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Abstract 

The molecular characteristics of metastatic upper tract urothelial carcinoma (UTUC) are unknown. 

The genomic and transcriptomic differences between primary and metastatic UTUC is not well 

described either. We combined whole-exome sequencing, RNA-sequencing, and Imaging Mass 

Cytometry™ (IMC™) of 44 tumor samples from 28 patients with high-grade primary and 

metastatic UTUC. IMC enables spatially resolved single-cell analyses to examine the evolution of 

cancer cell, immune cell, and stromal cell markers using mass cytometry with lanthanide metal-

conjugated antibodies. We discovered that actionable genomic alterations are frequently 

discordant between primary and metastatic UTUC tumors in the same patient. In contrast, 

molecular subtype membership and immune depletion signature were stable across primary and 

matched metastatic UTUC. Molecular and immune subtypes were consistent between bulk RNA-

sequencing and mass cytometry of protein markers from 340,798 single-cells. Molecular 

subtyping at the single cell level was highly conserved between primary and metastatic UTUC 

tumors within the same patient. 
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Introduction 

 Upper tract urothelial carcinoma (UTUC) is defined as urothelial carcinoma (UC) arising 

from the ureter or the renal pelvis. UTUC is a rare tumor compared to UC of the bladder (UCB), 

accounting for 5-10% of UC, with aggressive clinical presentation. While 5-year survival for non-

muscle invasive UTUC is more than 90%, it drops to < 40% in patients with regional nodal 

metastases and < 10% in patients with distant metastases1,2. Even though systemic 

chemotherapies are given after relapsing, most patients die from the disease within 3 years3. A 

better understanding of the underlying molecular basis of metastatic UTUC is needed to develop 

targeted therapeutic strategies and improve clinical outcomes for patients with metastatic UTUC.  

Recent studies by next-generation sequencing (NGS) have detailed the genomic 

landscape of primary UTUC4-6. Regarding molecular and immune phenotyping of UTUC, our group 

recently demonstrated that primary UTUC has a luminal-papillary T-cell depleted phenotype and 

a lower total mutational burden than UCB7. However, previous studies on UTUC including ours 

mainly focused on primary tumors and limited molecular data currently exists for metastatic 

UTUC6. Furthermore, the extent of genomic and phenotypic heterogeneity in each individual 

patient with metastatic UTUC is still unknown.  

In this study, we performed whole-exome sequencing (WES), RNA-sequencing (RNA-seq), 

and multiplexed imaging cytometry which leverages antibodies conjugated to rare metals and 

detection by mass spectrometry to provide spatial protein expression patterns at a single cell 

resolution8,9 from patients with primary  and metastatic UTUC enrolled in our precision medicine 

study to characterize the genomic, transcriptomic and immunophenotypic features of metastatic 

UTUC, and understand the degree of heterogeneity between primary and metastatic UTUC.  
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Results 

Genomic landscape of metastatic UTUC 

To explore the genomic landscape of metastatic UTUC, we performed WES of 44 

prospectively collected UTUC tumors from a new cohort of 28 patients, including 7 matched sets 

of primary and metastatic UTUC and germline samples and 1 rapid autopsy (Figure 1a, 1b and 

Supplementary Table. 1). Overall, metastatic lesions showed an average of 196 non-synonymous 

SNVs/Indels (range 5 - 713) and 149 CNAs (amplification and deletion, range 4 – 831). All the 

analyzed UTUC had TMB scores below the UC-specific threshold we previously identified10 to 

designate TMB-high tumors. There were no significant differences in the MSIsensor scores11 and 

TMB between primary and metastatic UTUC (Mann-Whitney U-test P value = 0.65 and 0.22, 

respectively) (Supplementary Figure 1). The most frequently altered genes in our UTUC cohort 

were TP53 (45.2%), KMT2D (35.7%), ARID1A (33.3%) and CDKN2A (33.3%) (Figure 2a). The 

frequently altered genes in our cohort were in agreement with previously reported primary UTUC 

genomic studies4,5,7,12, except for FGFR3 (4/42, 9.5%). Of the detected CNAs, the frequency of 

RAF1 amplification was significantly higher in metastatic UTUC (33.3%) compared to primary 

UTUC (4.2%) (Fisher exact test P value = 0.03) (Figure 2b).  

