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Abstract

Stimulus-induced narrow-band gamma oscillations (30–70 Hz) in human electro - encephalograph (EEG)1

have been linked to attentional and memory mechanisms and are abnormal in mental health conditions2

such as autism, schizophrenia and Alzheimer’s Disease. This suggests that gamma oscillations could3

be valuable both as a research tool and an inexpensive, non-invasive biomarker for disease evaluation.4

However, since the absolute power in EEG decreases rapidly with increasing frequency following a “1/f”5

power law, and the gamma band includes line noise frequency, these oscillations are highly susceptible to6

instrument noise. Previous studies that recorded stimulus-induced gamma oscillations used expensive7

research-grade EEG amplifiers to address this issue. While low-cost EEG amplifiers have become popular8

in Brain Computer Interface applications that mainly rely on low-frequency oscillations (< 30 Hz) or9

steady-state-visually-evoked-potentials, whether they can also be used to measure stimulus-induced gamma10

oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier (OpenBCI)11

and a traditional, research-grade amplifier (Brain Products GmbH) in male (N = 6) and female (N = 5)12

subjects (22–29 years) while they viewed full-screen static gratings that are known to induce gamma13

oscillations. OpenBCI recordings showed gamma response in almost all the subjects who showed a gamma14

response in Brain Products recordings, and the spectral and temporal profiles of these responses in alpha15

(8–13 Hz) and gamma bands were highly correlated between OpenBCI and Brain Products recordings.16

These results suggest that low-cost amplifiers can potentially be used in stimulus induced gamma response17

detection, making its research, and application in medicine more accessible.18

Introduction19

Gamma rhythms are narrow-band oscillations in the 30-70 Hz range of the brain’s electrical activity [1].20

They are associated with higher cognitive processes like attention [2, 3, 4], working memory [5] and feature21

binding [6], and are also found to be abnormal in mental health conditions like schizophrenia [7, 8], autism22
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[9] and Alzheimer’s Disease (AD) [10]. Gamma oscillations can be induced in the occipital region of the23

brain when appropriate visual stimuli such as bars and gratings are presented to the subjects [11, 12],24

and such stimulus-induced gamma oscillations have been shown to decrease with healthy ageing [13] and25

with onset of AD [14]. Further, some studies have suggested a neuroprotective effect of entraining brain26

oscillations in the gamma range using sensory stimuli in rodent models of AD [15, 16, 17].27

Power of EEG signals falls rapidly with frequency, following a 1/f power-law distribution [18]. Therefore,28

higher frequencies have much lower absolute power and are more susceptible to instrument noise. Mains29

(line) noise (50 or 60 Hz depending on the local power-line frequency) also lies within the gamma30

range. These factors make detection of gamma band oscillations difficult. These issues can be partially31

addressed by using research-grade amplifiers which have low input referred noise (noise generated by32

the internal circuitry of the amplifier in the absence of signals), high Common Mode Rejection Ratio33

(which amplifies the differential voltage while attenuating the common voltage between the positive34

and negative inputs), high input impedance to minimise the effect of high electrode impedance, and35

proper shielding of the electrical components of the amplifiers to reduce electromagnetic interference [19].36

However, such amplifiers are generally bulky, expensive and often require proprietary software for usage.37

Several low-cost EEG acquisition systems have been developed in recent years (e.g. Emotiv (Emotiv Inc.,38

San Francisco, California, U.S.A), NeuroSky TGAM, OpenBCI (OpenBCI, Inc., Brooklyn, New York,39

USA, www.openbci.com)), and their signal quality and performance has been studied in various contexts40

such as P-300 spelling task [20, 21], Motor imagery based BCI paradigm [22], drowsiness detection [23],41

motor tasks [24] and Steady State Visually Evoked Potentials (SSVEP) [25]. However, these studies42

involve assessment of signals present at frequencies lower than 40Hz. To the best of our knowledge, no43

study has tested whether stimulus-induced narrowband gamma rhythms can be detected using low-cost44

