
 

1 
 

Title: Reconstitution of Spiroplasma swimming by expressing two bacterial 
actins in synthetic minimal bacterium 

Authors: Hana Kiyama1, Shigeyuki Kakizawa2, Yuya Sasajima1, Yuhei O Tahara1,3,  
Makoto Miyata1,3* 

Affiliations:  5 
1Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, 
Osaka 558-8585, Japan.  
2Bioproduction Research Institute, National Institute of Advanced Industrial Science and 
Technology, Tsukuba, Japan. 
3The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), 10 
Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan. 
*Corresponding author. Email: miyata@osaka-cu.ac.jp 

 
Abstract: Motility is one of the most important features of life, but its evolutionary origin is still 
unknown. Here, we focus on Spiroplasma, commensal or parasitic bacteria. They swim by the 15 
helicity switching of a ribbon-like cytoskeleton composed of six proteins each evolved from a 
nucleosidase and a bacterial actin called MreB. We expressed these proteins in a synthetic 
minimal bacterium, JCVI-syn3B whose genome was computer-designed and chemically 
synthesized. The synthetic bacterium showed swimming motility with the features common with 
Spiroplasma swimming. Moreover, some combinations of two proteins showed helical cell shape 20 
and swimming, suggesting that the swimming was originated from differentiation and coupling 
of the bacterial actin. 
 
One-Sentence Summary: Expression of two bacterial actins gave cell helicity and swimming to 
a synthetic minimal cell. 25 
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Motility is observed in many forms of life, and is arguably one of the major determinants for 
survival. If we focus on the force-generating units of cell motility, all cell motilities reported so 
far can be classified into 18 mechanisms (1). Generally, the direct evolutional ancestor of the 
individual mechanisms cannot be identified, probably because many of these have been in 
existence for a long time. However, it is possible to discuss the origins and their evolution. Cell 5 
motility is thought to originate from the movements of housekeeping proteins after they were 
amplified and transmitted to cell outside. However, this process has not been experimentally 
demonstrated. class Mollicutes are parasitic or commensal bacteria, characterized by a small 
genome (2, 3). Interestingly, there are three unique motility mechanisms in class Mollicutes (4-
6). It is likely that when phylum Firmicutes evolved to stop peptidoglycan synthesis in order to 10 
escape the host's immune system, they also stopped flagellar motility, which depends on the 
peptidoglycan layer, and then acquired unique motility (1, 5). In one of the three types of 
motilities, Spiroplasma swimming, they push water backwards by switching the handedness of 
their helicity (4, 7-9). These schemes are completely different from those of the spirochete, a 
group of bacteria whose cells are also helical. The helical shape of Spiroplasma is likely 15 
determined by a ribbon-like cytoskeleton, which is consist of mainly fibrils evolved from 
nucleosidases (10-12) and five classes of Spiroplasma MreBs evolved from MreB, the bacterial 
actin (12-15). Here, we call Spiroplasma MreBs as SMreBs, because they are distantly related to 
MreBs found in walled-bacteria (13, 16, 17). The helicity of ribbon is determined by fibril 
protein, but the mechanism of helicity switching is unknown.  20 

A synthetic bacterium JCVI-syn3.0B (syn3B in short), was established by J. Craig Venter 
Institute (JCVI) in 2016, as a combination of a cell of Mycoplasma capricolum and a genome 
designed based on Mycoplasma mycoides. Both Mycoplasma species belong to Spiroplasma 
clade, one of four Mollicutes clades. It has a fast growth rate beneficial for genome 
manipulation, a roughly spherical morphology, and no motility (18, 19). In this study, we 25 
reconstituted Spiroplasma swimming in syn3B by adding seven genes and identified the minimal 
gene set for Spiroplasma cell helicity and swimming.  
 
