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Florian Störtz*, Jeffrey Mak and Peter Minary+

Department of Computer Science, University of Oxford, Parks Road, OX1 3QD, Oxford, United Kingdom

Abstract
CRISPR/Cas programmable nuclease systems
have become ubiquitous in the field of gene edit-
ing. With progressing development, applications
in in vivo therapeutic gene editing are increas-
ingly within reach, yet limited by possible ad-
verse side effects from unwanted edits. Recent
years have thus seen continuous development of
off-target prediction algorithms trained on in vitro
cleavage assay data gained from immortalised cell
lines. Here, we implement novel deep learning
algorithms and feature encodings for off-target
prediction and systematically sample the result-
ing model space in order to find optimal mod-
els and inform future modelling efforts. We lay
emphasis on physically informed features which
capture the biological environment of the cleav-
age site, hence terming our approach piCRISPR,
which we gain on the large, diverse crisprSQL off-
target cleavage dataset. We find that our best-
performing model highlights the importance of
sequence context and chromatin accessibility for
cleavage prediction and compares favourably with
state-of-the-art prediction performance. We fur-
ther show that our novel, environmentally sensi-
tive features are crucial to accurate prediction on
sequence-identical locus pairs, making them highly
relevant for clinical guide design. The source code
and trained models can be found ready to use at
github.com/florianst/picrispr.

Introduction
The clustered regularly interspaced short palindromic

repeats (CRISPR) sequence family was first described in
E. coli in 1987 [1], but it took until 2007 to recognise it
as a part of the viral defense system of most archaea and
bacteria [2]. Exogenous viral DNA is cleaved off by spe-
cialised nuclease enzymes, coded for on genomic regions
which are often adjacent to CRISPR and hence named
CRISPR-associated (Cas). Cleaved-off regions are subse-
quently incorporated into the CRISPR sequences, which
act as a viral history of the respective cell, stabilised by
the palindromic nature of their saved states which results
in stable secondary structures [3]. From there they can
be transcribed to crRNA and invading copies of them can
subsequently be rendered inactive. Researchers have used
this ability for programmable genome editing in many eu-
karyotic species, complementing strategies such as zinc-
finger nucleases (ZFNs, [4]) and transcription activator-
like effector nucleases (TALENs, [5]).

We concentrate on the effects of the wild-type Cas9 pro-
tein gained from Staphylococcus pyogenes. The crRNA
which is originally responsible for recognition of a 20bp vi-
ral sequence forms an active complex with the tracrRNA,
called single guide RNA (sgRNA), of about 50bp length
[6]. Homology of the crRNA part with a 20bp region in the
genome results in annealing of the sgRNA with one strand
of this region, which we call ‘target strand’. Binding hap-
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pens when the interaction of the 3bp protospacer-adjacent
motif (PAM) on the opposite, non-target strand with the
Cas9 protein is favourable [7]. For S. pyogenes Cas9, this
is the case for an ’NGG’ PAM where N stands for an ar-
bitrary base (A, T, C, G).

After binding has taken place, nuclease-active enzymes
within Cas9 can cleave the double-stranded DNA 3bp up-
stream of the PAM. Due to the stochastic, energy-driven
nature of both the binding and the cleavage process, we
expect a distribution of cuts over the whole genome, in-
cluding undesired off-target effects which could possibly
have catastrophic consequences, such as knocking out tu-
mor suppressor genes like p53 and Rb [8].

We noticed that repositories of off-target cleavage data
contain a significant amount of data points which match in
both guide and (off-)target sequence and differ only in the
biological environment of the respective loci (see Figure
1). Capturing this environment is therefore instrumental
in providing accurate predictions of cleavage activity.

With a considerable amount of cleavage prediction algo-
rithms present in literature [9, 10, 11, 12, 13], we present
here a model optimisation framework to systematically
probe combinations of model architecture, feature set and
encoding. We want to provide a one-stop side-by-side
benchmark of a representative set of modelling approaches
that take into account physically inspired and environmen-
tally sensitive features. Besides improving prediction ac-
curacy and capturing off-target effects that might so far
have gone unnoticed, this will also generate insight into the
biological environment that influences CRISPR cleavage.