EEG amplifier systems.45

We assessed the performance of OpenBCI, a popular affordable amplifier which provides a good46

cost-effectiveness [26], in the detection of gamma rhythms when static full-field gratings known to elicit47

gamma rhythms [12] were presented to healthy human subjects. OpenBCI recordings were compared to48

the recordings obtained using Brain Products GmbH, a popular research-grade amplifier, under identical49

experimental conditions on the same subjects. The same electrode cap, stimulus presentation software,50

and downstream analyses were used in both cases so that any difference was attributable only to the51

amplifiers. Full-screen gratings induce two distinct bands in the gamma range [12], termed slow gamma52

(20–34 Hz) and fast gamma (35–66 Hz) bands, which have characteristic spectral and temporal profiles53

[27]. Therefore, in addition to comparing the amplitude of change in band powers between stimulus and54

baseline, we also compared the spectral pattern and temporal evolution of the gamma bands between the55

two recording systems. In addition, we also compared the alpha band (8–13 Hz) power and temporal56

profiles.57

Methods58

Subjects59

Eleven human subjects (6 males, 5 females, aged between 22–29 years) were recruited from the student60

community of the Indian Institute of Science, Bengaluru for the study on a voluntary basis against61
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monetary compensation. Informed consent was obtained from all the subjects prior to performing the62

experiment. All procedures were approved by the Institute Human Ethics Committee of the Indian63

Institute of Science.64

Data Acquisition65

For every subject, EEG signals were recorded using two amplifiers: BrainAmp DC EEG acquisition system66

(Brain Products GmbH, Gilching, Germany) and OpenBCI Cyton Biosensing Board. For proper compari-67

son, both were connected to the same electrode cap, OpenBCI EEG Electrode Cap, a 21-channel setup68

with sintered Ag/AgCl electrodes (https://docs.openbci.com/AddOns/Headwear/ElectrodeCap/). We69

used 8 of these passive, gel-based electrodes at the following locations using the internationally recognised70

10–20 system [28]: O1, O2, P7, P3, Pz, P4, P8, CPz. During acquisition, the EEG signals were referenced71

to Cz (unipolar reference scheme [29]). If the impedance of any electrode exceeded 25 kΩ, it was rejected72

offline during analysis.73

In the Brain Products setup, raw signals were recorded at 5 kHz native sampling rate in AC coupled74

mode, filtered online between 0.016 Hz (passive R-C hardware filter) and 250 Hz (fifth-order low pass, But-75

terworth hardware filter) and digitised at 16-bit resolution (0.1 µV/bit). Next, following an automatically76

applied digital low-pass Butterworth filter of 112.5 Hz cut-off to prevent aliasing, the data was downsam-77

pled to 250 Hz. This signal processing pipeline was implemented using BrainVision Recorder (Version78

1.20.0701, Brain Products GmbH, Gilching, Germany). OpenBCI offers only an 8-channel recording with79

the requisite 250 Hz sampling rate, using a Bluetooth transmitter. While 16 channels can be used with an80

add-on board (OpenBCI Daisy board), it reduces the sampling rate to 125 Hz, which is too low for gamma81

range. A Wi-Fi shield was available which offered a higher sampling rate without losing on the channel82

availability, but it was still in beta phase at the time of our study. A higher sampling rate with 16 channels83

was also possible if data were recorded directly to the SD card on the equipment, but we opted to use84

streaming via Bluetooth for monitoring the signals in real time. For the OpenBCI setup, raw signals were85

recorded using OpenBCI GUI (version 5.0.2). Internally, OpenBCI first samples the signal at 1024 kHz in86

DC coupled mode followed by an R-C low-pass hardware filter of 72kHz. The signal is then digitised at87

24-bit resolution (0.002235 µV/bit) followed by noise-shaping and a digital, third-order, low-pass sinc filter88

as the anti-aliasing filter (https://www.ti.com/lit/ds/symlink/ads1299.pdf) before downsampling89

to our chosen sampling rate of 250Hz. It was observed during experimental setup that the OpenBCI90

system was sensitive to ambient mains noise, especially when the digital I/O pins were used to collect91

event marker data, and care had to be taken to prevent small perturbations from creating noise artefacts.92

