
Meta-Transcriptome Detector (MTD): a novel pipeline for metatranscriptome analysis of 

bulk and single-cell RNAseq data 

Fei Wu1,2, Yaozhong Liu3, Binhua Ling1* 

1. Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr, San 
Antonio, TX 78227, USA 

2. Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA 
3. Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA 
* Corresponding author: Binhua Ling, bling@txbiomed.org 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468881
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

RNA-seq data contains not only host transcriptomes but also non-host information that 

comprises transcripts from active microbiota in the host cells. Therefore, metatranscriptomics can 

reveal gene expression of the entire microbial community in a given sample. However, there is no 

single tool that can simultaneously analyze host-microbiota interactions and to quantify 

microbiome at the single-cell level, particularly for users with limited expertise of bioinformatics. 

Here, we developed a novel software program that can comprehensively and synergistically 

analyze gene expression of the host and microbiome as well as their association using bulk and 

single-cell RNA-seq data. Our pipeline, named Meta-Transcriptome Detector (MTD), can identify 

and quantify microbiome extensively, including viruses, bacteria, protozoa, fungi, plasmids, and 

vectors. MTD is easy to install and is user-friendly. This novel software program empowers 

researchers to study the interactions between microbiota and the host by analyzing gene 

expressions and pathways, which provides further insights into host responses to microorganisms. 
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1 Introduction 

A variety of microorganisms have been recognized to contribute to the development of 

human diseases, including cancer, autoimmune diseases, and psychological disorders. For example, 

Helicobacter pylori can cause stomach cancer [1], human papillomavirus (HPV) infection can lead 

to uterine cervix cancer [2], and HIV-1 infection can lead to acquired immunodeficiency syndrome 

(AIDS) [3] as well as HIV-Associated Neurocognitive Disorders (HANDs) [4]. In addition, the 

Epstein–Barr virus (EBV) was found to contribute to 1.5% of total human cancers of various types 

worldwide [5]. However, systemic and comprehensive investigation of microorganisms in tissues 

and their contribution to disease development has yet to be conducted. In particular, the pathogenic 

mechanisms of a large number of opportunistic infections remain unexplored. Furthermore, 

different cell populations may contribute to the heterogeneous tropism in infections. Therefore, it 

is important to analyze microbiome diversity, abundance, their interaction with host cells, and 

impacts on infected cells. 

Transcriptome from a host tissue may contain mRNAs from microorganisms that have not 

been fully investigated. Several tools have been developed to detect the microbiomes in the RNA-

seq data, such as Kraken2 [6], VIRTUS [7], and IDseq [8]. However, it is lack of a software that 

can analysis both host and microbiome transcriptome in the same set of data, and it is also 

challenging for a researcher without bioinformatics expertise to examine microbiome in host 

tissues and its relation to the endogenous expression of host genes, especially at the single-cell 

level. To facilitate the effort of analysis of host transcriptome with its microbiome, we developed 

the Meta-Transcriptome Detector (MTD), a user-friendly pipeline for comprehensive and 

integrative investigation of microbiome from bulk and single-cell RNA-seq data.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468881
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. An overview of MTD. (A): A workflow diagram of MTD for bulk mRNA-seq analysis. (B): A 
workflow diagram of MTD for single-cell mRNA-seq analysis. The white boxes represent the reads in 
FASTQ format and the count matrix, the blue boxes show the bioinformatics software used, and the green 
boxes are the additional tools for data processing. The white boxes with curved edges show the reference 
genome and databases. In the single-cell mRNA-seq workflow (B), the left side exemplifies the host reads 
process protocols, and the right side in yellow shadow shows the MTD automatic pipeline to calculate the 
count matrix for the microbiome reads and the correlation test between microbiome and host genes. 

 
2 Methods 

2.1 Description of MTD  

The MTD has two sub-pipelines to detect and quantify microbiomes by analyzing bulk and 

single-cell RNA-seq data, respectively (Figure 1). MTD is written in R (version 4.0.3) and Bash 

(version 4.2) languages and executed in GNU/Linux system. Users can easily install and run MTD 

using only one command and without requiring root privileges. The outputs (graphs, tables, count 

matrixes, etc.) are automatically generated and stored in the designated directory/folder defined by 

the user. The user manual for detailed instruction of installation and usage was disclosed on the 

webpage https://github.com/FEI38750/MTD. Here we describe the two sub-pipelines separately. 