 

Genomic heterogeneity between primary and matched metastatic UTUC 

 To compare the clonal structure of primary and metastatic UTUC, we investigated the 

numbers of private and shared mutations between the primary and metastatic UTUC within each 

patient by calculating the percentage of non-synonymous mutations that were private to the 
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primary tumor, the metastatic tumor or shared within individual patients. Of the 7 analyzed 

patients with paired primary and metastatic UTUC, 4 patients received chemotherapy treatment 

before sampling of the primary or metastatic tumor tissue, and all the tumors from two patients, 

WCM052 and WCM068, were chemotherapy-naïve (Supplementary Figure 2). On average, only 

17.6% (range 7.3–36.4%) of mutations were shared by primary and matched metastatic samples 

(Figure 3a). The percentages of shared mutations were higher in the chemotherapy naïve 

patients than patients who received prior chemotherapy treatment (32.6% vs. 11.5%), suggesting 

that chemotherapy potentially plays a role in increasing genomic heterogeneity by inducing 

mutations13-15.  

 To determine the biological impact of genomic heterogeneity, we next sought to define 

the differences in mutations and CNAs affecting cancer associated genes between primary and 

matched metastatic UTUC within each patient. A median of 13.5 cancer gene alterations per 

sample was identified (range 2 - 51), including a median of 2 (range 1–9) alterations predicted 

to be likely oncogenic by the OncoKB database16. When we compared genomic alterations 

between paired primary and metastatic tumors, intra-patient heterogeneity in cancer gene 

alterations was observed (Figure 3b). The primary and matched metastatic tumors shared at 

least one pathogenic cancer gene alteration in all cases (Supplementary Figure 3). However, 

compared to primary UTUC, we identified additional pathogenic mutations or CNAs in all but 

one of the matched metastatic UTUC tumors (Figure 3b, Supplementary Figure 3).  

 

Stability of molecular subtype and immune contexture assignments between primary and 

metastatic UTUC tumors 
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The next step was to see if there was any transcriptome difference between the primary and 

matched metastatic UTUC. To that goal, we performed whole-transcriptome sequencing (RNA-

seq) on 17 UTUC tumors (six primary and eleven metastatic), including 3 patients with primary 

and matched metastatic UTUC and 1 patient with two metastatic tumors (Figure 4a). Using the 

recently published single sample consensus molecular classifier17, we found that 83.3% of 

primary tumor samples were luminal-papillary, and the rest were basal/squamous (Figure 4a). 

Of the metastatic tumors, 45.5%, 27.3%, 9.1% and 18.2% were luminal-papillary, luminal-

unstable, stroma-rich and basal/squamous, respectively (Figure 4a). Clustering analysis using the 

BASE47 gene classifier18 showed a similar frequency of basal subtype between primary and 

metastatic tumors (33.3% vs. 27.3%, P value > 0.05). When we evaluated the molecular subtypes 

between primary and the matched metastatic UTUC tumors, we found that they were relatively 

stable in comparison to genomic changes, but discordance in molecular subtype was observed in 

one out of three cases (Figure 4d). In WCM010, one of three lymph node metastases was 

classified as luminal-unstable, while the primary and remaining lymph node metastases were 

classified as luminal-papillary. In case WCM031, only metastatic tumors were interrogated by 

RNA-seq due to the unavailability of frozen tissue from the primary tumor. Interestingly. 

molecular subtyping revealed discordance of molecular subtypes between the asynchronous 

liver metastases (Figure 4b). The initial metastasis (M1) and the second metastasis (M2) 

demonstrated stroma-rich and luminal unstable, respectively.   

Next, we applied a classifier of 170 immune-related genes which we previously 

developed7 (Supplementary Table 2) to the RNA-seq data obtained from 17 samples (6 primary 

and 11 metastatic UTUC) and the TCGA-BLCA cohort.  The majority of UTUC tumors (76.5%, 
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13/17) clustered into the T-cell depleted subgroup (Figure 4c-d) consistent with our previous 

finding in primary UTUC7. Only 16.7% of primary UTUC (1/6) and 27.3% of metastatic UTUC (3/11) 

were T-cell inflamed. The immune phenotypes were concordant within individual patients.  