Results 
Reconstitution of Spiroplasma swimming in syn3B. We focus on Spiroplasma eriocheiris, an 30 
actively swimming pathogen of crustaceans (14). Seven genes which are likely related to 
swimming are encoded in four loci in the genome, comprising fibril, five classes of SMreB, and 
a non annotated conserved gene. We assembled these genes into a 8.4 kb DNA fragment and 
incorporated it into the syn3B genome, using the Cre/loxP system (Fig. 1A, Fig. S1, Table S1) 
(20, 21). An active promoter of syn3B, Ptuf was inserted at the upstream of the gene cluster. 35 
Surprisingly, under optical microscopy 48% of the syn3B cells showed filamentous cell shape 
and active movements, presumably accompanied by force generation, and moreover 13% had 
helical shape and swimming motility (Fig. 1B, Movie S1). Then, we named this construct as 
syn3Bsw. The width and pitch of the cell helices analyzed with light microscopy were slightly 
different from those of Spiroplasma cells (Fig. 1C). If we focus on cells that are partially bound 40 
to the glass, we can see that a free part of cell was rotating with some reversals (Fig. 1D, Movie 
S2), meaning that helicity switching causes the helix rotation in syn3Bsw, like Spiroplasma 
swimming. Next, we analyzed the helices and their handedness of cell images in each frame of 
swimming video (Fig. 1E, F). The handedness of the cell helix was different depending on the 
axial position, and the helicity changed with time. Then, we measured the movement and 45 
rotation speed of the helix from the part where the helix appeared to move along the cell axis 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.11.16.468548doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468548
http://creativecommons.org/licenses/by/4.0/


 

3 
 

smoothly. The helix movement and rotation speeds were 8.2 ± 3.7 µm/s and 11.6 ± 4.8 /s (n=10) 
for syn3sw, not significantly different from 8.8 ± 2.8 µm/s and 12.0 ± 3.6 /s (n=16) for 
Spiroplasma. In the cryo-electron microscopy (EM) image of syn3Bsw cells, fi1aments running 
along the axis were observed in the inner part of the curvature, like Spiroplasma cells (Fig. S2). 
The filaments recovered from syn3Bsw cells showed periodicity and width, that were similar to 5 
fibril filament from Spiroplasma cells (Fig. 1G, Fig. S3)(10). In addition, electrophoretic and 
mass spectrometric analyses of cell lysates showed that fibril and all SMreBs were expressed in 
syn3sw cells (Fig. S4, Table S2). These results show that the expression of Spiroplasma proteins 
inside syn3Bsw cells resulted in the formation of internal filaments that reconstituted helical 
shape, helicity switching, and swimming.  10 

 
Differences in swimming between syn3Bsw and Spiroplasma. The speeds of helix movement 
and rotation were not significantly different between syn3Bsw and Spiroplasma (Fig. 1F). 
However, the trajectory of the cells over 10 s showed that syn3Bsw could not travel long 
distances, unlike Spiroplasma (Fig. 1H). The reason can be seen in the time course of helicity 15 
switching, showing little continuity in the rotation that hampers long distance traveling (Fig. 1F). 
This may be caused by lack of cooperativity in the helicity switching generating the helix 
rotation. EM images of syn3Bsw cells did not show the tapered pole including an inner 
architecture called “dumbbell”, unlike Spiroplasma cells (Fig. 1I)(14), suggesting that the 
tapered pole made by unknown proteins have some roles for continuous helicity switching of the 20 
ribbon.  
 