2.1.1 Transcriptome and meta-transcriptome analysis of bulk RNA-seq data 

First, RNA-seq raw reads in the FASTQ file are trimmed and filtered by fastp (version 

0.20.1) [9] with polyA/T trimming, and reads shorter than 40 bp (with the option --trim_poly_x --

length_required 40) are discarded. Then, processed reads are classified based on the host genome 

by Kraken2 (version 2.1.1) [6] with default parameters. Finally, the host and non-host reads are 

organized separately in FASTQ format.  

Host transcriptome analysis: The host species supported by MTD initially are Homo 

sapiens (Reference genome assembly: GRCh38), Mus musculus (Reference genome assembly: 

GRCm39), and Macaca mulatta (Reference genome assembly: Mmul_10). Additionally, users can 

add other host species by one command line. The host reads are aligned to the reference host 
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genome by Hisat2 (version 2.2.1) [10] with default parameters written in a SAM file. 

Quantification of reads for host gene expression is done by featureCounts (version 2.0.1) [11]. 

Next, the count data is analyzed by DESeq2 package (version 1.32.0) [12] in Bioconductor to get 

the differentially expressed genes (DEGs). The gene annotation is done through the biomaRt R 

package (version 2.46.3) [13, 14] in Bioconductor. The data visualization and a count matrix are 

automatically generated through R programs. The data visualization includes the heatmap, Venn 

Diagram, PCA, barplot, and volcano plot. The count matrix contains the Ensembl gene ID, gene 

symbol, chromosome name, gene position, functional descriptions, DEG results for each pairwise 

group comparison, raw, normalized and transformed reads counts. This count matrix is saved in 

CSV format, ready for downstream analyses such as pathway enrichment and customized data 

visualization. 

Microbiome transcriptome analysis: MTD supports a broad spectrum of microbiome 

species and vectors including viruses, bacteria, protozoa, fungi, plasmids, and vectors. At the time 

of writing, the viruses contain 16,275 species from Virus-Host DB [15] and also simian 

immunodeficiency virus (SIVmac239) (GenBank accession number M33262). The rest of the 

microbiome are from the NCBI RefSeq database [16], which includes 63,237 species of bacteria, 

13,970 fungi, 1,337 archaea, 573 protozoa, and 5,855 plasmids. In addition, vector contamination 

can be screened using the NCBI UniVec Database. Users can update the microbiome databases in 

MTD by one command line. The non-host reads are further classified by Kraken2 based on 

microbiome references with the default parameters, followed by a decontamination step that 

removes the microorganism under the genera reported as reagent and laboratory contaminants [17]. 

Users can easily customize the blacklist of contaminants based on their experimental environments. 

Then, the abundance of the microbiome in the species level is calculated by Bracken (version 2.6.0) 
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[18]. Next, the count data is imported into DESeq2 for analysis of the differentially expressed 

species. In DESeq2, we adjust the abundance of microbiome species based on the transcriptome 

size of the sample. The rationale is that count from a microbial species should take into account 

the overall representation of the host transcriptome. This normalization step is conducted through 

the formula, design ~ group + transcriptome_size, where transcriptome_size is defined by the 

formula: log2 (of a transcriptome size) - mean (of all log2-transformed transcriptome sizes in a 

sample), and group is the group code (e.g., A or B) of a sample. As a result, the importance of a 

microbial species in a sample with a higher transcriptome representation is underscored. 

