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Abstract

The rapid emergence of large-scale atlas-level single-cell RNA-sequencing (scRNA-seq) datasets1

from various sources presents remarkable opportunities for broad and deep biological investiga-2

tions through integrative analyses. However, harmonizing such datasets requires integration3

approaches to be not only computationally scalable, but also capable of preserving a wide range4

of fine-grained cell populations. We created Portal, a unified framework of adversarial domain5

translation to learn harmonized representations of datasets. With innovation in model and6

algorithm designs, Portal achieves superior performance in preserving biological variation during7

integration, while having significantly reduced running time and memory compared to existing8

approaches, achieving integration of millions of cells in minutes with low memory consumption.9

We demonstrate the efficiency and accuracy of Portal using diverse datasets ranging from10
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mouse brain atlas projects, the Tabula Muris project, and the Tabula Microcebus project.11

Portal has broad applicability and in addition to integrating multiple scRNA-seq datasets, it12

can also integrate scRNA-seq with single-nucleus RNA-sequencing (snRNA-seq) data. Finally,13

we demonstrate the utility of Portal by applying it to the integration of cross-species datasets14

with limited shared-information between them, and are able to elucidate biological insights15

into the similarities and divergences in the spermatogenesis process between mouse, macaque,16

and human.17

Introduction18

Advances in single-cell sequencing have enabled identification of novel cell types [1, 2], in-19

vestigation of gene regulation networks [3, 4], and understanding of cellular differentiation20

processes [5, 6]. As single-cell technologies rapidly evolved over recent years, its experimental21

throughput substantially increased, allowing researchers to profile increasingly complex and22

diverse samples, and accelerating the accumulation of vast numbers of rich datasets over time23

[7, 8, 9]. Integrative and comparative analyses of such large-scale datasets originating from24

various samples, different platforms and data types, as well as across multiple species, offer25

unprecedented opportunities to establish a comprehensive picture of diverse cellular behaviors.26

Integration is a critical step, to account for heterogeneity of different data sources when taking27

advantage of single-cell data from different studies [10]. Thus, integration methods that can28

efficiently and accurately harmonize a wide range of data types are essential for accelerating29

life sciences research [11].30

Although integration methods for single-cell transcriptomics analysis have evolved along31

with single-cell sequencing technologies, the rapid accumulation of new and diverse single-cell32

datasets has introduced three major challenges to the integration task. First, as the sample size33

of each single-cell dataset grows dramatically, numerous extensive datasets with hundreds of34

thousands or even millions of cells have been produced [8, 9, 12]. The emergence of large-scale35

datasets requires integration methods to be fast, memory-efficient, and scalable to millions36

of cells. Second, technology now allows effective, comprehensive characterization of complex37

organs, containing rare subpopulations of cells that can now be captured, albeit in small38

numbers, thanks to the scale of profiling that is now possible [7, 13]. Investigation into high-39

level heterogeneity among cell populations is essential for understanding the mechanism of40
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complex biological systems. Hence, the ideal integration method needs to carefully preserve fine-41

grained cell populations from each atlas-level dataset. Third, the biological origins of datasets42

has expanded in diversity, with data now spanning across not only different technological43

platforms and data types, different individual donors, but even across different species, which44

can be especially interesting for evolutionary studies [14, 15, 16]. Integrative analysis of such45

diverse datasets would allow researchers to unify resources to address a wider range of biological46

questions. Recent single-cell atlasing efforts are a primary example of these challenges – various47

human tissue atlases [12, 17], mouse multi-tissue atlases [7, 18], and non-human primate atlases48

[19, 20] have been generated, culminating in data from millions of single cells and single49

nuclei. Both within and across atlas comparisons are of interest. To perform integrative and50

comparative analyses based on such diverse data sources, there is an urgent need for methods51

that can flexibly account for heterogeneous dataset-specific effects, while maintaining a high52

level of integration accuracy.53

Many methods have been developed to align single-cell datasets [10], including Harmony54

[21], Seurat [22], online iNMF [23], fastMNN [24], Scanorama [25] and BBKNN [26]. Several55

of these methods that were designed for large datasets at the time of publication are now56

less attractive in terms of scalability in the face of atlas-level dataset sizes. For instance, a57

representative category of methods leverages the mutual nearest neighbors (MNN) to perform58

data alignment. These MNN-based methods, such as Seurat, fastMNN and Scanorama, require59

identification of MNN pairs across datasets, thus the time and memory costs quickly become60

unbearably high when the dataset exceeds one million cells. Another limitation of existing61

methods is that they are mainly targeted towards integrating datasets of less complex tissues,62

utilizing strategies such as MNN, matrix factorization, and soft-clustering to capture major63

biological variations. With these strategies, inaccurate mixing of different cell types can be64

avoided when clear clustering patterns are present; but when dealing with more complex tissues,65

they tend to overcorrect fine-grained cell subpopulations, resulting in the loss of power in66

revealing interesting biological variations. Lastly, most existing methods are designed to correct67

batch effects caused by technical artifacts. To this end, a number of methods, like BBKNN68

and fastMNN, assume that the biological variation is much larger than the variation of batch69

effects. This assumption may not be true when applied across data types and species.70

