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Abstract

Pandemics with multi-strain have become a major concern. We introduce a new model
for assessing the connection between multi-strain pandemic and the mortality rate, basic
reproduction number, and the maximum of infected individuals. The proposed model
provides a general mathematical approach for representing multi-strain pandemics,
generalizing for an arbitrary number of strains. We show the proposed model fits well
with epidemiological historical data world health over a long period. From a theoretical
point of view, we show that the increasing number of strains increases logarithmically
the maximum number of infected individuals and the mean mortality rate. Moreover,
the mean basic reproduction number is statistically identical to the single, most
aggressive strain pandemic for multi-strain pandemics.

1 Introduction and Related Work 1

Humanity has experienced multiple types of disasters over the centuries [1–4]. One of 2

them is (local and global) pandemics that cause significant mortality [5]. Moreover, 3

recent studies show that the occurrence rate of new pandemics has increased in the last 4

century, resulting in an increased number of pandemics and their influence [6]. Some of 5

these pandemics exert a global influence such as HIV/AIDS that killed 680 thousand 6

individuals only in 2020 according to the World Health Organization (WHO)1 or the 7

COVID-19 pandemic that killed 4.5 million individuals and infected around 440 million 8

individuals worldwide during its first 18-months [7]. As a result, the need for 9

policymakers to be able to control a pandemic spread is becoming more relevant by the 10

day [8]. 11

Moreover, due to multiple socioeconomic processes, there is an increase in the speed 12

at which new infections are spread [9]. To be exact, globalization has facilitated strain 13

spread among countries through the growth of trade and travel [10]. Diseases are 14

usually caused by pathogenic agents, including viruses and bacteria, which can be 15

denoted as multiple variants, generally named strains. The presence of multi-strain for a 16

pathogen imposes a new challenge to control the spread of disease [11]. Since new 17

strains occur as it reproduces in new hosts, the large population of infected individuals 18

offers a fertile ground for new strains to appear [12,13]. For example, in the case of 19

1The full report is available online at: https://www.who.int/data/gho/data/themes/topics/topic-
details/GHO/data-on-the-size-of-the-hiv-aids-epidemic

November 11, 2021 1/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2021. ; https://doi.org/10.1101/2021.11.16.468823doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468823
http://creativecommons.org/licenses/by/4.0/


COVID-19, already in the first year and a half of the pandemic, four (globally common) 20

strains were detected [7]. 21

Most diseases have several pathogenic strains, which can make it difficult to fight the 22

disease and lead to rich dynamics. However, their dynamic properties have not been 23

adequately studied [11]. Hence, a better understanding of future pandemics with several 24

strains is a necessary step to ensure the ability of the global community in handling the 25

next pandemic. One approach to tackle this challenge is using 26

epidemiological-mathematical models, which allows us to simulate and investigate 27

multiple scenarios in a safe, cheap, and manageable environment. A large portion of 28

these epidemiological models are based on the Susceptible-Infectious-Removed (SIR) 29

model [14]. Over the years, researchers have introduced different extensions to the SIR 30

model in order to obtain a more accurate model for biological [15], economic [16,17] 31

spatial [18–20], and pandemic management [8, 21,22] properties of a particular disease 32

or socio-epidemiological scenario. These extensions are natural as the SIR disease 33

transmission model is derived assuming multiple strong assumptions. For example, the 34

SIR model assumes that the population is large and dense or that the infection rate is 35

constant [14]. The authors extend this basic model in many directions by relaxing some 36

assumptions. As such, the mathematical analysis quickly becomes significantly more 37

sophisticated [23]. 38

Cooper et al. [24] used the SIR model on the COVID-19 pandemic while relaxing the 39

assumption that the population is mixing homogeneously and that the total population 40

is constant in time. The authors show that the model has a fair fitting on six countries 41

(China, South Korea, India, Australia, USA, Italy). However, the model failed to 42

capture sharp changes in the dynamics due to the pandemic modifications on 43

governance intervention policies. 44

Another extension of the SIR model for the Polio pandemic is proposed by Agarwal 45

and Bhadauria [25]. The authors introduced the fourth stage - vaccinated individuals, 46

resulting in a SIRV model. The numerical simulation of the model results in a 47

promising outcome. Nonetheless, the evaluation is limited to a small size (up to a few 48

hundred individuals), and the generalization to larger populations can be less accurate 49

due to the increased chance that a strain occurs during the pandemic and changes its 50

dynamics [26]. 51

Similarly, Bunimovich-Mendrazitsky and Stone [27] proposed a two-age group, adult 52

and children, for the Polio pandemic spread. Using the model in [27], the extraordinary 53

jump in the number of paralytic polio cases that emerged at the beginning of the 20th 54

century can be explained. The model does not take into consideration some strains of 55

Polio [28] which results in an increased divergence from the actual dynamics over time. 56

In addition, one of the main extensions of the SIR model is the SIRD (D-Dead) 57

model, as this model takes is able to represent the reinfection process and the death of 58

individuals due to the pandemic [29–31]. This model better represents the 59

biological-clinical dynamics in human populations as the long-term immunity memory is 60

reduced over time making the individual susceptible again [32, 33]. We based our model 61

on this extension as it allows reinfection in several strains of the original strain. 62