Methods

Data Source
In order to achieve maximum transparency and com-

parability, we use guide-target pairs from the crisprSQL
dataset [14] curated by our group. It is a collection of 17
base-pair resolved off-target cleavage studies on Sp-Cas9,
comprising 25,632 data points and is larger than most
datasets used to train prediction algorithms to date. It
contains data on various cell lines, mainly U2OS, HEK293
and K562. We have chosen to not include T-cell data
data from [15] in order to avoid introducing a consider-
able cell line imbalance. Furthermore, the evaluation of
our modelling on on-target datasets is beyond the scope
of this work due to their different underlying experimental
techniques and cleavage quantification measures.

Experimental data points containing guide and target
loci, sequence, cell line, assay type and cleavage frequency
have been completed and enriched by sequence context as
well as five epigenetic markers (CTCF: chromatin organ-
isation [16], DNase: chromatin accessibility, RRBS: DNA
methylation, H3K4me3: histone methylation [17], DRIP:
R-loop formation in transcription [18]). We combine these
established features for cleavage prediction with physically
informed features pertaining to the RNA-DNA heterodu-
plex in order to more faithfully map the CRISPR/Cas9
system. We use empirical binding energy estimates given
in crisprSQL based on CRISPRspec [19], where the au-
thors calculate four empirical energy contributions:
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� binding energy ∆GRNA:DNA
H between gRNA and the

(off-)target DNA, weighted by a position-wise esti-
mate of the Cas9 influence in the binding,

� free energy ∆GDNA:DNA
O of the DNA duplex in the

target region required to open the dsDNA,

� free energy ∆GRNA:RNA
U of the gRNA (first 20nt) fold-

ing computed using RNAfold,

� correcting factor δPAM determined by the three-letter
PAM sequence of the (off-)target.

These can be used to calculate

∆GB = δPAM(∆GRNA:DNA
H − ∆GRNA:RNA

U − ∆GDNA:DNA
O )

as the total binding free energy. We extract the binding
energy Ebinding between gRNA and DNA, the free energy
EDNA released when opening the dsDNA and annealing
with the sgRNA to form the heteroduplex, as well as the
free energy released during folding of the sgRNA EgRNAfold

to be included in our model (see Figure 2) as

Ebinding = ∆GRNA:DNA
H = E4(E3/E2),

EDNA = δPAM(∆GRNA:DNA
H − ∆GDNA:DNA

O )

= E2 − Ebinding,

EgRNAfold = ∆GRNA:RNA
U = E1 − Ebinding,

where E1..4 refer to the energy features from crisprSQL.
Besides these established feature, we propose the us-

age of nucleosome organisation-related features which add
an unprecedented level of sensitivity towards the biologi-
cal environment of the cleavage site (see Figure 1C). We
trained a preliminary cleavage prediction model on 13 dis-
tinct nucleosome organisation-related scores all based on
the 147 bp context around each (off-)target nucleotide (see
Supplementary Material) as well as the four literature-
standard epigenetic markers named above and include the
three scores of highest feature importance: GC count, Nu-
cleotide BDM [20] and NuPoP Affinity [21].

Data Augmentation
In order to increase the size of the training set, we ex-

tend it by those putative off-target sites along the respec-
tive genome which had fewer than seven mismatches to
each respective guide sequence, omitting the (off-)target
locus itself. It was ensured that the protospacer adjacent
motif (PAM) was either the canonical 5’-NGG-3’ charac-
teristic of SpCas9 [22], or one of the noncanonical forms
5’-NGA-3’ and 5’-NAG-3’ observed in [23]. If a genome-
wide off-target detection method has not detected cleavage
at a locus within the genome that satisfies these criteria,
we deem the cleavage activity at this point to be zero. This
yielded 310,142 total guide-target pairs, making the com-
plete data set highly imbalanced. Sticking with the con-
vention in literature, we refer to this process of extending
the number of data points as data augmentation. For this
work, we concentrated on the 251,854 data points origi-
nating from a human cell line or synthetic human DNA.
Labels For classification, we define the negative class as
all data points with cleavage activity (CA) values below
the lowest reported assay accuracy of 10−5, combined with
the set of putative off-targets. In order to achieve compa-
rability between different studies for regression tasks, we
perform a nonlinear Box–Cox transformation [24] to trans-
form the cleavage rates to approximate a Gaussian with
zero mean and variance σ2 = 2, similar to the approach
in [25] and [11]. Cleavage activity values below the lowest
reported assay accuracy of 10−5 as well as putative off-
targets were set to −2σ2 = −4, and transformed values

clipped to the [−4, 4] range. This is an empirical choice
based on the shape of the resulting distributions.