 

Single cell spatial profiling of UTUC’s tumor-immune contexture reveals intra-tumoral 

plasticity  

In order to validate our findings showing differential immune states within the tumors 

and further investigate the tumor microenvironment, we employed Imaging Mass Cytometry™ 

(IMC™) on samples of UTUC – a method for multiplexed tissue imaging using antibodies 

conjugated to rare metals and detection by mass spectrometry19. In total, from 14 samples of 6 

patients, we generated 58 images containing the spatial distribution of 27 distinct molecular 

biomarkers, which included markers of tumor cells (pan-Keratin, Keratin 5, GATA3, E-cadherin), 

immune cells (CD3, CD16, CD68), among others such as functional or stromal markers present in 

various cell types (Supplementary Table 3). Upon inspection, IMC™ images generally revealed 

structured boundaries between tumor and stromal compartments (Figure 5a-b). For a 

quantitative description of tumor and tumor-associated phenotypes, we segmented a total of 

340,798 single-cells across all images and using the marker intensity as a quantitative measure 

of epitope abundance, built a joint space reflecting the phenotypic similarity between cells using 

the Uniform Manifold Approximation and Projection method (UMAP) (Figure 5c). In this space, 

the tumor cells were readily distinguishable from the remaining cells through the expression of 

the basal marker Keratin 5, or expression of either the luminal marker GATA3 or other keratin 

proteins (Figure 5d). The remaining cells formed the immune and stromal compartments of the 
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tumor, of which the most numerous were cancer-associated fibroblasts, macrophages, CD4 and 

CD8+ T-cells, and endothelial cells (Figure 5d-e). We found that the samples classified as immune-

inflamed by the RNA-seq based classifier had a significantly higher number T-cells with CD8 

protein expression, effectively validating 170 gene RNA-seq based classifier for immune 

characterization of UTUC (Figure 5f). In the tumor compartment, we identified a wide range of 

tumor phenotypes expressing various combinations of these markers, including in the expression 

of tumor-specific proteins (Figure 5e). Upon closer inspection, we observed that the degree of 

plasticity as measured by the ratio of the expression of the basal marker KRT5 to the luminal 

marker GATA3 (KRT5/GATA3) in each single cell was largely conserved across primary and 

metastatic UTUC within the same patient (Figure 5g). However, for one patient (WCM031), the 

primary and metastatic tumor cells had distinct phenotypes, with the primary tumor having a 

basal phenotype with low CD8+ T-cell infiltration, while the metastatic sample has a luminal 

phenotype and approximately double the number of CD8+ T-cells (78.6 cells in primary vs 134.5 

cells in metastasis, Supplementary figure 4). These findings suggest that cancer-immune 

contexture phenotypes are heterogeneous between patients but often conserved between 

primary and metastatic tumors within individual patients with UTUC.  

 

Discussion 

Here, we report the genomic, transcriptomic and immunophenotypic landscape and the 

differences between primary and metastatic UTUC. Furthermore, for the first time, we used 

multiplexed tissue imaging using Imaging Mass Cytometry™, to describe the intra- and inter-

tumoral phenotypic heterogeneity of cancer cells and their microenvironment at the single-cell 
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level. Although genomic data from paired primary and metastatic UTUC tumors in small cohorts 

has been reported6,20, neither transcriptomic data nor single-cell imaging analysis have been 

described. 

WES analysis from paired primary and metastatic UTUC revealed that metastatic tumors 

harbored oncogenic genomic alterations which were not identified in the matched primary 

tumors. Two possibilities can be considered to account for this heterogeneity: (a) Clones 

harboring these additional alterations are resistant to chemotherapy. (b) Metastatic lineages 

result from early branched evolution in the primary tumors. These possibilities were discussed in 

previous reports which suggested that systemic spread is a very early event in cancer history and 

that chemotherapy selects clones harboring drug-resistant mutations in breast, colorectal, lung, 

and bladder cancers13,21. In our cohort, intra-patient heterogeneity of likely oncogenic alterations 

was observed also in the chemotherapy-naïve cases (WCM052 and WCM068). However, the 

percentages of shared mutations between primary and matched metastases were higher than 

those who had a history of chemotherapy before sampling. The observation suggests that 

chemotherapy potentially plays a role in increasing genomic heterogeneity by inducing 

mutations13-15. Regarding UTUC, previous genomic studies in small cohorts showed discordance 

of mutations between paired primary and metastatic UTUC6,20. Furthermore, we show that intra-

patient genomic diversity in clinically targetable alterations is also common in UTUC. This finding 

is of clinical importance because evaluating only a primary or metastatic sites could potentially 

miss therapeutic targets in patients with metastatic UTUC. However, we acknowledge a 

limitation that the collected samples may not fully represent the tumors. There is a possibility 

that some of the alterations detected only in metastases were present in unsampled regions of 
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their paired primary tumors. Liquid biopsy, which can analyze circulating cell-free DNA, could 

complement tissue biopsy by capturing tumor heterogeneity that single-lesion tumor biopsies 

may miss22. 