The mentioned models and other models that extend the SIR model can fairly fit 63

and predict the course of a pandemic spread [34,35]. However, the models are not fitted 64

to capture sharp changes in the dynamics due to the pandemic modifications. One 65

reason is the lack of modelization of pandemics with multi-strain. 66

Indeed, the occurrence of pandemics with multiple mutations is common. For 67

example, Minayev and Ferguson [36] investigate the interaction between epidemiological 68

and evolutionary dynamics for antigenically variable pathogens. The authors proposed a 69

set of relatively simple deterministic models of the transmission dynamics of 70

multi-strain pathogens which give increased biological realism. However, these models 71

November 11, 2021 2/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2021. ; https://doi.org/10.1101/2021.11.16.468823doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468823
http://creativecommons.org/licenses/by/4.0/


assume clinical-epidemiological dynamics that hold only for a subset of pathogens with 72

cross-immunity of less than 0.4 [36]. In a similar manner, Dang et al. [37] developed a 73

multi-scale immuno-epidemiological model of influenza viruses including direct and 74

environmental transmission. The authors showed how two time-since-infection structural 75

variables outperform classical SIR models of influenza. During the modelization, they 76

used a within-host model that holds only for the influenza pandemic. In addition, 77

Gordo et al. [12] proposed a SIRS model with reinfection and selection with two strains. 78

The authors used a metapopulation of individuals where each individual is depicted as a 79

vector in the metapopulation. This model has been validated on the influenza pandemic 80

in the State of New York (USA), based on the genetic diversity of influenza gathered 81

between 1993 and 2006, showing supreme results compared to other SIR-based 82

models [12]. Nonetheless, the sophistication of the model is both in its strength and 83

shortcoming, from an analytical point of view, due to its stochastic and chaotic nature. 84

Moreover, the usage of multi-strain models that are used for specific pathogens is not 85

restricted to influenza. Marquioni and de Aguiar [38] proposed a model where a 86

pandemic starts with a single strain and the other strains occur in a stochastic manner 87

as a by-product of the infection. The authors fitted their model onto the COVID-19 88

pandemic in Chine showing improved results when strain dynamics are taken into 89

consideration compared to the other case [38]. Likewise, Khayar and Allali [39] 90

proposed a SEIR (E-exposed) model for the COVID-19 pandemic with two strains. The 91

authors analyzed the influence of the delay between exposure and becoming infectious 92

on several epidemiological properties. Furthermore, they proposed an extension to the 93

model (in the appendix of the manuscript) for multi-strain dynamics. In their model, an 94

individual can be infected only once and develop immunity to all strains [39]. In our 95

model, we relax this assumption, allowing individuals to be infected once by each strain. 96

Comparably, Gubar et al. [40] proposed an extended SIR model with two strains with 97

different infection and recovery rates. The authors considered a group of latent 98

individuals who are already infected but do not have any clinical symptoms. 99

Correspondingly, Aleta et al. [41] extended the SIRS model on a metapopulation 100

where individuals are distributed in sub-populations connected via a network of mobility 101

flows. They show that spatial fragmentation and mobility play a key role in the 102

persistence of the disease whose maximum is reached at intermediate mobility values. 103

Their model assumes a fixed number of locations (using a graph-based model) such that 104

each location has a unique strain-like simulation. Furthermore, Di Giamberardino et 105

al. [42] proposed a multi-group model formed by interconnected SEIR-like structures 106

which include asymptomatic infected individuals. The authors fitted the data to the 107

COVID-19 pandemic in Italy to study the influence of different IPs on the pandemic 108

spread. The interconnection between the groups in the model is represented by the 109

mobility of individuals between them. The model represents somewhat multi-strains as 110

each group has different epidemiological parameter values and the transformation 111

between them. However, the authors do not handle the case where an individual has 112

been infected by one strain and later infected by others which are known from multiple 113

clinical and biological studies [43–46]. 114

In this research, we developed an extension of the SIRD-based model which allows 115

an arbitrary number of strains |M | that originated from a single strain and is generic for 116

any type of pathogen. The model allows each strain to have its unique epidemiological 117

properties. In addition, we developed a computer simulation that provides an in silico 118

tool for evaluating several epidemiological properties such as the mortality rate, max 119

infections, and average basic reproduction number of a pandemic. The proposed model 120

allows for a more accurate investigation of the epidemiological dynamics while keeping 121

the data required to use the model relatively low. 122

This paper is organized as follows: In Section 2, we introduce our multi-strain 123
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epidemiological model. Based on the model, we present a numerical analysis of three 124

epidemiological properties as a function of the number of strains (|M |). In Section 3, we 125

present the implementation of the model for the case of two strains (|M | = 2) and 126

provide an analytical analysis of the stable equilibria states of the model and a basic 127

reproduction number analysis. Afterward, we show the ability of the model to fit 128

historical epidemiological data known to have two strains. In Section 4, we discuss the 129

main advantages and limitations of the model and propose future work. 130

2 Multi-Strain Model 131

The multi-strain epidemiological model considers a constant population with a fixed 132

number of individuals N . We assume a pandemic has M := {1, . . . ,m} strains. 133