Feature Encoding
In order to be able to train a variety of models, we first

encode the features as a single vector per data point (Fig-
ure 2A). We call this the ‘target-guide encoding’ (E0) since
target and guide are represented separately. Sequence in-
formation of both guide and target are concatenated as
consecutive one-hot vectors. This vector is further con-
catenated with a vector of epigenetic markers (as was done
in [9]) which are normalised to [0, 1] for individual markers.
We further concatenate this with CRISPRspec energy and
nucleosomal features. The former were normalised uni-
formly such that their overall maxima and minima also are
in [0, 1]. Nucleosomal features were taken from the respec-
tive algorithms without additional normalisation. Explor-
ing latent representations of guide or target is not within
the scope of this work, given that it further complicates
comparison between models.

Based on the energy-driven nature of binding and cleav-
age, we hypothesise that mismatched interfaces affect
binding in a totally different way than matched interfaces.
This has so far not been recognised in detail by off-target
prediction algorithms. In order to explicitly include the
information at which a given target-guide pair contains a
mismatched interface, we introduce the ‘target-mismatch’
encoding (E1, see Figure S2). Here, we split the target
sequence into matched and mismatched interfaces, encod-
ing the matched interfaces in a one-hot fashion first and
then append the one-hot encoding of the mismatched in-
terfaces. This encoding loses information about the precise
type, i.e. the base pair identity of the mismatch.

In order to remedy this, we introduce the ’target-
mismatch type‘ encoding (E2, see Figure 2B), which also
encodes the type of a respective mismatch. It gives the
most detailed insight into the nature of a given base-pair
interface. The ‘target-OR-guide’ encoding (E3, see Fig-
ure 2C) combines the one-hot encoded versions of guide
and target using an entry-wise OR operation between the
vectors, as first seen in [26].

For convolutional models, we reshape the resulting vec-
tor into a matrix, in which the 23 base pairs each have sep-
arate channels for sequence, epigenetic, nucleosomal and
energy information (Figure 2D). Where a model requires
separate inputs for guide and target, we perform this oper-
ation twice with only the respective sequence contributing.
This type of encoding is inspired by Chuai et al. [9].

Model Architectures
Literature contains a wealth of model architectures

commonly used to predict CRISPR cleavage. Currently,
successful model architectures for learning-based cleavage
prediction fall in one of three categories: tree-based meth-
ods [25], convolutional neural networks (CNN, [9, 10]) and
recurrent neural networks (RNN, [11, 28]). Thus far, a
rigorous comparison between these is missing in literature,
and some have only been applied to on-target activity pre-
diction [28]. We therefore take successful CNN and RNN
architectures present in the field and adapt them to the
task of off-target prediction using various encodings of the
subset of features described above.

Our CNN model is comparable to the architecture de-
scribed in [9]. There, the outputs of two separate, con-
volutional layer-based encoders for guide and (off-)target
are concatenated channel-wise (forming the Siamese part
of the network) and serve as input for a convolutional clas-
sifier (the conjoined part). We have made various adjust-
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Figure 1: A The crisprSQL dataset contains an appreciable amount of perfect guide-target duplicates. We only
consider data gained from human cell lines and putative off-targets which we generated based on sequence similarity.
8,922 of 230,274 data points have at least one guide-target duplicate within this set which differs in cleavage activity
(CA). As the example from our dataset in panel B shows, such a pair looks identical to purely sequence-based
prediction algorithms. They might therefore not predict dangerous off-target effects. C piCRISPR remedies this by
taking into account the biological environment of the cleavage site based on a range of features beyond guide and
(off-)target sequence. So far, prediction algorithms have used features related to chromatin organisation (CTCF, [16]),
chromatin accessibility (DNase-Seq), DNA methylation (RRBS) and histone methylation (H3K4me3, [17]). We further
use features pertaining to R-loop formation during transcription (DRIP, [18]) and the following scores based on the 147
bp sequence context around each (off-)target nucleotide: GC count, sequence complexity (BDM, [20]) and nucleosome
positioning information (NuPoP, [21]) which introduce unprecedented sensitivity to the biological environment of the
cleavage site. Using these, piCRISPR can correctly rank the two example loci given here.

ments to this architecture based on training stability and
validation set performance (see the Supplementary Text).
The resulting architecture is shown in Figure 2E.