We observed intra-patient discrepancy of molecular subtypes within 2 patients 

(WCM01031 and WCM031) at the transcriptomic level using a recently published molecular 

classification system17. A recent study provided important findings which may explain the 

molecular basis of the molecular subtype shift in urothelial carcinomas. Using a single-cell 

transcriptome and in vivo bladder cancer model, Sfakianos et al. revealed lineage plasticity in 

primary and metastatic urothelial cancers of the bladder23. The molecular subtype changes 

observed in our cohort may reflect the consequence of lineage plasticity during metastatic 

progression. By contrast, for cases WCM068 and WCM085, molecular subtypes were concordant 

between matched primary and metastatic tumors. However, we note that intra-tumoral 

heterogeneity of molecular subtypes may be underestimated due to a sampling bias from a single 

tumor biopsy, as intra-tumoral and intra-individual molecular heterogeneity has been shown in 

urothelial carcinomas by previous genomic and transcriptomic studies24-26. The intra-individual 

heterogeneity of molecular subtypes is of potential clinical relevance because molecular 

classification is expected to predict treatment response and overall survival27,28. A single tumor 

sampling may not reflect the biological characteristic of the disease in the setting of metastatic 

UTUC.  

Contrary to the heterogeneity at genomic levels, the immune phenotype based on the 

expression of immune-related genes was maintained through the metastatic process. 

Characterizing the immune microenvironment potentially provides clinical benefit because the 
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extent of tumor-infiltrating T-lymphocytes is positively associated with the efficacy of immune 

checkpoint inhibitors29. Our finding on the consistency of immune phenotype within each patient 

suggests that evaluating a single tissue site provides a reasonable assessment of the immune 

microenvironment and thus may be useful for predicting the efficacy of immune checkpoint 

inhibitors. 

Multiplexed imaging using IMC™ allowed us to comprehensively profile tumor 

phenotypes and the microenvironment in primary and metastatic UTUC, revealing the extensive 

heterogeneity between patients but conserved between primary and metastatic samples of the 

same individual in all but one patient. While this analysis includes a limited set of protein markers 

compared with RNA-seq, it allowed us to characterize the spatial heterogeneity of cancer, 

stromal and immune cells UTUC evolution at the single-cell level. In addition, this enabled us to 

identify mixed tumor phenotypes within the same sample for several patients. Furthermore, this 

technique allowed us to validate transcriptome-based predictions of immune inflamed or 

depleted microenvironment. This spatially-resolved imaging technique generated additional 

insights not only at the level of quantifying the density of cellular components of the immune 

compartment such as CD8+ T-cells but also pinpointing their distribution, including the degree of 

infiltration into the tumor mass compared to their presence in the periphery. 

Altogether, our genomic, transcriptomic, and phenotyping analysis of primary and 

metastatic UTUC brings to light the range of mutational and phenotypic diversity between and 

within individual patients, revealing a broadly conserved phenotypic tumor landscape against the 

backdrop of genetic evolution seen during metastasis. This integrated characterization of UTUC 
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informs the targeted and immune therapeutic strategies that maximize efficacy in patients with 

metastatic UTUC. 

 

Methods 

Patient enrollment and tissue acquisition.  

Patients with primary and metastatic UTUC were prospectively enrolled in an 

institutional review board (IRB)–approved Research for Precision Medicine Study (IRB No. 

1305013903) with written informed consent. Tumor tissue from biopsies and 

nephroureterectomy specimens was collected from 44 patients diagnosed with high-grade 

urothelial carcinoma. WES data from 7 primary tumor samples presented in this manuscript 

have already been published7. Tumor DNA for WES was obtained from fresh frozen or formalin-

fixed, paraffin-embedded tissue. Samples were selected based on pathologic diagnosis 

according to standard guidelines for UTUC2,30. Small cell carcinoma was excluded from our 

cohort. Pathological review by study pathologists (B.D.R., F.K., J.M.M.) confirmed the diagnosis 

and determined tumor content. 

