cross-temporal decoding analysis
for monkey K (cf. Fig. 5c for the same analysis for monkey T and for explanation of plotting scheme and annotations). b, Subspace overlap
between different task epochs, measured as the percent variance explained (PVE) by projecting neural activity from one task epoch (tested)
through the top 10 PCs of another task epoch (fitted). Diagonal elements show the PVE within each task epoch. We show results for monkey
K (left) and monkey T (right). c, Time course of overlap with delay epoch subspace, measured as the percent variance explained by the top
2 PCs obtained from delay period activity (black bar shows time period of activity from which these PCs were obtained) on held-out test data
taken in different time bins. This metric is called the alignment index 64 and is very similar to that used in Ref. 6 (Methods 1.7.3). We show
mean (over 10 different data splits) results for both monkeys. Yellow ticks on horizontal axis indicate cue onset, cue offset, and go times.
(Caption continued on next page.)
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Extended Data Fig. 10 | Supplemental analysis of experimental data and comparison to models (cont’d). d, Schematic of 3 different
hypothetical scenarios for the relationship between cue and late delay activities (panels), illustrated in neural dynamics for 2 neurons and 2
cue conditions. Colored traces show neural trajectories, black squares indicate cue onset, open circles indicate cue offset, and filled circles
show late delay activity. Left vs. right: populations encoding the cue during cue and late delay periods are overlapping vs. non-overlapping,
respectively. Top vs. bottom: cue and delay activities are non-orthogonal vs. orthogonal, respectively. (Note that we are not showing dynamics
for non-overlapping, non-orthogonal dynamics because no overlap necessarily implies orthogonality.) e, Relationship between cue and late
delay activities in various different models and our experimental recordings (x-axis). Top: population overlap measured as the mean difference
between cue and delay epoch decoder weights (left for each model and data) and, as a control, when randomly shuffling decoder weights
across neurons (right for each model and data) (Methods 1.7.6). Box plots show medians (black lines), quartiles (boxes), and 1.5 times the
inter-quartile range (whiskers). Dotted gray line shows chance level overlap. Bottom: orthogonality measured as 1 minus the mean overlap
between cue and delay epochs (given by the corresponding elements of the subspace overlap matrices shown in panel b and Extended Data
Fig. 11c, center right). The discrete attractors, bump attractor, and integrator models show high overlap but low orthogonality. The simple feed-
forward network shows high orthogonality but low overlap (note that recurrent networks with embedded feed-forward connectivity 21 may show
high overlap). The just-in-time network shows high overlap and orthogonality, similar to the experimental data in both monkeys. f–g, Same
analysis as in Fig. 5f, but either after randomly shuffling data across time (but consistently across conditions and neurons, and applied to the
same time period as in the main analysis; f, see also Methods 1.4.3), or applied to the late delay time period (without across-time shuffling) in
which we do not expect information loading dynamics (g). h, Decoding of stimulus information within the subspace spanned by either the 25%
most persistent modes (green), or the 25% most amplifying modes (red) in the linear neural networks shown in Fig. 5f relative to decoding
accuracy using the full space. Comparisons use two-sided permutation tests (*, p < 0.05; **, p < 0.01; n.s., not significant; see Methods 1.8)
i, Top inset: original data analysis of overlaps repeated from Fig. 5f to indicate the comparisons (colored numbers) we show in the table
below (numbered columns). Bottom: table showing p-values (in each cell for experimental data, top: monkey K, bottom: monkey T) from
two-sided permutation tests for each comparison of the main analysis (row 4, repeated from the main text associated with Fig. 5f) and the
control analyses shown in panels f and g of this figure (rows 5–6). Top 3 rows show predictions for the sign of each comparison under different
information loading strategies in unconstrained linear networks (Fig. 4c): using inputs aligned with random directions (1st row), persistent
directions (2nd row), or the most amplifying directions (3rd row). In the column headings, pers., amp., and ch. respectively refer to overlap
with most persistent, most amplifying and random subspaces (chance), t0 refers to the beginning of the analysis time window, i.e. cue onset
(rows 1–5) or 1 s before the timing of the go cue (row 6), and t1 = t0 + 1 s refers to the end of the analysis time window. The colored numbers
above each column correspond to the comparisons shown in the inset above the table. Gray indicates no significant difference between data
points, red and blue indicate a significant difference for both monkeys where the first data point is respectively greater or smaller than the
second data point, and pale red indicates a significant difference for one of the two monkeys (see Methods 1.8).
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Extended Data Fig. 11 | Cue-delay and just-in-time trained networks. a–b, Same as Fig. 6c green and red, and Fig. 6d left and right,
but with a regularisation strength of α(2)