Our RNN architecture is modelled after the bidirec-
tional gated recurrent unit (BGRU) on-target prediction
model from [28]. Here, a BGRU layer is used to make
use of the relevant longer-range dependencies between se-
quence features that would go unnoticed by a CNN of
manageable kernel size. In order to make this type of
architecture usable for off-target prediction, we combine
guide and target sequence using an element-wise OR op-
eration as seen in [26] (see Figure 2C). The size of the
model’s epigenetics channel was increased to accommodate
epigenetics, energy and nucleosomal features in a matrix
encoding (see Figure 2F).

Model Training & Evaluation
Given the imbalance of validated/measured and non-

validated/augmented data points, we employ a bootstrap-
ping strategy as suggested in [29], where training batches
on average contain equal numbers of both classes. For
regression (classification), early stopping is based on the
mean squared error (binary cross-entropy) loss on half of
the test set, where the other half is reserved for evaluation.

The XGBoost tree model is trained for 70 epochs,
where a new training batch of 50,000 points is sam-
pled in each epoch. We chose hyperparameters eta=0.5,
colsample_bytree=0.7, max_depth=7 and a test set early
stopping patience of 3 epochs after epoch 30.

The CNN models are trained in the same way, with
hyperparameters of batchnorm_momentum=0.01, Gaussian
noise with µ = 0, σ = 0.01 and Adam learning rate 10−3.

The RNN models are trained for 100 epochs, where
batches of 10,000 points are sampled each epoch out of a
class-balanced sample of 50,000 data points. We replicate
the transfer learning approach taken in [28] with adjust-
ments to increase training stability and generalisation per-
formance as detailed in the Supplementary Text. Dropout
probability was 0.2 and the Adam learning rate was 10−3.

features name of feature set
S0 S1 S2 S3 S4 S5

sequence X X X X X X
energies X X X X

epigenetics X X X
nucleosomal X X

Table 1: Abbreviations for feature sets S0-S5.

Exploring the model space

In order to systematically compare the training perfor-
mance of combinations of (regression/classification, model
architecture, feature selection, feature encoding), we per-
formed individual training runs for all possible combina-
tions within this landscape. To make this independent of
our choice of data augmentation, we only included exper-
imentally validated data points within the held out 20%
of the crisprSQL dataset in the testing set. The results
of this can be seen in Figure S1. We then took only the
six best-performing models in terms of both Spearman r
(for regression) and area under receiver operating curve
(AU-ROC, for classification) further into other testing sce-
narios detailed below. The six best-performing models
were spread across all three architecture types, with CNNs
yielding the best performance benchmarks and thus pro-
viding three of the best-performing configurations. RNNs
and gradient-boosted tree models contributed two and one
configurations, respectively.

Testing Scenario 1: crisprSQL comparison
This testing scenario uses the whole crisprSQL dataset

in an 80/20 split between training and testing. As sug-
gested in [29], we use all validated and non-validated
points within our dataset. Augmenting the measured data
points with putative off-targets leads to a class imbalance
of 1:10.85 (measured:augmented).