Moreover, two options are possible: a) strains [2, . . .m] are mutations arising from one 134

pathogen as a result of the mutation process; b). the disease is characterized by the 135

emergence of m pathogenic strains but an individual cannot be infected by more than 136

one strain of the virus at a time. 137

Each individual belongs to one of the three groups. 1) Infectious with strain i ∈ M 138

and history of recoveries J ∈ P (M) (the power set of the strain and its strain set) 139

represented by RJIi, which maps to the infection (I) state in the SIRD model; 2) 140

Recovered with history J ∈ P (M) represented by RJ , which maps to the recovered (R) 141

state in the SIRD model; and 3) Dead (D) such that 142

N = ΣJ∈P (M\{i}),i∈M (RJIi(t)) + ΣJ∈P (M)(RJ(t)) +D(t), (1)

where i ∈ M is the index of a strain and J ∈ P (M) is the set of strains an individual 143

already suffered from. For example, R∅ is the group of individuals that do not have a 144

recovery history and are susceptible to all |M | strains which is a private case of RJ 145

where J = ∅, which is isomorphic to the susceptible (S) state in the SIRD model. The 146

proposed model for |M | = 1 is isomorphic to the SIRD model (the proof is provided in 147

the supplementary material, Section S2). A schematic transition between disease stages 148

of an individual is shown in Fig. 1. 149
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Fig 1. Schematic view of transition between disease stages. The red arrows indicates
that individuals from the source stage can transferred to the dead stage. Individuals in
RJIi stages are necessarily transferred to the respective RJ∪i stages (or dead stage),
while individuals in the RJ stages move to RJIl stage if they are infected by an
individual that is infectious in strain l ∈ M .
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Individuals in the Recovered (RJ) group have immunity for the strains k ∈ J and 150

are susceptible to the infection strains M\J . When an individual in this group is 151

exposed to a strain i ∈ M\J , the individual is transferred to the Infectious with history 152

of recoveries group (RJIi) at a rate βJ,i. The individual stays in this group on average 153

γJ,i days, after which the individual is transferred to the Recovered group (RJ∪{i}) or 154

the Dead group (D). Therefore, at a rate of (1− ϕJ\i), of infection by strain i with a 155

history of recoveries from strains J , individuals remain seriously ill or die while others 156

recover. The recovered are again healthy, no longer contagious, and immune from future 157

infection of the same strain. The epidemiological dynamics are described in Eqs. (2-4). 158

In Eq. (2), dRJIi(t)
dt is the dynamical amount of individuals that recovered from a 159

group of strains J and are infected with a strain i over time. It is affected by the 160

following two terms. First, individuals who recovered from group J of strains become 161

infected with strain i, with rate βJ,i. These individuals can be infected by any 162

individual with a strain i who has recovered from any group K of strains so that i ̸∈ K. 163

Second, individuals recover from strains J ∪ {i} with rate γJ,i. For each strain i, the 164

group i can be any subgroup of the group M , so that i ̸∈ J . 165

dRJIi(t)

dt
= −γJ,iRJIi(t) + βJ,iRJ(t)

∑
K∈P (M),i̸∈K

RKIi(t). (2)

In Eq. (3), dRJ (t)
dt is the dynamical amount of individuals that recovered from a 166

group of strains J ∈ P (M) over time. It is affected by the following two terms. First, 167

for each strain i ∈ J , an individual who has recovered from group J\{i} of strains and 168

is infected with strain i, recovers at rate γJ\{i},i with probability of ϕJ\{i},i. Second, 169

individuals infected by strain i with rate βJ,i. These individuals can be infected by any 170

individual with a strain i who has recovered from any group K of strains, so that i ̸∈ K. 171

dRJ(t)

dt
=

∑
i∈J

(
γJ\{i},iϕJ\{i},iRJ\{i}Ii(t)

)
−

∑
i∈M\J

(
βJ,iRJ(t)

∑
K∈P (M),i̸∈K

RKIi(t)
)
.

(3)

In Eq. (4), dD(t)
dt is the dynamical amount of dead individuals over time. For each 172

strain i, and for each group J\{i}, infected individuals that do not recover are dying at 173

rate γJ\{i},i with the complete probability (1− ϕJ\{i},i). 174

dD(t)

dt
=

∑
i∈M,J∈P (M)

γJ\{i},i(1− ϕJ\{i},i)RJ\{i}Ii(t). (4)

The dynamics of Eqs. (2-4) are summarized in Eq. (5). 175

dRJIi(t)
dt = −γJ,iRJIi(t) + βJ,iRJ(t)

∑
K∈P (M),i̸∈K RKIi(t),

dRJ (t)
dt =

∑
i∈J

(
γJ\{i},iϕJ\{i},iRJ\{i}Ii(t)

)
−

∑
i∈M\J

(
βJ,iRJ(t)

∑
K∈P (M),i̸∈K RKIi(t)

)
,

dD(t)
dt =

∑
i∈M,J∈P (M) γJ\{i},i(1− ϕJ\{i},i)RJ\{i}Ii(t),

(5)
The initial conditions of Eq. (5) are defined for the beginning of a pandemic as follows: 176

R∅(0) = N −m, ∀i ∈ M : R∅Ii(0) = 1,
∀J ∈ P (M)\∅ ∧ i ∈ M\J : RJ(0) = RJIi(0) = 0, D(0) = 0.