Meanwhile, the non-host reads (including both unclassified and classified reads by Kraken2 using 

the reference databases) are imported into the Humann3 (version 3.0) [19] for profiling microbial 

metabolic pathways and molecular functions. The ChocoPhlAn [20] and full UniRef90 [21] are 

used as reference databases for nucleotide and protein, respectively. Then the profiling results are 

annotated to understandable functional terms to facilitate the downstream analyses. Next, the 

heatmaps of DEGs, Venn Diagrams, PCA, bar plots, and volcano plots are generated for the 

microbial species, molecules, and metabolic pathways based on the Deseq2 results. Additionally, 

kraken-biom (version 1.0.1) [22] is used to format the data for diversity analyses and phylogenetic 

tree plotting. The phyloseq R package (version 1.34.0) [23] in Bioconductor and vegan R package 

(version 2.5-7) [24] are used to analyze the diversities, including alpha diversity (Shannon, 

Simpson) and beta diversity (Bray-Curtis). Then, box plots are shown to visualize the t-test 

comparison results between groups, including alpha diversities of classified reads and the 

abundances of unclassified reads. PCoA graphing and analysis of similarities (ANOSIM) are based 

on Bray-Curtis distance. The relative abundance of a microbial species in the total microbiome is 

shown as bar plots at the Phylum level. The heatmap of total microbiome abundance is plotted 
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using data normalized by Deseq2. Next, the phylogenetic trees are plotted through modified 

Graphlan [25], which is a tool for generating informative and integrative circular graph 

representing phylogenetic and taxonomic trees. However, the original program requires a specific 

data format as input and is not compatible with the output from Kraken2 and Bracken software. 

Therefore, we wrote a converter program and integrated it into the pipeline to bridge the taxonomic 

classification software Kraken2/Bracken and graph-making software GraPhlAn. It allows us to 

transform the output of Kraken2 and Bracken to match the data structure requirement of GraPhlAn. 

Furthermore, the default settings of colors have been optimized by modifying the source code of 

GraPhlAn. In addition to .biom format, data is also saved in .mpa and .krona formats to facilitate 

further downstream visualizations. 

Most importantly, in the final steps of the pipeline, MTD examines the association between 

the microbiome and the host's characteristics, such as gene expression and pathways. Pathway 

enrichment for each sample is performed by the single sample Gene Set Enrichment Analysis 

(ssGSEA 2.0) program [26-28] with a MSigDB C2 database that contains 6,290 curated gene sets. 

ssGSEA 2.0 is modified for parallel computing in High-Performance Computing (HPC) 

environment, which is described in the supplementary document. Next, the effects from covariates 

among groups are adjusted through the removeBatchEffect function in the limma R package 

(version 3.48.1) [29] in Bioconductor. The association analyses are then conducted through Halla 

(version 0.8.18) [30], which is set to compute hierarchical clustering of Spearman pairwise 

correlation. Figure 2 illustrates the MTD automatic pipeline for dual-analyzing the bulk RNA-seq 

raw data. 
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Figure 2. The automatic pipeline of MTD for dual analysis of the bulk RNA-seq raw data. Analysis results 
are automatically saved into the folder assigned by the user. Examples of analysis outputs for the 
transcriptome of host and microbiome are demonstrated on the left side and right side, separately. The 
shared procedures are shown in the purple boxes, which include the input files (upper box) and the 
association analyses (bottom box). In addition to the graphs, all the detailed information was included in 
the data sheets and stored in the corresponding output folder. To use the MTD, the user must simply put 
the FASTQ files in a folder with a sample sheet in CSV format that describes the sample names, groups, 
and comparisons, and then perform the analysis with one command line. For example, with the command 
line "bash MTD.sh -i ~/inputpath/samplesheet.csv -o ~/outputpath -h 9544 -t 20", the user enters the place 
of the sample sheet with the raw data after the flag "-i", and where one wants to place the results (after flag 
"-o"), the host taxonomic ID is after "-h", and the threads of CPU after "-t". 

 
2.1.2 Analysis of single-cell RNA-seq data 

The MTD supports automatic generation of the count matrix of the microbiome by using 

raw data in the FASTQ format and count matrix of host genes from two commonly used single-

cell RNA-seq platforms, 10x Genomics and Drop-seq. First, the user can download the available 

count matrix of host genes (H5, Matrix, or .dge.txt format) or follow the corresponding workflow 

to process the raw data, such as through the 10x Cell Ranger software. The cell barcodes are 

identified from the count matrix of host genes, then the UMI and cell barcodes are extracted and 

added to read names by using the UMI-tools (version 1.1.1) [31]. Second, the reads are trimmed 

and filtered by fastp, then filtered for the host reads by Kraken2. The non-host reads are further 

classified by Kraken2 with the comprehensive microbiome databases, followed by a 

decontamination step. The steps from trimming to decontamination use the same settings as 

mentioned in the previous section. Next, the taxonomic labels of the reads are extracted and aligned 

with corresponding cell barcodes through a step written by the AWK program language. Finally, 

UMI-tools is used to generate a count matrix (tab-separated) through a converter written in R. 