 

DNA extraction and WES.  

WES was performed on each patient’s tumor/matched germline DNA pair using 

previously described protocols31,32. After macrodissection of target lesions, tumor DNA was 

extracted from formalin-fixed, paraffin-embedded (FFPE) or cored OCT-cryopreserved tumors 

using the Promega Maxwell 16 MDx (Promega, Madison, WI, USA). Germline DNA was 

extracted from blood, buccal mucosa and normal lung and lymph node tissue using the same 
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method. A minimum of 200 ng of DNA was used for WES. DNA quality was determined by 

TapeStation Instrument (Agilent Technologies, Santa Clara, CA) and was confirmed by real-time 

PCR before sequencing. Sequencing was performed using Illumina HiSeq 2500 (2 × 100 bp). A 

total of 21,522 genes were analyzed with an average coverage of 85× using Agilent HaloPlex 

Exome (Agilent Technologies, Santa Clara, CA). 

 

WES data processing pipeline 

All the sample data were processed through the computational analysis pipeline of the 

Institute for Precision Medicine at Weill Cornell Medicine and NewYork-Presbyterian (IPM-

Exome-pipeline)31. Raw reads quality was assessed with FASTQC. Pipeline output includes 

segment DNA copy number data, somatic copy-number aberrations (CNAs), and putative somatic 

single-nucleotide variants (SNVs)32.  Somatic variants were filtered using the following criteria: 

(a) read depth for both tumor and matched normal samples was ≥30 reads, (b) the variant allele 

frequency (VAF) in tumor samples was ≥10% and >5 reads harboring the mutated allele, (c) the 

VAF of matched normal was ≤1%, or there was just one read with mutated allele. Pathogenicity 

and actionability for each mutation and CNA were determined by the OncoKB database16. Tumor 

mutation burden (TMB) was calculated as the number of mutations divided by the number of 

bases in the coverage space per million. TMB status (high vs. low) was determined using a 

urothelial cancer-specific threshold which our group recently reported10. 

 

 Computational detection of MSI  
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MSI was detected by the MSI sensor. MSI sensor is a software tool that quantifies MSI in 

paired tumor–normal genome sequencing data and reports the somatic status of corresponding 

microsatellite sites in the human genome11. MSIsensor score was calculated by dividing the 

number of microsatellite unstable by the total number of microsatellite stable (MS) sites 

detected. The cut-off for defining MSI-high (MSI-H) versus MS stable (MSS) samples was 3.5 (MSI-

H > 3.5, MSS < 3.5)11.  

 

RNA extraction, RNA sequencing, and data analysis.  

RNA-seq and data processing was performed according to the protocol described in 

previous papers16,33. Briefly, RNA was extracted from frozen material for RNA-seq using Promega 

Maxwell 16 MDx instrument, (Maxwell 16 LEV simplyRNA Tissue Kit (cat. # AS1280)). Specimens 

were prepared for RNA sequencing using TruSeq RNA Library Preparation Kit v2 or riboZero as 

previously described33. RNA integrity was verified using the Agilent Bioanalyzer 2100 (Agilent 

Technologies). cDNA was synthesized from total RNA using Superscript III (Invitrogen). 

Sequencing was then performed on GAII, HiSeq 2000, or HiSeq 2500 as paired-ends16,33. All reads 

were independently aligned with STAR_2.4.0f134 for sequence alignment against the human 

genome sequence build hg19, downloaded via the UCSC genome browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/), and SAMTOOLS v0.1.1935 for 

sorting and indexing reads. Cufflinks (2.0.2) 36 was used to estimate the expression values 

(FPKMS), and GENCODE v2337 GTF file for annotation. Rstudio with R (v3.6.1) was used for the 

statistical analysis and the generation of figures. 
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Molecular subtyping 

The log-transformed expression data was used to infer molecular subtypes using a 

recently published classification system as implemented in the consensusMIBC R package17. 

Default parameters were set except for minCor representing a minimal threshold for best 

Pearson's correlation (minCor = 0.15). The consensus classification implements a nearest 

centroid method and Pearson’s correlation and classifies samples into 6 molecular classes; 

Luminal Papillary (LumP), Luminal Non Specified (LumNS), Luminal Unstable (LumU), Stroma-rich, 

basal/Squamous (Ba/Sq), Neuroendocrine-like (NE-like). 