In order to assess the practicality of a large multi-study
dataset, we obtained an estimate of the saturation of data
absorption for certain models with respect to the set of
studies in training and test data. We gradually introduced
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Figure 2: Overview of feature encodings. A Target-guide encoding (E0): (Off-)target and guide (on-target pro-
tospacer) sequences are one-hot encoded and concatenated together with the epigenetic features (CTCF: chromatin
organisation, DNase: chromatin accessibility, RRBS: DNA methylation, H3K4me3: histone methylation, DRIP: R-
loop formation during transcription, E: free energy estimates from CRISPRspec [27, 19]) and nucleosome positioning
channels (147 bp GC count, Nucleotide BDM [20], NuPoP Affinity [21]) of the target to form a single column vector per
data point. The Box–Cox transformed cleavage activity (CA) is used as a label. In target-mismatch encoding (E1, see
Figure S2), the four-letter alphabet is doubled, with the first part encoding the target and the second part indicating
whether the base pair on the target strand is canonically matched to the guide, i.e. identical with the protospacer base
pair. B Target-mismatch type encoding (E2) extends this encoding using a 16-letter alphabet which also contains infor-
mation about the precise nature of the mismatch. C Target-OR-guide encoding (E3) is an efficient way of representing
both target and guide sequence in a single four-vector per nucleotide by performing an OR operation between the
one-hot encoded target and guide nucleotide vectors (as used in [26]). D In order to serve as input for a convolutional
neural network, the vector is reshaped into a (4m + n) × 23 matrix where n is the number of non-sequence channels
and m = 1 for E0 and E3, m = 2 for E1 and m = 4 for E2. E Siamese convolutional neural network architecture used
in our CNN model, comparable with the model in [9]. For encoding E0, target and guide sequence are encoded as
separate matrices as shown in panel C and serve as the inputs (left side). Target epigenetics and nucleosomal features
are copied to the corresponding channels on the guide arm. For encodings E1–E3, only one arm of the Siamese portion
of the network is used, with its number of input channels set to 4m+n. The channel dimensions given in this figure are
valid for the S5 feature set, see Table 1. F Bidirectional gated recurrent unit architecture as used in our RNN model,
modelled after the network in [28]. Sequence features (upper branch) are encoded in E3 encoding; epigenetics-based
features (lower branch) are encoded as shown in panel D.

training and testing data in ascending order of training
performance, i.e. the study with the highest prediction
benchmark when training/testing on its 80/20 split being
introduced first. The results are shown in Figure S3.

Testing Scenario 2: literature comparison

In this scenario we hold out studies [30, 31, 32] from
the training set. These studies have not been included in
the training set for the state-of-the-art off-target predic-
tion algorithm CRISPR-Net [11], such that they remain
an independent test set to compare CRISPR-Net and pi-
CRISPR side by side. This scenario is our default way of
evaluating piCRISPR performance (see Figures 4 and S5).
The inherent class imbalance in this test set is 1:103.96.

Testing Scenario 3: set of duplicate pairs

In this scenario, we scrutinise our hypothesis that an
environmentally sensitive feature set is fit to not only in-
crease prediction performance overall, but especially for
given groups of identical guide-target sequence pairs. To
this end we calculate two quantities: First, the mean
squared error (MSE) between the predicted regression
scores and the ground truth cleavage frequencies within
each of the 2,703 groups. Second, the average propor-
tion of the true cleavage activity difference for two points
within a given group which the model predicts. This is
zero for purely sequence-based models and unity for an
ideal predictor. This quantifies how faithful a model is to
the differences in biological environment for a given pair.
In order to emphasise small deviations which preserve the
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rank of predicted cleavage activities, we use the cubic root
as a sign-preserving nonlinearity and term this quantity
”relative difference”. We consider the resulting distribu-
tions of both of these quantities for different feature sets.

Pairwise training
When combining various experimental studies, care

must be taken as to their interaction during training. We
therefore devised the notion of a pairwise training per-
formance of two studies, which we define as the training
performance when training on the larger and testing on
the smaller of these studies. We did this for all studies
in the crisprSQL dataset and visualised the result in a
force-directed graph (Figure 3, Figure S7) where the force
between nodes is proportional to the third power of the
Spearman r obtained by pairwise training and testing.

Model Explanation
We obtain feature importances using the model-agnostic

Shapley value explainer library SHAP [33]. Since pi-
CRISPR wraps the feature encoding inside a given model,
we retain full explainability of input features even for non-
invertible encodings such as E3. Using interface encodings
E1 and E2, we obtain an unprecedented, context-sensitive
resolution of sequence-based features.

Sticking with the convention set by the SHAP library
[33], we calculate global SHAP values as the mean of the
absolute value of SHAP values across data points in the
explanation set, which is a random subset of 500 points
from the held out test set. In order to show not only
the magnitude but the direction in which a given feature
influences the model’s prediction, we add a sign based on
the the average of all non-zero feature values.

Command line usage of our models
We have implemented a command line interface with

which piCRISPR predictions can readily be obtained. For
maximum usability, the model automatically uses default
feature values in case a certain feature was not provided,
thereby lowering prediction performance (see Figure S8).
The default value of a given feature is defined as the aver-
age feature value of the set of those crisprSQL data points
which lie within a 20% interval around the mean SHAP
value. This means that high-accuracy piCRISPR predic-
tions can be obtained in a user-friendly way, even when
providing only guide and (off-)target sequence. Our on-
line repository contains hands-on examples on this.