To reduce line noise during acquisition, the OpenBCI setup was placed inside a copper mesh, grounded to93

the UPS ground socket, to serve as a Faraday cage. Eye tracking (monocular, left eye) was done for ten94

out of eleven subjects using Eye-Link 1000 (SR Research, Ontario, Canada) sampled at 1 kHz.95

Experimental Setting and behavioural task96

All subjects sat in a dark room facing a gamma-corrected LCD monitor (BenQ XL2411; dimensions:97

20.92× 11.77 inches; resolution: 1289× 720 pixels; refresh rate: 100 Hz) with their head supported by a98

chin rest at a distance of 57 cm from the screen. The experiment was performed in two sessions for each99

subject, one with OpenBCI and one with Brain Products (sequence chosen randomly) separated by a100
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break for few minutes. Each session consisted of one minute of eye-open recording and one minute of101

eye-closed recording for measurement, followed by a visual fixation task. The entire experiment lasted for102

an average duration of 2.1 hours (minimum: 1.25 hours, maximum: 2.75 hours).103

In the visual fixation task, each trial comprised of a 1 second fixation duration and 1 second stimulus104

duration, with a 1 second inter-trial interval. The stimuli presented were static, full-contrast, sinusoidal-105

luminance, achromatic gratings with a combination of one of the three spatial frequencies (1, 2 or 4 cycles106

per degree (cpd), calibrated to viewing distance) and one of the four orientations (0◦, 45◦, 90◦ or 135◦)107

and were displayed pseudorandomly using NIMH MonkeyLogic software (version 2.0.236 [30]). These108

stimulus parameters were chosen as they were previously shown to induce robust gamma [12]. Each of the109

two sessions consisted of an average of 298± 10 trials (mean ± SD), for the 12 stimulus types combined.110

Trials in which the eye tracker recorded an eye blink or a shift in eye position beyond a 5◦ fixation window111

during fixation period or stimulus period were rejected online by the stimulus presentation software. The112

event markers for each stimulus type were conveyed to the two EEG acquisition devices using National113

Instruments USB-6008 Multifunction I/O Device.114

Artefact Rejection115

A fully automated artefact rejection pipeline was used (for more details, see [13, 14]). Briefly, trials with116

deviation from the mean signal in either time or frequency domains by more than 6 standard deviations117

were labelled as outliers and rejected. Subsequently, data from electrodes with too many outliers (> 40%)118

was discarded. This resulted in a rejection of 21.4± 16.6% (mean ± SD) of trials for the OpenBCI session119

and 11.8± 7.2% of the trials for the Brain Products session. Finally, any electrode whose slope of the120

baseline power spectrum in the 56–84 Hz range was less than zero was rejected. This led to the rejection121

of 3 electrodes in 2 subjects, 1 electrode in 1 subject and no rejection in the remaining 8 subjects in122

OpenBCI recordings. In the Brain Products recordings, 2 electrodes were rejected in 1 subject, 1 electrode123

in 1 subject and no rejection in the remaining 9 subjects. If either of the electrodes of a bipolar pair (see124

below for details) was marked for rejection, the whole pair was removed from analysis.125

EEG Data Analysis126

All analyses were performed using bipolar referencing scheme. Every electrode was re-referenced offline127

to its neighbour, yielding 5 bipolar electrode pairs (P7-O1, P3-O1, CPz-Pz, P4-O2, P8-O2) from the128

8 unipolar electrodes. All the data analysis was done using custom codes written in MATLAB (The129

Mathworks Inc., 2021, version 9.10.0 (R2021a)). Brain Products data extraction included the usage of130

the ‘bva-io’ plug-in of EEGLAB toolbox (v12.0.2.5b [31], RRID: SCR 007292). Voltage measurements131

in OpenBCI recordings were sign-flipped [21] and were corrected offline to match the Brain Products132

standard while plotting Event Related Potentials (ERPs). The mains noise component was selectively133

attenuated offline prior to spectral analysis as follows [32]. First, we divided the unsegmented raw data134

into 180-second segments that contain integer cycles of the mains noise frequency. For each segment,135

we identified the frequency with maximum power using Fast-Fourier Transform in the 40–60 Hz range136

(to account for minor variations in the line noise frequency). A pure sinusoidal wave of that frequency137