 

T cell inflammation classification analysis 

The previously published T cell inflammation gene signature was used to classify tumors 

into T-cell inflamed or T cell depleted7. The expression data, quantified as FPKMs, was obtained 

for the EIPM UTUC patients, of which RNA-seq was available (n=17). The FPKMs for the primary 

tumors were obtained from the GDC/TCGA bladder cohort (TCGA BLCA, n=414). The genes from 

the signature were selected for expression-based supervised clustering. The FPKMs were log-

transformed and median centered, and partitioning around medoids (PAM) algorithm was 

applied to cluster the transformed expression data. This led to the identification of two broad 

clusters: one with higher expression of the signature genes was labeled as T cell inflamed while 

that with low expression of signatures genes was labeled as T cell-depleted. 

 

Imaging Mass Cytometry™ 
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Antibodies were conjugated in BSA and Azide free format using the MaxPar X8 

multimetal labeling kit (Fluidigm) as per the manufacturer’s protocol. Freshly cut 4-micron thick 

FFPE tissue sections were stored at 4oC for a day before staining. Slides were first incubated for 

1 hour at 60oC on a slide warmer followed by dewaxing in fresh CitriSolv (Decon Labs) twice for 

10 minutes, rehydrated in descending series of 100%, 95%, 80%, and 75% ethanol for 5 minutes 

each. After 5 minutes of MilliQ water wash, slides were treated with antigen retrieval solution 

(Tris-EDTA pH 9.2) for 30 minutes at 96oC, cooled to room temperature (RT), washed twice in 

TBS, and blocked for 1.5 hours in SuperBlock Solution (ThermoFischer). Overnight incubation 

occurred at 4oC with the prepared antibody cocktail containing the metal-labeled antibodies. 

The next day, slides were washed twice in 0.2% Triton X-100 in PBS, and twice in TBS. DNA 

staining was performed using Intercalator-Iridium in PBS solution for 30 minutes in a humid 

chamber at room temperature, followed by a washing step in MilliQ water and air drying. The 

Hyperion instrument was calibrated using a tuning slide to optimize the sensitivity of the 

detection range. Hematoxylin and Eosin (H&E) stained slides were used to guide the selection 

of regions of interest in order to obtain representative regions. All ablations were performed 

with a laser frequency of 200 Hz. Tuning was performed intermittently to ensure the signal 

detection integrity was within the detectable range.  

 

Analysis of Imaging Mass Cytometry™ data 

Imaging Mass Cytometry™ data were preprocessed as previously described9 with some 

modifications. Briefly, image data was extracted from MCD files acquired with the Hyperion 

instrument. Hot pixels were removed using a fixed threshold. The image was amplified two times, 
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Gaussian smoothing applied and, from each image, a square 500-pixel crop was saved as an HDF5 

file for image segmentation. Segmentation of cells in the image was performed with ilastik 

(version 1.3.3) 38 by manually labeling pixels as belonging to one of three classes: nuclei – the 

area marked by a signal in the DNA and Histone H3 channels; cytoplasm – the area immediately 

surrounding the nuclei and overlapping with signal in cytoplasmic channels; and background – 

pixels with low signal across all channels. Ilastik learns from these sparse labels by training a 

Random Forest classifier using features present in the images. Features used were the Gaussian 

Smoothing with kernel widths of 1 and 10 pixels, Hessian of Gaussian Eigenvalues with kernel 3.5 

and 10 pixels, and Structure of Tensor Eigenvalues with kernel of 10 pixels. The outputs of 

prediction are class probabilities for each pixel which were used to segment the using DeepCell 

version 0.8.2)39 with the MultiplexSegmentation pre-trained model. 