Figure 3 exemplifies a count matrix automatically generated by MTD for the microbiome in each 

cell. Subsequently, MTD combines the count matrices of the host genes and microbiome to 

perform the correlation analysis automatically. An example of the correlation analysis result is 

showed in Figure 7 (A-B). 
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At the single-cell level, the Spearman correlations between microbial organisms and host 

genes are tested by using the top 3,000 most highly variable features, including the normalized 

data of both host and microbiome. Because the step of correlation analysis step is highly time-

consuming for a large data matrix, parallelizing computing was applied to speed up the 

computation by using the doParallel R package (Version 1.0.16). The other analysis methods 

through Seurat R package (Version 4.0.1) and homemade programs are described in the 

supplementary document. The diagram of the MTD pipeline for single-cell RNA-seq is 

demonstrated in Figure1 B. 

 

Figure 3. An example of the count matrix that is automatically generated by MTD for the single-cell 
microbiome analysis. For illustration, the figure shows part of the large count matrix. The name and 
taxonomy ID of the microbiome is shown in the first column and highlighted in the green box. The read 
counts are highlighted in the blue box. The first row shows the cell barcodes. 
 
2.2 Animal information and sample collection 

Here we demonstrated the application of MTD for analyzing the bulk RNA-seq data by 

using samples from the descending colon and brain mononuclear cell (BMC) from rhesus monkeys 

as an example. The detailed sample information is in the supplementary document. 

Animal euthanasia was performed in line with the recommendations of the Panel on 

Euthanasia of the American Veterinary Medical Association. Following Tulane IACUC standards 
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of operation (SOP), SIV-infected and/or drug-treated macaques were euthanized first with telazol 

and buprenorphine, followed by sodium pentobarbital intravenous injection. Tissues from 

descending colon were collected fresh and soaked in RNAlater™ Stabilization Solution during 

necropsies. To avoid the chance of microbiome contamination from the animal gut to the brain, 

brain tissues were collected first, and the descending colons were collected last. After BMC 

isolation, cells were sorted into high autofluorescent (BMC_H) and low autofluorescent (BMC_L) 

groups, based on cellular autofluorsecent levels. The methods of BMC isolation, cell sorting, and 

the bulk RNA-seq protocol are described in the supplementary document. 

Raw data of the singe-cell RNA-seq was downloaded from NCBI GEO with accession 

code GSE161340 (SRR13041553-13041560), and GSE160384 (SRR12933210-SRR12933217). 

The detailed sample preparation methods for the sequencing were described in the articles [32, 33]. 

The detailed methods for single-cell RNA-seq analysis are in the description in supplementary 

document. 
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3 Results 

3.1 Application to bulk RNA-seq analysis: descending colon of rhesus macaques 

Through MTD, the transcripts of both the microbiome and the host were analyzed 

simultaneously using the same bulk RNA-seq raw data. Figure 4 is a heatmap showing the 

abundance of all the microbiome species in the samples from the descending colon. Supplementary 

Figure 1 presents the taxonomic and phylogenetic trees of microorganisms detected in the 

descending colon samples from rhesus macaques. More detailed results of the microbiome and 

host gene analyses of the descending colon are described in the supplementary document sections 

2.1 and 2.2, respectively. The microbiome analysis results of BMC are in supplementary document 

sections 2.3. Here we demonstrate the results of association analyses of the microbiome to the host 

genes or pathways in descending colon. 
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Figure 4. Heatmap of the microbiome species identified in descending colon samples of rhesus macaques. 
The higher abundance of microbiome reads is shown in a light blue color, and the lower abundance is shown 
in a darker color. Data was normalized using the Deseq2 and plotted by the phyloseq R packages, which 
were wrapped in MTD. 