(generated using inverse-FFT with the power of all other frequencies set to zero) was subtracted from the138

raw data to obtain the mains-noise-filtered data. Because the line noise component was notched out at139
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high-frequency resolution, it was invisible in PSDs computed over short time segments. Linear detrending140

was done to the raw EEG signals to correct for slow drifts. Power Spectral Densities (PSDs) and the141

time–frequency spectra were computed using the multitaper method [33] with a single taper using the142

Chronux toolbox (http://chronux.org/, RRID:SCR 005547 [34]). With timepoint 0 marking the onset of143

stimulus, baseline period was chosen between −750 ms and 0 ms, and stimulus period was chosen between144

+250 ms and +1000 ms, yielding a frequency resolution of 1.33 Hz for the PSDs. The periods were chosen145

to avoid stimulus-onset related transients. Time–frequency power spectra were calculated using a moving146

window of size 250 ms and a step size of 25 ms, giving a frequency resolution of 4 Hz.147

Change in Power between stimulus and baseline periods for a frequency band was calculated using the148

following equation:149

∆Power = 10 log10

∑
f

ST (f)∑
f

BL(f)

where ST is the stimulus power spectrum and BL is the baseline power spectrum, both averaged within150

relevant frequency bins (f), across all analysable trials and electrodes. Band powers were specifically151

computed in three frequency bands, namely slow gamma (20–34 Hz), fast gamma (35–66 Hz), and alpha152

(8–13 Hz).153

Slope of the PSD plot154

For slope calculation, the PSDs were fit with the following power law function [18]:155

P = Af−α +B

where P is the power and f is the frequency, while A (scaling function), B (noise floor), and α (slope)156

are free parameters. To avoid over-fitting, we set B as the power at max frequency (125 Hz). Subsequently,157

linear regression was done on the log of Power (after subtracting the noise-floor) to obtain an estimate of158

A and α. As in our previous paper [13], slopes were calculated specifically for the 16–34 Hz and 54–88 Hz159

ranges to avoid contamination by the alpha range bump and line noise artefact and its harmonics.160

Correlation Analysis161

Similarity between OpenBCI and Brain Product recordings was quantified using the Spearman correlation162

of the data points between the two sessions. For band powers, the data points were the change in band163

power between the stimulus and baseline averaged across electrodes (yielding one value per frequency164

band for each subject). For assessment of similarity of temporal evolution, the data points were the165

time series of the mean band power change obtained using time frequency spectra. Correlation measures166

between OpenBCI and Brain Product recordings of the same subject are termed ‘self-pair’ correlations,167

and between OpenBCI and Brain Product recordings of two different subjects are termed ‘cross-pair’168

correlations.169
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Statistical Analysis170

Appropriate non-parametric tests (Mann Whitney U test (Wilcoxin rank sum test) [35], permutation test171

[36]) were used to interpret the findings. 0.05 was used as the cut-off for significance of the p-values.172

Data and Code Availability173

The data and codes used in this study are all made publicly available and can be found at https:174

//github.com/FlyingFordAnglia/OpenBCIGammaProject.175

Results176

Instrument noise177

Before EEG recordings, we characterized the internal instrument noise characteristics by placing the178

recording electrodes, along with the reference and ground in a common conducting salt bath (dashed lines179

in Fig 1). The power spectral density (PSD) for OpenBCI recordings (red dashed lines) showed larger line180

noise at 50 Hz compared to Brain Products (blue dashed lines), and also exhibited three additional peaks181

at 14 Hz, 36 (50− 14) Hz and 64 (50 + 14) Hz. These peaks are due to modulation of the mains noise,182

that occurs due to non-linear distortion during amplification. No such artefactual peaks were observed for183

the Brain Products system. Even after shielding the OpenBCI setup for EEG recordings (which reduced184

the noise peak at 50 Hz, see Methods for details), these three peaks could be observed for some subjects185

(as shown below).186

Baseline PSDs and Slopes are comparable187

Next, we compared EEG recordings in the pre-stimulus baseline period. Fig 1A (solid lines) shows the188

mean PSD across all subjects after averaging across all trials and up to 5 bipolar electrodes for each189

subject (see Methods for details). The Brain Products system had more mains noise than OpenBCI,190

possibly due to the usage of the Faraday shield for OpenBCI (no shield was used for Brain Products).191