(6)
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2.1 Epidemiological properties 177

Based on the proposed model, and since for all the cases where |M | > 2 it is extremely 178

hard (or even impossible) to obtain an analytical result, we evaluated three important 179

epidemiological properties to see the influence of the number of strains on the pandemic 180

spread: mean basic reproduction number, mortality rate, and a maximum number of 181

the infectious. Formally, these properties can be defined as follows. 182

First, the mean basic reproduction number is the mean basic reproduction number 183

overtime during the course of the pandemic. Therefore, it takes the form: 184

E[R0(t)] := E[∀J ∈ P (M) : Σi∈M

(RJIi(t+ 1)−RJIi(t)

RJ,i(t+ 1)−RJ,i(t)

)
].

Second, the mortality rate is defined as the number of deaths due to the pandemic 185

divided by the number of infections at some period of time. If not stated otherwise, we 186

assume the mortality rate refers to the entire duration of the pandemic. Hence, it takes 187

the form: 188

mortality rate(t0, t1) :=
D(t1)−D(t0)

ΣJ∈P (M)|J | ∗ (RJ(t1)−RJ(t0)
.

Finally, the maximum number of infectious refers to the cumulative number of 189

infections that occur during the pandemic. Thus, it takes the form: 190

maximum number of infectious(t0, t1) := max
t∈[t0,t1]

(
∀J ∈ P (M) : Σi∈M (RJIi(t))

)
.

In addition, we define the most aggressive strain using the following metric: a strain 191

k is considered more aggressive than strain l if and only if: 192

||[∀J ∈ P (M) : (βJ,k, 1− γJ,k, 1− ϕJ,k)]|| > ||[∀J ∈ P (M) : (βJ,l, 1− γJ,l, 1− ϕJ,l)]||.

2.2 Numerical simulation 193

Using numerical simulation we aim to study the connection between the number of 194

strains |M | and the proposed epidemiological properties. We numerically solved the 195

model presented in Eq. (5) for the case where |M | ∈ [1, . . . , 10] using the fourth-order 196

Runge-Kutta algorithm [47]. The model parameters are generated randomly as follows. 197

The infection rates βJ,i are uniformly distributed in [0.01, 0.10]; the recovery rates γJ,i 198

are uniformly distributed in [0.03, 0.33]; and the recovery probabilities ϕJ,i are 199

uniformly distributed in [0.90, 0.99] for each strain. The ranges were picked to simulate 200

a large space of possible pandemics, without taking into consideration biological 201

properties associated with cross-immunity between strains. In addition, we assume the 202

population size is 10 million individuals to approximate (in order of magnitude) a 203

European metropolitan area. The simulation begins with one person getting infected by 204

each strain. In addition, it is assumed that no individuals have recovered or died as a 205

result of the pandemic. Formally, the initial conditions take the form: 206

R∅(0) = N−|M |, ∀i ∈ M : R∅Ii(0) = 1, D(0) = 0, ∀J ∈ P (M)\∅, i ∈ M : RJIi = RJ = 0.

Moreover, due to the stochastic nature of the simulation originating in the large ranges 207

of values allocated to the model parameters, the simulation is repeated 1000 times, and 208

the mean ± standard division is presented. Using this generation we compute the 209

connection between |M | and the mean basic reproduction number, max infected 210

individuals, and mean mortality rate. 211

The mean basic reproduction number (E[R0]) has been evaluated for each simulation, 212

divided into two cases: the case where strain has unique parameter values and the case 213
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Fig 2. The mean base reproduction number (E[R0(t)]) as a function of the number of
strains (|M |). The black (with circle markers) line indicates the baseline dynamics of
the simulation where each strain has a unique parameter values. On the other hand, the
red (with triangle markers) line indicates the case where all the strains parameters
values have been replaced with the one of the most aggressive strain.

where the parameters for each strain are replaced with the parameter value of the most 214

aggressive strain, as defined in Section 2.1, as shown in Fig. 2. 215

The maximum number of infected individuals as a function of the number of strains 216

(|M |) has been computed and shown in Fig. 3. The solid (black) line with the dots 217

represents the numerically calculated values with one standard deviation. Moreover, the 218

fitting function is calculated using the least mean square (LMS) method [48] and shown 219

as the dashed (blue) line. In order to use the LMS method, one needs to define the 220

family function approximating a function. The family function that has been chosen is 221

f(m) = p1log(m) + p2, resulting in 222

E[R0](m) = 0.103log(m) + 0.068. (7)

The fitting function was obtained with a coefficient of determination R2 = 0.79. 223

The mean mortality rate as a function of the number of strains has been computed 224

and presented in Fig. 4. Similarly, the dots are the calculated values from the simulator 225

and the dotted line is a fitting function that is computed using the LMS with the family 226

function f(m) = p1log(m) + p2, resulting in 227

E[R0](m) = 0.0341log(m) + 0.0124. (8)

The fitting function was obtained with a coefficient of determination R2 = 0.89. 228
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Fig 3. Maximum number of infectious individuals at the same time as a function of the
number of strains (|M |).