 

The correlations between the microbiome and host gene are illustrated in Figure 5A. For 

example, the Debaryomyces hansenii shows a significant positive correlation with host gene 

UBE2I and IL27RA. The expression of the host gene C1QTNF8 positively correlated with a group 
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of microbes, such as Yarrowia lipolytica, Aspergillus chevalieri, Roseburia hominis, and 

Anaerostipes hadrus. 

The correlations between the microbiome and host pathways are shown in Figure 5B. For 

example, the pathway that controls the amplification of the 8q24 chromosome region 

(HEIDENBLAD_AMPLICON_8Q24_UP) was upregulated with the mRNA expression of 

Saccharomyces eubayanus. The complex I biogenesis signaling pathway 

(REACTOME_COMPLEX_I_BIOGENESIS) was negatively correlated with the expression of 

Helicobacter cinaedi. 

 

Figure 5. Analyses of association between the microbiome and host genes or pathways in descending colon 
of the rhesus macaque. The figure shows the correlation between the RNA expression level of microbiome 
species and host gene (A), or pathways (B). The x-axis is labeled with the names of the host genes or 
pathways, and the y-axis lists the names of microbiome species. Positive correlation coefficients are shown 
in red, and negative correlation coefficients are shown in blue. The significant results are marked with white 
dots and ranked by numbers. The results in the same cluster can be found in a box with the same number. 
The association was examined by pairwise Spearman correlation test based on hierarchical clustering. The 
tabulates of all comparison results and dot plots were saved in the corresponding output folder. 
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3.2 Application to single-cell RNA-seq analysis 

3.2.1 Microglia cells of SIV-infected rhesus macaques 

We next applied MTD to single-cell RNA-seq data from microglia cells isolated from SIV-

infected rhesus macaques [32]. Because the analysis results from the authors identified SIV 

transcripts in the single cells, it is an ideal dataset for validation of the capacity of MTD to process 

single-cell RNA-seq data. 

First, count matrices of the microbiome were generated by MTD. Then, they were 

integrated with the host transcriptome for downstream analysis through the Seurat R package. The 

results showed that the major cell type in the sample was microglia, with a small portion of 

endothelial cells (Figure 6A). A cluster of microglia cells was highly infected with SIV (Figure 

6B). For this cluster, the top 20 makers ranked by folder change are displayed in Figure 6C, such 

as PDE4A and SENP3. The cell subpopulation with these markers implicated a higher SIV tropism. 

Overall, the results validated the capability of MTD for detecting specific microorganism 

species from single-cell RNA-seq data. 

 
Figure 6. Detection of SIV in microglia cells from rhesus macaques. (A) Cell types in different colors on 
the UMAP plot. Cell type identity was assigned based on the homemade program described in 
supplementary document. (B) SIV reads detected by MTD. The blue dots on the UMAP plot indicate the 
SIV-infected cells with the normalized reads quantity. (C) Markers of the cell cluster that harbor SIV. 
Analyses of the count matrix followed by visualization were performed through Seurat. Each dot in the 
UMAP plot represents every single cell. FindMarkers function with MAST methodology was used for 
computing the log2fold changes for each gene/feature between clusters and their corresponding adjusted p-
values. 
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3.3.2 Brain cells of mice 

We also applied MTD on the single-cell RNA-seq data of brain cells isolated from mice 

[33] and demonstrated the correlation analyses between the microbiome and host genes or 

pathways at the single-cell level. 

We found that plasmodium vivax (P. vivax) and host gene GRIA2 had the highest 

correlation coefficient (Figure 7A). As shown in Figure 7B, GRIA2 was highly expressed in the P. 

vivax-infected cells. We further identified all the host genes that highly correlated with P. vivax 

(Figure 7C), then performed pathway enrichment analysis. The results underscored the positive 

association of P. vivax with the function of the infected cell's plasma membrane region, such as 

cell junction and transmembrane transporter activity (Figure 7D). This result supports the 

cytoadherence phenomenon of P. vivax reported in previous research [34-36]. Although P. vivax 

primary infects red blood cells, its cytoadherence on other cell types has been reported, such as in 

endothelial cells [34, 35]. Moreover, recent findings suggest that it has the ability to adhere to all 

Chinese hamster ovary (CHO) cells [35]. Our results brought insights into the interaction between 