Role of component proteins. To examine the role of each protein, we made and analyzed 
constructs in which each protein was not expressed (Fig. 2, A and B, Movie S3). In order not to 
affect gene expression by the change in the DNA and RNA structures, we introduced nonsense 25 
mutations to one of the 8th-22nd codons of each structural gene (Fig. S1). We confirmed by 
electrophoresis that the target proteins were no longer expressed in the mutant cells (Fig. S5). No 
significant differences from syn3Bsw were observed in cell structures and behaviors for five of 
the six constructs (Fig. 2A). However, in the construct missing SMreB5, the helix width was 
0.64 ± 0.13 µm, significantly larger than that of syn3Bsw, in half of the filamentous cells, and 30 
the cells moved but did not swim. The distinctive features by the lack of SMreB5 are consistent 
with a previous observation that Spiroplasma citri lost helicity and swimming by the lack of 
SMreB5 (13). These results suggest that the seven proteins have redundant roles for helix 
formation and swimming. 
We then examined syn3B constructs expressing each protein (Fig. 2C, Movie S4). The cells 35 
expressing only fibril protein formed helical cell shape with a pitch of 0.72 ± 0.08 µm and a 
width of 1.0 ± 0.10 µm, which is wider than Spiroplasma cells. The pitch of the helix is in good 
agreement with the number from isolated fibrils, which is consistent with the fact that fibril is the 
major component of the ribbon (10, 11). The cells expressing SMreB2 formed filamentous 
morphology, and some of them formed helices with variety of pitches as 0.66 ± 0.12µm. The 40 
cells expressing only SMreBs1, 3, or 4, did not show difference in cell shape from the original 
syn3B.  
Expressing pair of SMreBs. Next, we analyzed the shapes and behaviors of cells expressing ten 
combinations of SMreB protein pairs (Fig. 3A, Fig. S1). As five classes of SMreB can be divided 
into three groups from amino acid sequence: 5-2, 4-1, and 3 (13, 16, 17), here we will discuss the 45 
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results based on this classification. In the pairs of SMreBs selected from each of the 5-2 and 4-1 
groups, surprisingly, the cells in the 5-1 and 5-4 combinations showed helix formation and 
movements, and some cells showed swimming like syn3Bsw, with occurrence frequencies 
comparative to syn3Bsw (Fig. 3, B and C, Movie S5). The cells of 2-1 showed filamentous 
morphology and movements. The cells of 2-4 combination showed filamentous morphology but 5 
basically immotile. However, a few in several hundred cells showed movements. In the 
combinations of one in 5-2 or 4-1 groups paired with 3, cells of 3-2 formed right-handed helix 
(Fig. 3D, Movie S6). In the combinations of 3-1, 3-4 and 3-5, the cells did not show differences 
from the original syn3B. In the combinations in the same group, 5-2 and 4-1 cells were 
filamentous, and 4-1 cells rarely formed a short, right-handed helix. 10 

In the construct of 5-4, we fused a fluorescent protein mCherry into SMreB 5 and 4 at a position 
suggested by previous studies (Fig. 3E, Fig. S1, Movie S7)(22). The cells expressing SMreB5 
fused with mCherry showed a helical cell shape and swimming as observed in the 5-4 cells. 
Fluorescence was observed throughout a cell, suggesting that SMreB5 filaments were formed 
along the entire cell axis. Also this result showed that the mCherry fusion did not interfere the 15 
functions of SMeB5. The 5-4 cells with mCherry fusion to SMreB4 did not show helicity 
basically. Even helical cells found in hundreds of cells did not show any movements. To clarify 
the roles of fibril, a major component of ribbon structure, we analyzed cells expressing fibril 
additionally to SMreBs 4 and 5 (Fig. 3F, Movie S8). The differences between presence and 
absence of fibril protein were subtle in analyses conducted in this study. 20 

 
Discussion 
MreB belonging to actin superfamily, forms a short antiparallel double-strand filament, based on 
ATP energy (23, 24). It has the ability sensing the curvature of the peripheral structures and 
serves to guide the bacterial peptidoglycan synthase to the positions required for the synthesis 25 
(25). Isolated SMreBs also form fibers similar to those of MreB (13, 26). Our results indicate 
that the helix formation and force generation of Spiroplasma occur by the interaction between 
different SMreBs. The mechanism can be explained as follows (Fig. 4). Protofilaments made of 
proteins belonging to either SMreB 5 and 2 or 4 and 1 group are aligned along the cell axis, and 
are bound together. If the unit length in each protofilament is different, some curvature is 30 
induced in the double strand, resulting in helix formation. If these protofilaments undergo a local 
length change at different timing using ATP energy, the curvature changes like a Bi-metallic 
strip resulting in helicity switching (4). The length change may be related to polymerization and 
depolymerization in terms of the change in axial distance between subunits. Remarkably, the 
difference in amino acid sequence between SMreBs 5-2, and 4-1 in S. eriocheiris is only less 35 
than 34% (16). This small number of differences suggest that the ancestors of SMreB may have 
acquired stability, helicity, and switching after accidental acquisition of different properties. In 
other words, it may represent the moment when a small structural change in a housekeeping 
protein is amplified by an accidental accumulation of mutations, leading to motility. The reason 
for the existence of as many as five SMreBs, even though two proteins are capable of acquiring 40 
helicity and force generation, is unclear. It may be advantageous for efficient and robust 
swimming, possibly in different environments, or for chemotaxis. The participation of fibril can 
be explained in a similar way.  
Here, we used JCVI-syn3B as an experimental platform (18, 19). Since the genes of synthetic 
bacteria are derived from organisms related to Spiroplasma, it remains possible that factors 45 
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derived from synthetic bacteria, such as proteins and membrane structures, are essential for the 
helix formation and swimming. Then, it is still a future challenge to elucidate the mechanism of 
Spiroplasma swimming completely. Nevertheless, the results of this study demonstrate that 
syn3B is a good system to study cell evolution.  
 5 