3 Two Strains Model 229

The two strains epidemiological model considers a constant population with a fixed 230

number of individuals N . We assume a pandemic has two strains M = {1, 2}. We 231

define a system of eight ordinary differential equations (ODEs) corresponding to eight 232

possible epidemiological states: susceptible (R∅), infected by strain 1 (R∅I1), infected by 233

strain 2 (R∅I2), recovered from strain 1 (R{1}), recovered from strain 2 (R{2}), 234

recovered from strain 1 and infected by strain 2 (R{1}I2), recovered from strain 2 and 235

infected by strain 1 (R{2}I1), recovered from both strains (R{1,2}), and dead (D). The 236

full explanation of how one obtains the model is provided in the supplementary 237

materials, Section S1. A schematic transition between disease stages of an individual for 238

the case of |M | = 2 is shown in Fig. 5. Thus, the model for two strains is described by 239

eight equations as follows. 240
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Fig 4. Mortality rate as function of the number of strains (|M |).

dR∅I1(t)
dt = β∅,1(R∅I1(t) +R{2}I1(t))R∅(t)− γ∅,1R∅I1(t),

dR{2}I1(t)

dt = β{2},1(R{2}I1(t) +R∅I1(t))R{2}(t)− γ{2},1R{2}I1(t),

dR∅I2(t)
dt = β∅,2(R∅I2(t) +R{1}I2(t))R∅(t)− γ∅,2R∅I2(t),

dR{1}I2(t)

dt = β{1},2(R{1}I2(t) +R∅I2(t))R{1}(t)− γ{1},2R{1}I2(t),

dR∅(t)
dt = −R∅(t)

(
β∅,1(R∅I1(t) +R{2}I1(t)) + β∅,2(R∅I2(t) +R{1}I2(t))

)
,

dR{1}(t)

dt = γ∅,1ϕ∅,1R∅I1(t)− β{1},2(R{1}I2(t) +R∅I2(t))R{1}(t),

dR{2}(t)

dt = γ∅,2ϕ∅,2R∅I2(t)− β{2},1(R{2}I1(t) +R∅I1(t))R{2}(t),

dR{1,2}(t)

dt = γ{2},1ϕ{2},1R{2}I1(t) + γ{1},2ϕ{1},2R{1}I2(t),

dD(t)

dt
= γ∅,1(1− ϕ∅,1)R∅I1(t) + γ{2},1(1− ϕ{2},1)R{2}I1(t)

+γ∅,2(1− ϕ∅,2)R∅I2(t) + γ{1},2(1− ϕ{1},2)R{1}I2(t).

(9)

The initial conditions of Eq. (9) are defined for the beginning of a pandemic as 241
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follows: 242

R∅(0) = N − 2, R∅I1(0) = 1, R∅I2(0) = 1,
D(0) = R{1}(0) = R{2}(0) = R{1,2}(0) = R{1}I2(0) = R{2}I1(0) = 0

(10)

Moreover, 243

N = R∅ +R∅I1 +R∅I2 +R{1}I2 +R{2}I1 +R{1} +R{2} +R{1,2} +D. (11)

We use a model that does not allow temporary cross-immunity and without increased 244

susceptibility to the second infection. 245

R
Ø

R
Ø
I1

R
Ø

R
Ø
I2

R
{1}

R
Ø

R
{2}

D
R
{1}
I2

R
{2}
I1

R
{1,2}

Fig 5. Schematic view of transition between disease stages in the case where |M | = 2.

For |M | = 2, we are interested in the equilibrium states of the model, especially 246

stable states in which a pandemic can persist for a long time. In addition, we 247

investigate the basic reproduction number (R0), as it is an indicator of a pandemic 248

outbreak (R0 > 1), and is considered the main characteristic of a pandemic. 249
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3.1 Equilibria 250

The equilibrium state of the model is the state in which the gradient is zero [49]. 251

Therefore, Eq. (12) takes the form: 252

−R∅
(
β∅,1(R∅I1 +R{2}I1) + β∅,2(R∅I2 +R{1}I2)

)
= 0,

β∅,1(R∅I1 +R{2}I1)R∅ − γ∅,1R∅I1 = 0,

β∅,2(R∅I2 +R{1}I2)R∅ − γ∅,2R∅I2 = 0,

γ∅,1ϕ∅,1R∅I1 − β{1},2(R{1}I2 +R∅I2)R{1} = 0,

γ∅,2ϕ∅,2R∅I2 − β{2},1(R{2}I1 +R∅I1)R{2} = 0,

β{1},2(R{1}I2 +R∅I2)R{1} − γ{1},2R{1}I2 = 0,

β{2},1(R{2}I1 +R∅I1)R{2} − γ{2},1R{2}I1 = 0,

γ{2},1ϕ{2},1R{2}I1 + γ{1},2ϕ{1},2R{1}I2 = 0,

γ∅,1(1− ϕ∅,1)R∅I1 + γ{2},1(1− ϕ{2},1)R{2}I1

+γ∅,2(1− ϕ∅,2)R∅I2 + γ{1},2(1− ϕ{1},2)R{1}I2 = 0.

(12)

From Eq. (12), the pandemic-free equilibria is obtained where 253

R∅I
∗
1 = R∅I

∗
2 = R{1}I

∗
2 = R{2}I

∗
1 = 0,

because in this state, there are no more infected individuals which means all strains 254

have gone extinct. Therefore, the equilibria states take the form: 255

R∗
∅ = µ1, R

∗
{1} = µ2, R

∗
{2} = µ3, R

∗
1,2 = µ4, D

∗ = N − Σ4
i=1µi. (13)

According to [49], this set of states (Eq. (13)) is the only asymptotically stable 256

equilibria of the model. Nonetheless, the equilibria states where strain i = 1 is over are 257

obtained where 258

R∅I
∗
1 = R{2}I

∗
1 = 0.