Results & Discussion

Testing Scenario 1

Data portioning We observe that when gradually
increasing training data study by study, with the highest-
performing study introduced first, CNN models appear to
generalise fastest, whereas RNN models appear to absorb
data more gradually. We also find that all models absorb
data more gradually when measured by AUC-PRC than by
AUC-ROC or Spearman r, which could support the notion
in [29] that AUC-PRC is the more relevant benchmark
parameter here. Data for this is shown in Figure S3.

Pairwise training Figure 3 shows that even though
studies using the same cell lines show some bunching in a
force-directed 2D graph where distance is proportional to
generalisation from one study to the other, bunches heav-
ily overlap between cell lines and experimental conditions.
This supports the mixing of training data across studies
despite differing experimental parameters. Experimental

CRISPR-Net [11] piCRISPR (CNN S5E2)
study [30] [31] [32] [30] [31] [32]

AU-ROC 0.991 0.835 0.908 0.998 0.938 0.998
AU-PRC 0.449 0.261 0.246 0.556 0.381 0.957
MCC 0.335 0.275 0.280 0.253 0.424 0.493
F1 0.237 0.305 0.292 0.125 0.378 0.410

Pearson 0.220 0.276 0.182 0.317 0.340 0.318
Spearman 0.085 0.221 0.179 0.085 0.258 0.214

Table 2: Comparison between piCRISPR and CRISPR-
Net [11]. Both models were tested on the set of studies
[30, 31, 32] (testing scenario 2) which neither model has
been trained on. We evaluate areas under receiver op-
erating and precision-recall curve, Matthews correlation
coefficient (MCC) and the F1 score as classification bench-
marks. For a bar plot representation see Figure S5.

studies conducted on HEK293 cells appear to generalise
best. Three distinct studies appear to generalise compar-
atively poorly to other studies, one of which was gained
on HAP1 cells. Study [34] which has been gained on syn-
thetic DNA appears to generalise to other studies about
as well as studies on K562 cells.

Testing Scenario 2

Figure 4 shows the regression and classification per-
formance of our piCRISPR-implemented models, with
CNN S5E2 yielding the highest benchmarks. As men-
tioned in [29], the area under precision-recall curve (AU-
PRC) is a much more suitable measure than the area un-
der receiver operating curve (AU-ROC) for off-target pre-
diction, since in clinical application, false negatives have
far more adverse effects than false positives. An indi-
rect comparison with benchmark values found in litera-
ture is shown in Figure S6. When considering AUC-PRC
as a measure, the S4 and S5 feature sets, which include
nucleosome positioning-related features, outperform the
literature-standard sets S2 and S3 which do not (see Ta-
ble 1). This supports our hypothesis that nucleosomal
features are a key ingredient to cleavage prediction.

A direct comparison with prediction results obtained
from CRISPR-Net on an identical test set which neither
algorithm has been trained on can be found in Figure S5.
piCRISPR achieves higher prediction benchmarks for both
classification and regression, except for the Matthews Cor-
relation and F1 score on study [30]. We attribute this to
the study’s large cell line diversity (see Figure 3). We note
that we have observed an inverse dependence of Spear-
man correlation on class imbalance ratio (data not shown),
which necessitates an identical class imbalance ratio in the
respective test sets. Our CNN S5E2 model consistently
outperforms CRISPR-Net on the identical held out test
set both in terms of Pearson and Spearman correlation.