To reduce the line noise artefact, we estimated the mains noise component in long segments of data and192

subtracted the same [32] before re-computing the PSD (see Methods for details), which yielded similar193

PSDs using both amplifiers (Fig 1B). The slopes of the PSDs computed at two different frequency ranges194

(16–34 Hz and 54–88 Hz as per our previous report [13]) were not significantly different between OpenBCI195

and Brain Products recordings (Fig 1C and 1D: raw-data: 16–34 Hz: p = 0.69, 54–88 Hz: p = 0.33,196

noise-corrected data: 16–34 Hz: p = 0.90; 54–88 Hz: p = 0.74; two-tailed Mann Whitney U test). The197

PSDs of the two systems were highly correlated (spearman correlation coefficient of 0.91 for raw data198

(p < 10−6, calculated using permutation test) and 0.93 for noise corrected data (p < 10−6)).199

Fig 2 shows the results of an example subject (subject S2) for the visual fixation task. Trial and200

electrode averaged evoked potentials are plotted for OpenBCI (Fig 2A, left column) and Brain Products201

(Fig 2A, right column). These traces revealed a transient in the first 200 ms after stimulus onset and202

after the stimulus offset (i.e. after +1000ms). Change in power in stimulus period compared to baseline203

power revealed a prominent suppression in the alpha range and in increase in slow gamma power in both204

OpenBCI and Brain Products (Fig 2A, second row). There was also a broadband increase in power205
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beyond the slow-gamma range, which was more prominent in Brain Products compared to OpenBCI.206

Power increase in the alpha band after 1000ms of the trial was likely an eye blink or movement artefact207

during the inter-trial period. Fig 2C shows the PSD of the stimulus and baseline periods for the two208

amplifiers, demonstrating alpha (8–13 Hz) suppression and an increase in power in the slow-gamma (20–34209

Hz) and the fast-gamma (35–66 Hz) bands, with the fast-gamma response being more appreciable in the210

Brain Products recording. Fig 2D shows the baseline subtracted PSDs for the two systems illustrating the211

same trend as above (since the log of PSD is subtracted, it is essentially a change in power from baseline,212

expressed in decibels). The change in power in alpha, slow and fast gamma bands as a function of time213

from their respective pre-stimulus baseline power is shown in Fig 2B. Overall, the increase in the band214

power is lower in OpenBCI than Brain Products for both the gamma bands, while it is similar for the215

alpha band (Fig 2A second row, 2B, 2C, 2D). Small noise peaks placed symmetrically around the mains216

noise band, indicating modulation distortions (also see Fig 1), can be observed in the PSDs of OpenBCI217

in this subject (Fig 2C, first column). However, since this noise is present in both pre-stimulus baseline218

period and stimulus-period, it gets cancelled out when we compute the change in power from baseline219

(Fig 2C, 2D).220

Spectral and temporal patterns show similarity221

Fig 3 shows the results of the visual fixation task for all the subjects sorted by decreasing gamma power.222

Visually similar results were obtained in the baseline-subtracted time frequency spectra of OpenBCI (first223

column) and Brain Products (second column). The change in power from baseline during stimulus at each224

frequency (Figure 3, third column), and the change in mean band power (in dB) of alpha, slow gamma225

and fast gamma bands with time (Fig 3, 4th, 5th and 6th columns respectively) also showed visually226

similar trends. However, the amplitude of change in band power can be seen to be lower in OpenBCI227

than in Brain Products in most subjects for the gamma bands, in particular for the fast gamma band.228

We considered a subject as having a “gamma response” if they showed a significant increase in band229

power between stimulus and baseline when compared across all trials using one-tailed Mann-Whitney U230

test. False Discovery Rate (FDR) was controlled using the Benjamini and Hochberg procedure [37]. With231

this criterion, 6 subjects (S1-S6) were found to have slow gamma response using both Brain Products and232