These equilibria have an epidemiological interest as the extinction of one of two strains 259

can be a turning point in pandemic management policies. Thus, is assumes without loss 260

of generality that i = 1. Hence, from the fourth and sixth equations, one obtains that 261

RI∗2 = R{1}I
∗
2 = 0.

Accordingly, the system converges to the pandemic-free equilibria. 262

In addition, while other equilibria states theoretically exist (by relaxing the previous 263

assumptions), from an epidemiological point of view, the unstable equilibria are 264

obtained in the middle of the pandemic. It is possible to see that it is enough that an 265

individual may recover in order to diverge from each one of these equilibria states. As 266

such, these equilibria obtained, if any, do not provide a meaningful point in the 267

pandemic’s dynamics. 268
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3.2 Basic reproduction number 269

The basic reproduction number, R0, is defined as the expected number of secondary 270

cases produced by a single (typical) infection in a completely susceptible population [50]. 271

In the case of a SIR-based model, the basic reproduction number indicates an epidemic 272

outbreak if R0 > 1 or not if R0 < 1. 273

To find the basic reproduction number for two strains, we use the Next Generation 274

Matrix (NGM) approach [51]. First, we compute the new infections matrix 275

F =


β∅,1R∅ 0 β{2},1R∅ 0

0 β∅,2R∅ 0 β{1},2R∅
β{2},1R{2} 0 β{2},1R{2} 0

0 β{1},2R{1} 0 β{1},2R{1}

 . (14)

Afterward, we compute the transfers of infections from one compartment to another 276

matrix 277

V =


γ∅,1 0 0 0
0 γ∅,2 0 0
0 0 γ{1},2 0
0 0 0 γ{2},1

 → V−1 =


1/γ∅,1 0 0 0

0 1/γ∅,2 0 0
0 0 1/γ{1},2 0
0 0 0 1/γ{2},1

 .

(15)
Now, R0 is the dominant eigenvalue of the matrix [51]. 278

G = FV−1 =


β∅,1R∅
γ∅,1

0
β{2},1R∅
γ{1},2

0

0
β∅,2R∅
γ∅,2

0
β{1},2R∅
γ{2},1

β{2},1R{2}
γ∅,1

0
β{2},1R{2}

γ{1},2
0

0
β{1},2R{1}

γ∅,2
0

β{1},2R{1}
γ{2},1

 (16)

which is obtained from the root of the representative polynomial: 279

0 = λ4 − λ3(
β{2},1
γ{1},2

+
β{1},2
γ{2},1

+
β∅,1
γ∅,1

)+

λ2(2
β∅,2
γ∅,2

β{2},1
γ{1},2

− β∅,2
γ∅,2

+
β{1},2
γ{2},1

β∅,2
γ∅,2

− β{1},2
γ{2},1

β{1},2
γ∅,2

+
β{2},1
γ{1},2

β∅,1
γ∅,1

+
β{1},2
γ{2},1

β∅,1
γ∅,1

− β{2},1
γ{1},2

)+

λ(−β∅,2
γ∅,2

2 β{2},1
γ{1},2

+
β{1},2
γ{2},1

β{1},2
γ∅,2

β{2},1
γ{1},2

− 2
β∅,1
γ∅,1

β∅,2
γ∅,2

β{2},1
γ{1},2

+
β∅,1
γ∅,1

β∅,2
γ∅,2

− β∅,1
γ∅,1

β∅,2
γ∅,2

β{1},2
γ{2},1

+
β∅,1
γ∅,1

β{1},2
γ{2},1

β{1},2
γ∅,2

+
β{1},2
γ{2},1

β{2},1
γ{1},2

+
β∅,2
γ∅,2

β{2},1
γ{1},2

)+

β∅,1
γ∅,1

β∅,2
γ∅,2

2 β{2},1
γ{1},2

− β∅,1
γ∅,1

β{1},2
γ{2},1

β{1},2
γ∅,2

β{2},1
γ{1},2

− β∅,2
γ∅,2

β{1},2
γ{2},1

+
β{2},1
γ∅,1

β{2},1
γ{1},2

β{1},2
γ{2},1

β{1},2
γ∅,2

.

(17)
Using the Matlab’s (version 2021b) symbolic programming, one is able to obtain the R0. 280

Just find the roots of the polynomial shown in Eq. (17) and take the biggest one. 281

This approach cannot be generalized for more than two strains |M | > 2 as the NGM 282

will be of size k × k where k = Σ
|M |
i=1

(
n
x

)
. Namely, the size of the NGM is larger than 283

four and according to Galois theory [52] and based on Abel–Ruffini theorem [53], the 284

roots of the representative polynomial of the NGM cannot be obtained using radicals. 285

This means one cannot analytically find the eigenvalues of the NGM which are used to 286

obtain R0. 287

3.3 Model validation 288

The model validation is divided into two phases: parameter estimation and historical 289

fitting. The parameter estimation method allows to use of the proposed model on a 290

specific pandemic and the historical fitting shows the ability of the proposed model to 291

approximate real pandemic spread dynamics given the obtained parameters. 292
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3.3.1 Parameter estimation 293

The proposed epidemiological model parameter for the case |M | = 2 is obtained by 294

fitting the proposed model onto the historical data from April 1 (2020) to December 1 295