Feature importance Figure 5 shows that the
CNN S5E2 model draws on sequence features which stem
from mismatched interfaces differently than on those from
matched interfaces, supporting our hypothesis that this
differentiation is not only physically indicated but also
backed by the model’s behaviour. Global SHAP values
suggest that the preference of the variable PAM nucleotide
at position 21 is contingent on the specific sgRNA–DNA
interface formed. We recover the preference for cytosine at
position 17 [35, 9] as well as position 20 [9, 28] found in lit-
erature for matched interfaces. However, for mismatched
interfaces, cytosine is disfavoured. Whilst we cannot re-
cover a strong preference for the variable PAM nucleotide
at position 21 for matched interfaces, we observe the pref-
erence for guanine reported in literature [35, 9, 28] for
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Figure 3: Left panel: 2D distance network representation of pairwise training performance using a Fruchterman-
Reingold force-directed algorithm. The force between two nodes (studies) is proportional to the third power of the
Spearman correlation when training on the larger and testing on the smaller of these studies. Study labels are
abbreviated for better visibility. Edge width represents pairwise training performance of the two adjacent studies
alone; bubble size indicates ’study importance’, i.e. the overall summed performance of a study. Close positioning
indicates good pairwise training performance. Studies have been coloured by majority cell line; all data has been
gained using the CNN S4E0 model which was shown to generalise fastest in terms of Spearman r in Figure S3. Right
panel: Composition of the cell lines making up each individual study (colours as in left panel) with sizes proportional
to the number of data points per study, including non-validated data points. Black circles act as a size legend.
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Figure 4: Comparison of models, using various methods, features and encodings. The models were tested on the held
out studies [30, 31, 32] and trained on the remaining studies within the crisprSQL dataset [14] (testing scenario 2).
Non-validated data points have been oversampled in the test set to match the class imbalance of 1:79.35 found in the
dataset I-1 from [11]. All models have been implemented in piCRISPR, where training and testing have been repeated
5 times to obtain mean and standard deviation as shown. For the underlying ROC and PRC curves see Figure S4.

mismatched interfaces. This supports the notion that a
concentration on guide-target interfaces rather than pure
base identities is necessary for off-target prediction, and
that deeper insight is required than the notion of a pre-
ferred base at a specific position. It therefore appears
necessary to consider mismatch interfaces together with
sequences in the desired genome, not just the sequence of
the putative guide, for sgRNA design.

Note that due to the low prevalence of non-NGG PAMs
in our dataset, as has been our choice when augmenting it
with putative off-targets, the model attributes little impor-
tance to the two 5’ GG base pairs. We observe the blind
spot of mismatch discrimination by the REC3 domain of
Cas9 around nucleotide 7 (see also Figure S9) which has
been reported in a recent cryo-EM structural study [36]
and results in reduced importance of sequence features
pertaining mismatched interfaces in this region. At nu-
cleotides 3–5 and 9–11, where mismatch detection by the
REC3 domain of Cas9 is high, we observe a mismatch-

induced reduction in cleavage activity. We further ob-
serve a PAM-distal ’preference zone’ and a PAM-proximal
’avoiding zone’ of mismatches when averaging over feature
importance values by nucleotide, which has been observed
in computational [9] as well as cryo-EM [36] studies.

The model draws heavily on two of the empirical energy
estimate features, i.e. the folding energy of the sgRNA
(EgRNAfold) and the remaining energy contributions dur-
ing the thermodynamic cycle (EDNA). Considering the
largest global SHAP value feature EDNA, we observe a
considerable correlation between its value and the SHAP
value attributed to it by the model (Figure S11).

When considering nucleosome positioning-related fea-
ture channels, we see that the 147 bp GC content around
each nucleotide has an overall positive influence on cleav-
age activity. This supports the prevailing notion in liter-
ature insofar as high GC content of the target sequence
is on average connected with a GC-rich guide, which have
been observed to cause off-target cleavage [35]. We fur-
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Figure 5: Base-pair resolved global SHAP values for the CNN S5E2 classification model. Negative global SHAP
values (red) indicate an average predicted decrease in guide activity for the respective feature. SHAP values have
been obtained on the held out studies [30, 31, 32] from the crisprSQL dataset. Mismatch channels (middle three
heatmaps) can be represented by the (off-)target and on-target protospacer nucleotides (left vertical axis) as well as
the physical base pair interfaces (right vertical axis), such that A mismT describes all configurations in which an adenine
on the target strand faces an adenine on the sgRNA. The bottom heatmap visualises the influence of our chosen set
of nucleosomal organisation features on cleavage activity. A bar representation of this can be found in Figure S9.

ther observe that the NuPoP Affinity score ranks higher
in terms of global SHAP value than most sequence fea-
tures and all established epigenetic features. The negative
influence of nucleosome affinity can be explained by the
reduced accessibility of high-affinity DNA regions, and is
observed strongly between nucleotides 5 and 19.