nonlin = 0.0005 used during training (Methods 1.3.2). c, Subspace overlap between different task epochs,
measured as the percent variance explained (PVE) by projecting neural activity from one task epoch (tested) through the top 4 PCs of
another task epoch (fitted; cf. Extended Data Fig. 12d, Extended Data Fig. 13d, and Extended Data Fig. 10b). Diagonal elements show the
PVE within each task epoch. We show results for cue-delay (left two panels) and just-in-time trained networks (right two panels) trained with
either a regularisation strength of α(2)

nonlin = 0.00005 (left panel for each model, as in Fig. 6) or α(2)
nonlin = 0.0005 (right panel for each model, as

in panels a–b). d, Neural activity plotted in the top two PCs of delay-epoch activity for all 6 initial conditions for cue-delay and just-in-time
trained networks for each of the network-regularization combinations shown in c (cf. Extended Data Fig. 2b–d and f–h.) Purple traces show
state-space trajectories, squares indicate cue onset, open circles indicate cue offset, and crosses indicate asymptotically stable fixed points,
colors indicate cue condition as in Fig. 5e.
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Extended Data Fig. 12 | After-go-time trained networks. a, Cost function for after-go-time training on the fixed delay task (Methods 1.3.3).
Cue onset, cue offset, and go cue times are indicated by the yellow vertical lines. The boxcar shows the interval over which stable decoding
performance was required (i.e. the cost was only applied after the go cue). b–c, Same as Fig. 6c orange and Fig. 6d center, but with a
regularisation strength of α(2)

nonlin = 0.0005 used during training and when either a random (b orange, c left) or a fixed delay task is used (b
blue, c right, Methods 1.7.4). d, Subspace overlap between different task epochs, measured as the percent variance explained (PVE) by
projecting neural activity from one task epoch (tested; cf. Extended Data Fig. 11c, Extended Data Fig. 13d, and Extended Data Fig. 10b)
through the top 4 PCs of another task epoch (fitted) for the networks shown in b–c. Diagonal elements show the PVE within each task epoch.
e, Neural activity plotted in the top two PCs of delay-epoch activity for all 6 initial conditions for random delay (left) and fixed delay (right)
trained networks (cf. Extended Data Fig. 2b–d and f–h; and Extended Data Fig. 11d.) Purple traces show state-space trajectories, squares
indicate cue onset, open circles indicate cue offset, and colors indicate cue conditions as in Fig. 5e. (Note that the absence of crosses
indicates the absence of asymptotically stable fixed points.)
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Extended Data Fig. 13 | Full-delay trained networks. a, Cost function for full-delay training on the random delay task (Methods 1.3.3).
Yellow ticks indicate cue onset and offset times, the yellow bar indicates range of go times in the variable delay task. Boxcars show intervals
over which stable decoding performance was required in three example trials with different delays (Methods 1.3.3). b–c, Same as Fig. 6c–d,
but when training with the full-delay cost with a regularisation strength of α(2)

nonlin = 0.00005 (b solid, c left) or α(2)
nonlin = 0.0005 (b dashed, c right,

Methods 1.7.4). d, Subspace overlap between different task epochs, measured as the percent variance explained (PVE) by projecting neural
activity from one task epoch (tested; cf. Extended Data Fig. 11c, Extended Data Fig. 12d, and Extended Data Fig. 10b) through the top 4 PCs
of another task epoch (fitted) for the networks shown in b–c. Diagonal elements show the PVE within each task epoch.
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