(2020) of UK by the WHO [7], using the fourth-order Runge-Kutta [47] and gradient 296

descent [54] algorithms. These dates are picked as the population in the UK during this 297

period had not been vaccinated against the COVID-19 disease yet and a second strain 298

(i.e., the COVID-19 UK Variant - B.1.1.7) appeared according to [55], which based their 299

analysis on clinical testing and later reverse engineering of the mutation appearance [56]. 300

Both point to the same period while do not have a full agreement on the specific dates 301

of the appearance of the mutation. Specifically, we randomly guess the values of the 302

model’s parameters, solving the system of ODEs using the fourth-order Runge-Kutta 303

method and computing the Gaussian (L2) distance from the historical data. In 304

particular, we used the daily number of infection, recovered, and deceased individuals. 305

As such, the fitness function takes the form: 306

F (H,P )[t0,tf ] :=

√
Σ

tf
t=t0

(
(H[S](t)− P [S](t))2 + (H[R](t)− P [R](t))2 + (H[I](t)− P [I](t))2

)
,

(18)
where H[X](t) is the historical size of the population at the epidemiological state X at 307

time t and P [X](t) is the model’s prediction size of the population at the 308

epidemiological state X at time t. The model’s P [I] and P [R] refer to all states for the 309

form RjIi and Rj , respectively. 310

Afterward, we repeated this process while modifying the value of a single parameter 311

by some pre-defined value δ = 0.01, obtaining a numerical gradient. At this stage, we 312

used the gradient descent algorithm in order to find the values that minimize the 313

model’s L2 distance from the historical data using Eq. (18). The process is stopped 314

once the gradient’s (L1) norm is smaller than some pre-defined threshold value ϵ = 0.1. 315

The entire process is repeated r = 100 times and the parameter values that are obtained 316

most often are decided to be the model’s parameter value. The values for (δ, ϵ, r) are 317

manually picked. A schematic view of the fitting method is presented in Fig. 6. 318

Fig 6. A schematic view of the fitting method.

3.3.2 Historical fitting 319

In order to numerically evaluate the ability of the proposed model to fit real 320

epidemiological data, we decided to simulate the COVID-19 pandemic in the United 321

Kingdom (UK). This case is chosen due to the availability of epidemiological data and 322

since a COVID-19 strain is known to originate in the UK [7,57]. Therefore, we 323

computed the parameter values, assuming the initial conditions taking the form: 324

R∅(0) = 67200000, R∅I1(0) = 100, R∅I2(0) = 1, D(0) = 0

R{1}(0) = R{2}(0) = R{1,2}(0) = R{1}I2(0) = R{2}I1(0) = 0.
(19)
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where R∅(0) = 67200000 to represent the size of the UK population in the beginning of 325

the pandemic. A summary of the obtained parameter values is shown in Table 1, such 326

that 27% of the random parameter value initial conditions converged to the values with 327

dL2 = 0.089. Namely, the model has a daily mean square error of 8.9%. 328

Parameter Definition Symbol Value
Infection rate of the strain (i = 1) [1] β∅,1 0.04
Infection rate of the strain (i = 2) [1] β∅,2 0.07
Infection rate of the strain (i = 2), after recovery from the
strain (i = 1) [1]

β{1},2 0.01

Infection rate of the strain (i = 1), after recovery from the
strain (i = 2) [1]

β{2},1 0.02

The average duration that is takes for an individual to recover
from the strain (i = 1) in days [t−1]

γ∅,1 0.08

The average duration that is takes for an individual to recover
from the strain (i = 2) in days [t−1]

γ∅,2 0.06

The average duration that is takes for an individual to recover
from the strain (i = 1) after recovering from the strain (i = 2)
in days [t−1]

γ{2},1 0.21

The average duration that is takes for an individual to recover
from the strain (i = 2) after recovering from the strain (i = 1)
in days [t−1]

γ{1},2 0.17

The probability an infected individual will recover from the
strain (i = 1) [1]

ϕ∅,1 0.98

The probability an infected individual will recover from the
strain (i = 2) [1]

ϕ∅,2 0.96

The probability an infected individual will recover from the
strain (i = 2) after recovering from the strain (i = 2) [1]

ϕ{1},2 0.99

The probability an infected individual will recover from the
strain (i = 3) after recovering from the strain (i = 1) [1]

ϕ{2},1 0.99

Table 1. A summary of the model parameters and values for the case of |M | = 2,
obtained from the fitting process to the historical WHO COVID-19 data from April 1
(2020) to December 1 (2020).