OpenBCI. For fast gamma, 5 subjects (S1-S4,S7) showed a fast gamma response with Brain Products, out233

of which 4 subjects showed a fast gamma response (S1-S4) with OpenBCI. A significant alpha suppression234

was observed in 10 subjects (all subjects except S5) using Brain Products and 9 subjects (all subjects235

except S5 and S10) using OpenBCI. In subject S10, while it is not apparent visually in Fig 3, there236

was a very small fast gamma increase (≈ 0.1 dB increase from baseline in stimulus period) in OpenBCI237

recordings that was registered as significant by the statistical test we used, even after multiple testing238

correction. Similarly, alpha suppression in this subject was significant with Brain Products (but not239

OpenBCI), even though the suppression was small (≈ 0.76 dB reduction from baseline in stimulus period).240

Overall, these results indicate that the power changes obtained using Brain Products and OpenBCI241

were highly consistent. To quantify these results, we computed the correlation between the change in242

band power from baseline in each frequency band of each subject using OpenBCI with that of Brain243

Products (Fig 4). The Spearman correlation coefficient for alpha band was 0.92 (p < 10−6, computed244

using permutation test), for slow gamma was 0.94 (p < 10−6) and for fast gamma was 0.75 (p = 0.012).245

For frequency wise correlation values across all subjects, see Supplementary Fig S1.246
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Amplitude of change in band powers appears to be better captured by Brain Products than247

OpenBCI248

Although the correlation between power obtained using the two amplifiers was high, the distribution of249

points around the identity line (Fig 4) indicates that the amplitude of band power change was generally250

greater in Brain Products than OpenBCI. For alpha band, most points lay below the identity line indicating251

that alpha suppression was better captured by Brain Products than OpenBCI. For fast gamma, the252

enhancement in gamma power was again better captured with Brain Products than OpenBCI, with the253

majority of data points above the identity line. For slow-gamma, the difference between the two devices254

appear less salient. However, note that the power in slow-gamma band is influenced by two opposing255

factors. First, there is an increase in power due to the slow-gamma rhythm, which is observed in about256

half of the subjects (S1-S6). However, there is also a reduction in power in lower frequencies, which257

sometimes extended to the slow-gamma range. This is better observed in the subjects (S7-S11) who did258

not have a strong slow-gamma rhythm, and their corresponding data points lay below zero dB in Figure 4259

(middle panel). For those subjects, the points lay below the identity line, again reflecting better capture of260

low-frequency suppression by Brain Products than OpenBCI, and not poorer capture of the slow-gamma261

rhythm by Brain Products compared to OpenBCI.262

ERPs are comparable but with a small latency263

Figure 5 shows the de-trended and de-noised (see Methods for details) ERPs of OpenBCI and Brain264

Products for all subjects. A slight jitter can be seen in the OpenBCI traces compared to the Brain265

Products traces. Computing the cross-correlation between the two traces led to a median correlation (±266

standard error; computed using bootstrapping) of 0.79± 0.05, with OpenBCI traces lagging by 8± 0.5267

milliseconds (cross-correlation value and the lag for each subject are indicated in the figure).268

Similarity between the two recordings within and between subjects269

Next, we compared the temporal profile and the characteristic spectral distribution (see Introduction)270

between the two setups. The similarity of the change in band powers with time, and baseline subtracted271

PSDs of the two EEG amplifiers was quantified using Spearman correlation between the time series for272

each subject (see Methods). However, a high correlation between OpenBCI and Brain Products traces273

may be confounded by the possibility that the spectral profile in response to visual stimulus is common to274

all subjects. A previous study suggests that spectral and temporal profiles are unique to subjects and275

different in different subjects [27]. To assert whether these correlations indeed represent subject-specific276

trends and not a general similarity of all traces, we further compared self-pair (between the same subject)277

and cross-pair (between different subjects) correlations. Self-pair correlations of baseline-subtracted PSD278

(0.51± 0.1, median ± standard error computed using bootstrapping) were significantly higher than its279

cross-pair correlations (0.33± 0.02, p = 1.07× 10−4, one sided Mann Whitney U test, Fig 6A). Similar280

results were obtained for the temporal evolution traces in alpha, slow gamma and fast gamma bands:(alpha:281

self: 0.93±0.04; cross: 0.52±0.07, p = 7.4×10−6, Fig 6B; slow gamma: self: 0.82±0.05; cross: 0.31±0.06,282

p = 6.01× 10−6, Fig 6C; fast gamma: self: 0.68± 0.15, cross: 0.22± 0.04, p = 2.7× 10−4, Fig 6D). When283

self-pair correlations were plotted against cross-pair correlations, their values were concentrated on the284

x-axis side of the identity line (Fig 6).285
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Discussion286