To identify cell types in an unsupervised fashion, we first quantified the intensity of all 

samples in each segmented cell, not overlapping image borders. Channels with “functional” 

markers Ki67, PD-1, PD-L1, and Granzyme B were not used for downstream cell type 

identification but only for visualization. In addition, for each cell, we computed morphological 

features such as the cell area, perimeter, the length of its major axis, eccentricity, and solidity 

using the skimage.measure.regionprops_table function (version 0.18.1)39. Cells with solidity 

value of 1 (perfectly round cells) were excluded from analysis. Using Scanpy (version 1.7.1)40, we 

log-transformed the quantification matrix, and Z-scored values per image, capping the signal at -

3 and 3, followed by global feature centering and scaling. The batch was removed with Combat 

(Scanpy implementation) and features scaled again. Principal Component Analysis was 

performed, and we computed a neighbor graph on the PCA latent space using the batch balanced 
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k-nearest neighbors (bbknn) (version 1.4.0)41.  We computed a Uniform Manifold Approximation 

and Projection (UMAP)42 embedding (umap package, version 0.4.6) with a gamma parameter of 

25, and clustered the cells with the Leiden algorithm43 with resolution 0.5 (leidenalg package, 

version 0.8.3). 

 

Statistical analyses 

For statistical tests, a two-sided Mann–Whitney test was used to check for significant 

differences between two distributions. The two-sided Fisher’s exact test was applied to 

determine whether the deviations between the observed and the expected counts were 

significant. We used a P value threshold of 0.05. 
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Figure legends 

 

Figure 1. Clinical characteristics of the study cohort. 

(a) Schematic illustrating the anatomical sites of primary and metastatic upper tract urothelial 

carcinoma (UTUC) samples. Numbers correspond to the number of tumors at each site. (b) 

Clinical characteristics of the study cohort, the anatomical sites of primary and metastatic tumor 

samples and sequencing methods performed for each sample. Barplots represent numbers of 

non-synonymous mutations for each sample. 
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Figure 2. Genomic landscape of primary and metastatic UTUC. 

(a) Comparison of genomic alterations between primary and metastatic UTUC. (b) Comparison 

of genomic alteration frequencies between primary (red bars) and metastatic UTUC (blue bars) 

for genes frequently altered in our cohort.  

 

Figure 3. Genomic heterogeneity between paired primary and metastatic UTUC. 

(a) Percentages of somatic mutations unique to primary (blue) and metastasis (gray) or shared 

between the matched tumors (orange). (b) Oncoprints representing somatic mutations and copy 

number alterations of cancer genes in primary (P) and matched metastatic (M) UTUC. Oncoprints 

are grouped per case. Chemotherapy treatment prior to tissue collection and a history of bladder 

cancer are shown on the top of each oncoprint. Alterations shown in purple indicate actionable 

alterations.  

 

Figure 4. Comparison of molecular subtype and T-cell inflammation classification in primary 

and metastatic UTUC.  

(a) Gene expression heatmap of UTUC aligned by cases. The expression value is log-transformed 

and median centered for selected genes, for labeled gene sets. Assigned molecular classes are 

represented on top. The subtypes are labeled as luminal papillary (LumP), luminal non-specified 

(LumNS), luminal unstable (LumU) and basal/squamous (Ba/Sq). (b) Comparison of molecular 

subtypes between paired primary/metastatic and metastatic/metastatic UTUC. (c) Supervised 

consensus clustering of our UTUC and TCGA UCB tumors according to a 170-immune gene 
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signature classifies tumors into T-cell depleted (with lower expression of classifier genes), and T-

cell inflamed (with higher expression of classifier genes) clusters. (d) Breakdown of assigned 

classification for primary and metastatic UTUC. 

 

Figure 5.  Imaging Mass Cytometry™ reveals intra-patient concordance in molecular subtype 

plasticity between primary and metastatic UTUC tumors at the single cell level  

(a-b) Representative images of IMC™ data for a sample of the (a) immune-depleted or (b) 

immune-inflamed classes. Red: tumor expressed, E-cadherin; Green: T-cell expressed CD3; Blue: 

DNA. Scale bars represent 200 microns horizontally. (c) UMAP representation of single-cells 

segmented in IMC™ data colored by the metacluster of origin. (d) UMAP representation as in c) 

but where each single cell is colored by the intensity of various markers in the panel. (e) Heatmap 

of clusters found in the IMC™ data (columns) and their average intensity in the markers. Clusters 

were aggregated into meta-clusters dependent on their ontogeny. (f) Absolute abundance 

(normalized to area imaged) of tumor and immune cells dependent on the predicted T-cell 

depleted or T-cell inflamed phenotypes from RNA-seq. (g) Log ratio of KRT5 to GATA3 expression 

for each single cell aggregated in boxplots for each sample in the IMC dataset. The vertical dotted 

line represents the level where the KRT5 expression is equal to  the GATA3 expression. 
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