P. vivax and host cells. It showed that P. vivax interacts with host cells that are incrementally 

expressing genes of the cellular membrane. Future research can study the causal effect of these 

molecules during infection, such as whether they contribute to pathogen adherence or if the 

infection leads to their increased expression. 
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Figure 7. Co-expression microbiome and host genes in host cells. (A) Visualization of the highest 
correlation on the UMAP plot. The cells expressed GRIA2 are represented by red dots, and the cells infected 
with plasmodium vivax are shown as green dots. The cells containing both are represented by the 
overlapping of the two colors (yellow). (B) A list of the top 20 correlations between host genes and 
microorganisms, and the highest pair is highlighted in red. (C) The results of pathway enrichment of the 
genes that were highly associated with plasmodium vivax, which were defined by r > 0.2 and p < 0.05. The 
top 3 results of each GO categories are highlighted. UMAP plots were drawn by the Seurat R package. The 
pathway enrichment was performed through g:GOSt in g:Profiler (version: e104_eg51_p15_3922dba, 
organism: mmusculus).  
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4 Conclusion 

MTD is a novel metatranscriptome detection and quantification pipeline, which can 

perform both bulk and single-cell RNA-seq data analysis. With this software, the activated 

microbiome (including the virome) can be detected in the sample, the cell type harboring them can 

be identified, and the host gene expression and microbial prevalence can be correlated. Thus, it 

would be a useful tool to improve our understanding of host-pathogen interactions, in particular, 

how the microbiome contributes to the host health, and what genes and pathways of the host are 

important to a particular infection by a microbial species, which may shed lights to treatment and 

prevention of infectious diseases. 
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5 Discussion 

MTD has several unique advantages compared to current tools in detecting meta-

transcriptome. MTD can simultaneously and comprehensively profile microbiome and the host 

transcriptome in both bulk and single-cell RNA-seq data. The program takes into account the host 

transcriptome size while modeling microbiome reads in differential abundance analysis. In 

addition, our program has a decontamination step to eliminate the potential noise from the 

contaminant microbes. Specifically, MTD has a decontamination step that blacklists the common 

contaminant microbes in the laboratory environment [17]. Users can modify the list depending on 

the contaminant in their situations. Moreover, MTD warrants better accessibility as well as data 

safety. The software installation, updating, and transcriptomic analyses can all be performed by a 

single command. It obviates the need of using other cloud-based applications.  

Currently, it is common to perform the polyA tail enrichment during the library preparation 

for mRNA sequencing. Thus, MTD could avoid contamination from viruses in most cases because 

virus RNA only acquires polyA tail when it is transcribed in the host cell. Nevertheless, users need 

to be cautious about the exceptions of single-strand RNA viruses and other preparation methods 

that contain the polyA tail. Moreover, it is still challenging to detect and remove other 

contaminated microbes. There are tools to identify the potential contaminant by simply calculating 

the correlation of nucleic acid abundance between microbes and host [37]. However, these 

methods may not be sensitive if the samples have similar abundance, heterogeneous contaminant 

patterns, or cross-contamination.  

In the era of single-cell genomics consortia, the distribution of the microbiome in the cell 

population, tissues, and organ levels, and their associations with cell functions will be better 

analyzed and further understood. Researchers will be able to get insight into the pathogenesis of 
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each microorganism identified. Furthermore, annotating the sample's geographic information with 

each microorganism would offer us a map of pathogens which could predict an epidemic. Thus, 

MTD could become a critical element for monitoring the spread of the microbiome and its 

pathogenesis in the future. 

 

Key Points 

• MTD enables simultaneous detection of the microbiome in the cells and the host 

gene expression in bulk and single-cell RNA-seq data. 

• The association between the microbiome and the host gene expression or pathways 

is automatically analyzed. 

• MTD has an extensive microbiome detection ability, including viruses, bacteria, 

protozoa, fungi, plasmids, and vectors. 

• Install and use MTD by one command line without the requirement of 

administrator/root privilege. 

• Decontamination function to eliminate the common contaminant microbes in the 

laboratory environment. 
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Supplementary Data 

Supplementary data are available online at bioRxiv. 

 

Data Availability 

MTD software can be accessed through GitHub at https://github.com/FEI38750/MTD 
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