Our study is the first one to assess the performance of a low-cost amplifier in the detection of stimulus287

induced gamma response and compare it with a research grade amplifier while controlling for subjects,288

electrodes and electrode placement, task performed and subsequent analysis. We showed that a low-cost289

EEG amplifier like OpenBCI is able to detect gamma response in subjects, and the spectral and temporal290

profiles from OpenBCI recordings are correlated to that of a research grade amplifier like Brain Products291

when full screen static gratings are presented as stimuli. However, the change in power in the gamma band292

was of a lower amplitude in OpenBCI than Brain Products, especially in the fast gamma band. Correlations293

between the two recordings of the same subjects (‘self-pair correlations’) were significantly higher than294

correlations between different subjects (‘cross-pair correlations’) indicating that the distinctiveness in295

spectral and temporal profiles across different subjects could be captured by these amplifiers.296

Comparisons between low-cost and research-grade amplifiers in previous studies:297

Previous studies have assessed the performance of low-cost EEG amplifiers in various contexts. While some298

studies have only assessed the performance of a low-cost amplifier in the absence of a research grade control299

[22, 38], others have compared their performance with a research grade amplifier but have not controlled300

for factors like the use of same electrodes, same subjects or downstream analysis to reliably attribute301

all differences only to the amplifiers [39, 40]. de Vos and colleagues [20] compared the performance of302

an Emotiv based setup with Brain Products GmbH with the same electrodes in the context of a P300303

spelling task in 13 subjects. However, they mainly compared the P300 ERP topographies and spelling304

task performance (r > 0.77), with no frequency domain comparison. In a study done by Frey, 2016 [21],305

OpenBCI signals were compared to the signals from g.tec g.USBamp amplifier (another research grade306

amplifier) from one subject in a P300 spelling task and a working memory load task. The study used a307

custom adapter which enabled simultaneous recording with two amplifiers using the same electrodes in308

the same recording session. The study reported a high correlation between ERPs and PSDs of the two309

amplifiers (r > 0.99). Their simultaneous recording from the two amplifiers in a single recording session310

as opposed to our sequential recording sessions and their low sample size (n = 1) could be an explanation311

for the lower ERP correlation values (mean r = 0.79) and PSD correlation values we found in our study312

during baseline period (r = 0.93). Also, their spectral analyses were restricted to frequencies < 40 Hz,313

which does not include the mains noise range, potentially contributing to a higher correlation value. They314

also reported a slight jitter (88 ms) in the ERP of OpenBCI compared to g.tec. While we have also found315

a small jitter in the ERP of OpenBCI (median lag = 8 ms, Fig 4) compared to Brain Products, we did316

not correct for it since all our analyses were in the frequency domain. Rashid et. al. [24] reported no317

significant difference in the power of signals between OpenBCI and NuAmps (another research grade318

amplifier) in the beta band (12–38 Hz, which includes slow gamma frequencies) in 22 participants, but319

the task performed was a motor task.320

Comparison in performance of OpenBCI for different frequency bands321

Previous studies have shown that in the presence of static, full-field visual gratings, two gamma bands322

are found in the EEG: a slow gamma band (20–34 Hz) and a fast gamma band (35–66 Hz) [12, 13].323

In addition, alpha band is also suppressed. In our study, slow gamma found to be better retrieved by324
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OpenBCI than fast gamma in terms of amplitude of change in band power and correlation of its temporal325

evolution (Fig 3, 6). This could be due to the contamination of fast gamma with the cross-modulation326

noise bands (Fig 1, dashed lines and Fig 2C, left). Slow gamma and fast gamma bands were both found327

to be reduced in Alzheimer’s disease and Mild Cognitive Impairment patients in a study done by Murty328

and colleagues [14]. Further, previous studies have shown that slow gamma band is more reliable with age329

than fast gamma [13] and shows more inter-subject variability and better test-retest reliability [27]. This330

raises the possibility of using OpenBCI to detect slow gamma as a biomarker or screening tool in low331

resource settings.332

Conclusion333

OpenBCI is a low-cost EEG amplifier whose open-hardware nature offers customisability and ease of334

interface with existing equipment, and its lack of bulk offers mobility which allows extensibility of335

experiments and usage in natural environments outside of dedicated laboratories. Our study suggests that336