A fitting dynamics between the historical data (circle, black) and the model’s 329

prediction (axes, blue) is shown in Fig. 7, where the x-axis describes the time from 330

September 1 (2020) to December 1 (2020), and the y-axis describes the daily basic 331

reproduction number (R0). The historical basic reproduction number (R0) from WHO 332

is computed using the following formula R0(t) :=
I(t+1)−I(t)
R(t+1)−R(t) . 333

4 Discussion 334

We have developed a mathematical model and a computer simulation aiming at 335

establishing the connections between the number of pandemic disease strains and the 336

pandemic’s spread in the population for any pathogen, under the epidemiological SIRD 337

model. Unlike the previous modeling approaches [12,38,40], we have extended the 338

strain diversity for any arbitrary number (m) and did not introduce any 339

pathogen-specific attributes, keeping the model as generic as possible. 340

We have shown that for the case of only two strains (e.g., |M | = 2), the only stable 341

equilibria states are when the pandemic is over for both strains 342

(R∅I
∗
1 = R∅I

∗
2 = R{1}I

∗
2 = R{2}I

∗
1 = 0), as shown in Section 3.3.2. The result of the 343
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Fig 7. Daily R0 in UK between September 1 and December 1 (2020) comparison
between the historical data (specifically, the daily number of infected, recovered, and
dead individuals) and the proposed model predictions (for |M | = 2). The gray
horizontal line indicates R0 = 1. The model’s parameter values are shown in Table 1.

equilibrium analysis is that the pandemic-free states are stable only when the epidemics 344

of the two strains cease; that is, after the end of the general pandemic (Eq. (13)). 345

Moreover, an analytical computation of the basic reproduction number (R0) requires 346

information on infections between individuals with different strains, which is not 347

realistically available. Therefore, an immediate result of the model is that once a 348

pandemic developed secondary strains, a numerical and statistical approximation of R0 349

is left to be the only feasible approach. 350

In addition, the proposed model is evaluated on the COVID-19 pandemic (for the 351

case of the UK) and has shown promising ability to fit a long period of historical data 352

with multi-strain (eight months, 8.9% daily mean square error). A prediction of the last 353

two months of this period is shown in Fig. 7, based on the obtained model’s parameter 354

values which are presented in Table 1. Strain i = 1 is mapped to the original strain of 355

COVID-19. Since at the beginning of the pandemic, this was only a single strain, the 356

measured epidemiological values are necessarily associated with this strain. This is not 357

the case for measurements of periods where two or more strains existed. The proposed 358

model captures a general trend of decreasing R0 during this period while not matching 359

the data closely as it does not take into consideration other social and epidemiological 360

dynamics intentionally, allowing analytical analysis to be considered. However, future 361

extensions of the proposed model should be able to predict more closely historical 362

pandemic events. 363

According to Voinsky et al. [58], the average recovery rate of strain (i = 1) is 0.0714 364

while the model predicted γ∅,1 = 0.08 (where the approximation size is δ = 0.01), as 365

presented in Table 1. In addition, according to WHO [7], the average mortality rate of 366
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this period is ∼ 0.0138 while the model predicted that the average mortality rate from 367

this strain is 1− ϕ∅,1 = 0.02. Thus, while the model is simple, it is able to capture the 368

biological and epidemiological properties of the pandemic. 369

Furthermore, we evaluated the influence of the number of strains on the mean basic 370

reproduction number (E[R0]), mortality rate, and a maximum number of infected 371

individuals, as shown in Figs. 2, 4, and 3, respectively. We show that the basic 372

reproduction number is upper bounded by taking into consideration only the most 373

aggressive strain. Formally, we perform a paired two-tail T-test in order to evaluate if 374

the processes differ in a statistically significant way with α = 0.05 and obtain that 0 is 375

not in the confidence interval of the statistical test. As such, the most aggressive strain 376

approximation to the pandemic can be used as an upper boundary for the mean basic 377

reproduction number. An immediate outcome is that the proposed model is upper 378

bounded by the SIRD model with the slight modification that each individual can be 379

infected up to |M | times. This means one can get a statistically similar result (on 380

average) to a pandemic with |M | strains by using a simpler model that requires less 381

biological and epidemiological data compared to the proposed model. These results 382

agree with the analysis performed by Dang et al. [37] on a multi-strain model for 383

influenza. 384

Based on Eq. (7), the maximum number of infected individuals is growing in a 385

logarithmic manner to the number of strains when the latter occurs simultaneously. In a 386

similar manner, based on Eq. (8), the mortality rate is growing in a logarithmic manner 387

to the number of strains when the latter occur simultaneously. We numerically show in 388

Figs. 3 and 4 that the epidemiological properties which indicate the severity of the 389

pandemic in a well-mixed population grow in a logarithmic manner as a function of the 390

number of strains (|M |). This connection indicates that the first few strains make a 391

relatively large contribution to the mortality and pandemic spread dynamics, but as the 392

number of strains grows, each strain contributes less to these numbers. Policymakers 393

can take advantage of this link when planning intervention policies to contain the 394

spread of a pandemic, given that new strains can emerge during pathogen mutation. 395

The code developed for this model is publicly available as an open source2. 396

Several possible future research directions emerge from the proposed initial modeling. 397

First, one can introduce a fixed delay parameter to the occurrence of strains, 398

investigating the influence of this parameter on the epidemiological spread. Second, one 399

can take into consideration more detailed biological settings, assuming the stochastic 400

occurrence of the strains from some distribution. Both directions aim to better 401

represent a real pandemic where several strains do not exist from the beginning of the 402

pandemic. Moreover, one can introduce a similarity matrix between the strains as they 403

are mutations of an original strain, which are reflected by the immunity response to 404

re-infection of different strains or a cross-immunity response. In the same direction, 405

adding an Exposed state would make the proposed model more biologically accurate, 406

since most strains have an incubation period before the host becomes infectious. The 407

multi-strain model is a theoretical platform that will help guide the decision-making 408

process in the event of a pandemic crisis while providing the forecast of the results of 409

the selected course of action. 410
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