Materials and Methods 
Bacterial strains and culture conditions. JCVI-syn3B (GenBank: CP069345.1), Spiroplasma 
eriocheiris (TDA-040725-5T), Escherichia coli (DH5α) for DNA manipulation were cultured in 
SP4 (18, 19), R2 (14, 27), and LB media, respectively. Cultures at an optical density 0.03 at 620 
nm were used for analyses of JCVI-syn3B and Spiroplasma eriocheiris. Transformation of JCVI-10 
syn3B was performed as previously described (21).  
 
Plasmid construction. The Spiroplasma genome was isolated as previously described (27). The 
plasmid used to transform JCVI-syn3B to obtain syn3Bsw (pSeW001) were constructed as 
follows (Fig. S1). Focused Spiroplasma DNA regions, puroR gene, and vector fragment were 15 
amplified from the Spiroplasma genome DNA and pSD079 DNA (21) as five PCR products, 
using primer sets listed in Table S1. The DNA fragments were assembled by In-Fusion® HD 
Cloning Kit (Takara Bio Inc. Kusatsu, Japan). pSeW002 was constructed by replacing the 
upstream region of the 1st gene, fibril in pSeW001 to Ptuf fragment (promoter from the EF-Tu 
gene) amplified from pSD079. pSeW102, pSeW202, pSeW302, pSeW402, pSeW502, pSeW602, 20 
and pSeW702 were modified to introduce nonsense mutation in individual genes. The plasmids 
to construct other strains were modified from pSeW005, which was constructed by the process 
stated above, using pSeW002 as the PCR template. Ptuf or Pspi (Spiralin promoter from 
Spiroplasma) (21) were inserted at the 5’ end of the 1st orfs. All DNA fragments were verified 
for DNA sequence. 25 
 
Protein analyses. Profiling and identification of protein in cells were performed as previously 
described (14, 28, 29).  
 
Phase-contrast and fluorescence microscopy. The cultured cells of Spiroplasma and syn3B 30 
were observed in 0.5 × SP4 medium diluted by PBS, containing 0.5% methylcellulose and 0.5 
mg/mL BSA. The cell density was adjusted by centrifugation at 11, 000 × g for 10 min, followed 
by suspension with the diluted medium. The cell suspension was inserted into a tunnel slide (14, 
27, 30, 31) and observed by an inverted microscope IX71 (Olympus, Tokyo, Japan) equipped by 
UPlanSApo 100× 1.4 NA Ph3 and a CMOS (complementary metal-oxide-semiconductor) 35 
camera, DMK33UX174 (The Imaging Source Asia Co., Ltd. Taipei, Taiwan). The videos were 
analyzed by ImageJ ver.1.53f51 (Fiji) using plugins, MTrackJ and EGT (Empirical Gradient 
Threshold), and a color foot printing macro (32). 
 