This also demonstrates the importance of nucleosome-
related features for cleavage prediction, and also supports
the notion of chromatin accessibility influencing cleavage
activity found in [37]. To our knowledge, this strong effect
of a more than 10 bp wide sequence context on genome-
wide off-target cleavage prediction has not been demon-
strated yet. Hints of it have been seen only for smaller
contexts and on-target efficacy prediction [38, 39]. In ad-
dition, our findings present an unprecedented example in
which information in the 147 bp sequence context has con-
siderable impact on the model. A similar analysis for the
RNN S4E3 model can be found in Figures S10 and S12.

Testing Scenario 3

Table 3 shows that the model performance, measured
by the mean squared error of predictions within a group
of data points that share both guide and target sequence,
is considerably decreased by introducing features beyond
sequence information (left column). We find that the low-
est error value is achieved when setting the literature-
standard epigenetic scores first introduced in [9] to a de-
fault value across data points, indicating that they might
not interact favourably with other features and not aid our
model’s absolute predictions. The resulting distribution of
MSEs is shown in Table 3. Setting nucleosomal features to
a default value leads to an increase in error value, support-
ing our notion that these contribute to model accuracy.

Looking at the relative pairwise difference, we observe
that introducing features beyond sequence leads to an in-
crease of the average proportion of true cleavage frequency
differences between points of differing biological environ-
ment which is captured by the model. Whilst the full
feature set (see Table 1) achieves the highest proportion,
setting the epigenetic scores to their default value only has
a limited impact on this value, further indicating that their
encoding of the biological environment of the cleavage site
is of limited importance to the model. In contrast, the
proportion drops considerably when setting nucleosomal
values to their defaults, supporting the notion that the
biological environment of the cut site is captured more ac-
curately by nucleosome positioning-related features (high-
lighted in Figure 1) than by the literature-standard epige-
netic features (greyed out).

Conclusion
Through careful probing of the model architecture, fea-

ture selection and encoding space we have identified a neu-
ral network-based model (CNN S5E2) which matches the
performance of state-of-the-art off-target cleavage predic-
tion algorithms in direct comparison. It is highly influ-
enced by nucleosome organisation-related features such as
histone binding affinity, which emphasises the importance
of the biological environment around the cleavage site. Us-
ing multiple independent approaches, we have shown that
the selection of nucleosome organisation-related features
we have newly applied to the task of cleavage prediction
informs model predictions more than the epigenetic scores
used to date. We have further provided an accessible,
user-friendly command line interface that allows users of
various disciplines to utilise all our models, even without
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Table 3: Benchmark quantities gained on the subset of duplicate guide-target sequence pairs (testing scenario 3)
using our CNN S5E2 regression model and the CRISPR-Net model [11]. For piCRISPR, we have weakened the model
by setting either the literature-standard epigenetic features (DNase, H3K4me3, CTCF, RRBS) or our newly utilised,
context-based nucleosome positioning-related features (NuPoP Affinity, Nucleotide BDM, GC count) to a default value
across all data points. The non-environmentally sensitive energy and sequence features were retained throughout. Left
column: mean squared error (MSE) between predicted cleavage score and ground truth cleavage activity, averaged
over all groups of identical guide-target sequence pairs. Right column: How faithful a model is to the differences in
biological environment for a given pair within such a group is measured by the average proportion of the true cleavage
activity difference which the model predicts. This is zero for purely sequence-based models and unity for an ideal
predictor. To emphasise small deviations which preserve the rank of predicted cleavage activities, we use the cubic
root as a sign-preserving nonlinearity and term this quantity relative difference. Right panel: Example distributions
of prediction MSE for the two models. All underlying distributions are shown in Figure S13.

providing a complete set of features. This all paves the
way towards the prediction of off-target sites which would
so far have gone unnoticed.

Our environmentally sensitive set of features reveals
several novel, promising pathways towards further im-
provement of off-target cleavage prediction. Going for-
ward, it could be fruitful to increase model complexity,
e.g. using a 2D convolutional (CNN) kernel to capture in-
teraction between features of a single nucleotide. Building
on the target-mismatch type encoding (E2), we plan to
make use of a 2D convolution kernel which would capture
the base-pair resolved interaction between sequence and
epigenetic markers as well as between sequence k-mers.

We further envision to replace the epigenetic informa-
tion of the guide, which so far only copies the epigenetic
information of the target DNA. This is clearly an unphys-
ical choice. Given that a synthetic sgRNA does by de-
sign not carry epigenetic markers, a one-hot encoded dot-
bracket representation of the sgRNA folding would be a
more suitable choice to capture its informative properties.
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