OpenBCI has potential as a low-cost alternative to traditional research grade amplifiers in the detection337

of stimulus-induced gamma oscillations.338
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Figure 1. Slope comparison of OpenBCI and Brain Products at baseline. A) Baseline raw
Power Spectral Density (PSD) for OpenBCI (red trace) and Brain Products (blue trace) averaged across
11 subjects (thickness of the trace indicates the standard error of PSD across subjects at each frequency).
Dotted lines show PSD of shorted electrodes for instrument noise measurement. C) Slope of the PSD
vs Frequency plot averaged across all subjects for two frequency ranges (16–34 Hz and 54–88 Hz) for
OpenBCI (red) and Brain Products (blue). The error bars indicate the standard error. B, D) Same as A,
C, but after selectively attenuating the mains/line noise component (see Methods for details).
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Figure 2. Stimulus induced gamma response in an example subject. A) Trial averaged EEG
trace or ERP (first row) and time frequency spectrograms of change in power from baseline with time
(second row). Vertical grey bars indicate stimulus duration (1 second). B) Change in Power (dB) from
baseline as a function of time in alpha (8-13 Hz, first row), slow gamma (20–34 Hz, second row) and
fast gamma (35–66 Hz, third row) bands recorded using OpenBCI (red trace) and Brain Products (blue
trace). C) PSD for stimulus (solid line) and baseline (dotted line) averaged across 5 bipolar electrodes for
OpenBCI (left column) and BrainProducts (right column). D) Change in power (dB) from baseline in
stimulus period recorded using OpenBCI (red trace) and Brain Products (blue trace).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468841
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Comparison of OpenBCI and BrainProduct recordings for all subjects. Baseline
subtracted time freqency spectrograms for OpenBCI (first column and red trace in other columns) and
Brain Products (second column and blue trace in other columns), change in PSD (dB) from baseline in
stimulus period vs frequency (third column), change in power (dB) with time for alpha (fourth column),
slow gamma (fifth column) and fast gamma (sixth column) bands. Vertical bands in the last three
columns indicate stimulus duration (grey). Each row represents one subject. The subjects are numbered
in decreasing order of total gamma power.

Figure 4. Comparison of Change in Band Powers of OpenBCI and Brain Product recordings.
Change in band power from baseline in stimulus period of alpha, slow gamma and fast gamma oscillations
recorded using OpenBCI (x axis) and Brain Products (y axis) for males (filled circles) and females (open
circles). Dashed line indicates indicates identity line.
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Figure 5. ERP Plots of all subjects. ERPs for OpenBCI (red trace) and Brain Products (blue trace)
for all subjects. The subjects are numbered in decreasing order of gamma power, as in Figure 3. The
vertical grey shaded region indicates the stimulus duration. The cross-correlation coefficient and lag
between OpenBCI and Brain Products are indicated on the right for each subject.
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Figure 6. Comparison of self-pair correlations and cross-pair correlations. Self pair correlations
(between OpenBCI and Brain Products recordings of same subjects) vs cross pair correlations (between
OpenBCI and Brain Products recordings of different subjects) for change in PSD from baseline in stimulus
period (A) and change in power with time for alpha (B), slow gamma (C) and fast gamma (D) bands.
Red line indicates x=y line. The bold black marker indicates the median of the cross pair correlations for
each subject.
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Figure S1. Frequency wise Spearman correlation of power recorded using the two amplifiers
across all subjects, plotted across frequency. Black circles are for correlation values whose p-values
calculated with permutation test are more than 0.05 and green circles are for correlation values whose
p-values are less than 0.05. False Discovery Rate of p-values is controlled using Benjamini and Hochberg
(1995) procedure.
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