Electron microscopy. To observe the intact cells, cultured cells were collected by the 40 
centrifugation, suspended to be 10-fold density of the original in the medium, and fixed using 
0.5% glutaraldehyde for 5 min at 25°C. After quenching by 500 mM Tris-HCl pH7.5, the cells 
were collected by the centrifugation, washed and suspended in PBS to be 40-fold density of the 
original. The cell suspension was placed on a carbon-coated grid for 5 min, removed, rinsed by 
PBS three times, and then stained with 2% phosphotungstic acid for 60 s. To observe the internal 45 
structure, the cell suspension was treated with PBS including 0.1 mg/mL DNase, 1 mM MgCl2 
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and 1mM PMSF (phenylmethylsulfonyl fluoride) for 10 min at 4°C, and centrifuged at 200,000 
× g for 30 min at 4°C. The pellet was suspended in PBS to be 160-fold density of the original, 
placed on the EM grid for 2 min, and stained with 2% phosphotungstic acid for 60 s. The images 
were acquired using a JEM1010 EM (JEOL, Akishima, Japan) equipped with a FastScan-
F214(T) CCD (charged-coupled device) camera (TVIPS, Gauting, Germany). For cryoEM, the 5 
cultured cells were collected and suspended to be 10-fold density of the original and frozen as 
described previously (33). The images were captured by Talos F200C EM (Thermo Fisher 
Scientific, Waltham, USA) equipped by 4k × 4k Ceta CMOS camera (Thermo). The images were 
analyzed using the ImageJ.  
  10 
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Fig. 1. Reconstitution of Spiroplasma swimming in syn3B by expressing seven genes. (A) A 
DNA fragment transferred into loxP site of syn3B, including seven genes from Spiroplasma and 
a puromycin resistance gene, “puroR”. A non annotated gene, SPE_1229 is shown by a gray 
arrow. Ptuf and loxP sites are shown by black arrows and yellow triangles, respectively. (B) 5 
Field cell images of three strains indicated on the top. In syn3Bsw, DNA fragment shown in (A) 
is inserted into the genome by Cre/loxP system. The cells were observed by phase contrast 
microscopy. (C) Distribution of cell helicity parameters measured by optical microscopy. (D) 
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Rotational behaviors of freely moving part of Spiroplasma and syn3Bsw cells. A schematic is 
shown in the left. The cell is fixed to the glass through the light gray part and blue part is 
rotating. Consecutive video frames are shown for every 0.03 s. A rotational behavior of free part 
is marked by blue arrows. The rotating part in syn3Bsw is marked by a red broken line. (E) 
Consecutive video frames of swimming cells for every 0.2 s. (F) Change in helicity analyzed for 5 
videos shown in (E). The cell images were straightened and analyzed by ImageJ, and then 
colored for their handedness. Smooth traveling helix is marked by a yellow arrow. (G) Negative-
staining EM images of filaments recovered from Spiroplasma and syn3Bsw cells. Filaments are 
marked by yellow triangles. (H) Traces of a pole of ten cells for 10 s colored differently. (I) Cell 
images under negative-staining EM images of Spiroplasma and syn3Bsw cells. A cell pole is 10 
magnified as inset.  
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Fig. 2. Role of individual proteins in syn3 swimming. (A) Structure and behaviors of cells 
lacking one of seven proteins from syn3sw. For each construct, phase-contrast cell image (left), 
integrated cell images every 1 s for 10 s with colors changing from red to blue (middle), and 
traces of a pole of ten cells for 10 s (right) are shown. (B) Distribution of cell helicity parameters 5 
for individual constructs analyzed with optical microscopy. (C) Phase-contrast image of cells 
expressing single Spiroplasma protein marked by “fib” and number of SMreBs. The original 
syn3B is marked by a broken circle.  
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Fig. 3. Morphology and behaviors of syn3B cells expressing pair of SMreB proteins. (A) 
Schematic of SMreB combinations with protein groups. Each SMreB is presented by a numbered 
circle with a group color. The characters resulted in syn3B cells by gene expression are presented 
by line formats. (B) Image (left) and behaviors (right) of syn3B cells expressing pair of SMreBs. 5 
Cells of four constructs presented here showed movements. (C) Distribution of parameters for 
cell helicity. (D) Phase-contrast image of cells expressing other combinations of protein pairs. 
Six pairs did not show movements. (E) SMreB5 localization in cell expressing SMreB 4 and 5. 
Schematic of integrated genes is shown (upper). mCherry gene is inserted into C-terminal side of 
tyrosine residue at 218th position. Phase-contrast and fluorescence images are shown (lower). 10 
(F) Image (left) and behaviors (right) of syn3B cells expressing SMreBs 4, 5, and fibril. 
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Fig. 4. Schematic for origin and mechanism of Spiroplasma swimming. The swimming 
mechanism may be acquired through four steps as presented by arrows. Step 1: The MreB 
protein derived from walled bacteria differentiated into two classes with different characters 
through accumulated mutations. Association of heterogeneous protofilaments allowed stable 5 
filament formation. Step 2: Small differences in length generated curvature, resulting in helicity 
of the heterogenous filament. Step 3: Change in length caused by ATP energy induces change in 
curvature, causing helicity switching. The early stage of swimming was acquired. Step 4: The 
acquired swimming was refined to be equipped by five classes of SMreBs, fibril, dumbbell 
structure and so on. Corresponding cell morphology and behaviors are presented in the bottom.  10 
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