To simultaneously address the above three challenges, we created Portal, a machine learning-71
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based algorithm for aligning atlas-level single-cell datasets with high efficiency, flexibility, and72

accuracy. Viewing datasets from different studies as distinct domains with domain-specific73

effects (including technical variation and other sources of unwanted variation), Portal achieves74

extraordinary data alignment performance through a unified framework of domain translation75

networks that incorporates an adversarial learning mechanism [27]. To find the correspondence76

between two domains, our domain translation network utilizes an encoder to embed cells from77

one domain into a latent space where domain-specific effects are removed, and then uses a78

generator to map latent codes to another domain. The generator simulates the generation79

process of domain-specific effects. In each domain, a discriminator is trained to identify where80

poor alignment between the distributions of original cells and transferred cells occurs. The81

feedback signal from the discriminator is used to strengthen the domain translation network82

for better alignment. The nonlinearity of encoders and generators in the adversarial domain83

translation framework enables Portal to account for complex domain-specific effects. In contrast84

to existing domain translation methods [28, 29, 30], Portal has the following unique features.85

First, Portal has a uniquely designed discriminator which can adaptively distinguish domain-86

shared cell types and domain-unique cell types. Therefore, Portal will not force the alignment87

of domain-unique cell types, avoiding the risk of overcorrection. Second, without using any cell88

type label information, three regularizers of Portal can guide domain translation networks to89

find correct correspondence between domains, account for domain-specific effects, and retain90

biological variation in the latent space. Third, through a tailored design of light-weight neural91

networks and mini-batch optimization accelerated by graphics processing units (GPUs), Portal92

can scale up to datasets containing millions of cells in minutes with nearly constant memory93

usage. With the above innovations in model and algorithm designs, Portal enables fast and94

accurate integration of atlas-level datasets across samples, technological platforms, data types,95

and species.96

Through integration of heterogeneous collections of atlas-level single-cell RNA sequencing97

(scRNA-seq) data, Portal shows its superiority over state-of-the-art alignment algorithms98

in terms of both computational efficiency and accuracy. We then show that Portal can99

accurately align cells from complex tissues profiled by scRNA-seq and single-nucleus RNA100

sequencing (snRNA-seq), and also perform cross-species alignment of the gradient of cells in101

the spermatogenesis process, demonstrating Portal’s versatility and power for a broad range of102
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applications. Comprehensive analyses of real, expert annotated data confirm that integrated103

cell embeddings provided by Portal can be reliably used for identification of rare cell populations104

via clustering or label transfer, studies of differentiation trajectories, and transfer learning105

across data types and across species. Portal is now publicly available as a Python package106

(https://github.com/YangLabHKUST/Portal), serving as an efficient, reliable and flexible107

tool for integrative analyses.108

Results109

Method Overview: Portal learns a harmonized representation of dif-110

ferent datasets with adversarial domain translation.111

Expression measurements from different datasets fall into different domains due to the existence112

of domain-specific effects, including technical variation and other sources of unwanted variation113

(Fig. 1a), causing difficulty when performing joint analyses. Without loss of generality, here we114

consider two domains, X and Y . We assume that domain X and domain Y can be connected115

through a low-dimensional shared latent space Z, which captures the biological variation and116

is not affected by the domain-specific effects. By taking the measurements of cells from X and117

Y as inputs, we aim to learn a harmonized representation of cells in latent space Z to obtain118

data alignment between X and Y .119

We achieve the above goal through a unified framework of adversarial domain translation,120

namely “Portal”. Domains and the shared latent space are connected by encoders and121

generators (Fig. 1b). Encoder E1(·) : X → Z is designed to remove the domain-specific122

effects when mapping cells from X into Z, and generator G1(·) : Z → X is designed to123

simulate the domain-specific effects when mapping cells from Z into X . By symmetry, encoder124

E2(·) : Y → Z and generator G2(·) : Z → Y are designed with the same role in connecting125

Y and Z. To transfer cells between Y and X through shared latent space Z (Fig. 1b),126

encoder E2(·) and generator G1(·) work together to form one domain translation network127

G1(E2(·)) : Y → Z → X . Clearly, encoder E1(·) and generator G2(·) form another domain128

translation network G2(E1(·)) : X → Z → Y. To achieve the mixing of original cells and129

transferred cells, discriminators D1(·) and D2(·) are deployed in domains X and Y to identify130

where poor mixing occurs (Fig. 1c). The discriminators’ feedback then guides the domain131

translation networks to improve the mixing.132
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However, the well mixing of original cells and transferred cells in each domain does not133

imply extraordinary data alignment across domains. First, a domain-unique cell population134

should not be mixed with cells from another domain. Second, cell types A and B in domain135

X could be incorrectly aligned with cell types B and A in domain Y, respectively, although136

the distributions of original cells and transferred cells are well mixed. To address these issues,137

Portal has the following unique features, which distinguishes it from existing adversarial domain138

translation frameworks [28, 29]. On one hand, we deploy the tailored design of discriminators139

D1(·) and D2(·) such that they can distinguish domain-unique cell types from cell types shared140

across different domains. The domain-unique cell types will be treated as outliers and left141

in the discriminator’s inactive region (Fig. 1c). In such a way, these cell types will not be142

enforced for alignment, avoiding the risk of overcorrection. On the other hand, we design three143

regularizers to find correct correspondence across domains and avoid incorrect alignment when144

the distributions are well mixed.145

Specifically, let x and y be the samples from domains X and Y , respectively. We consider146

the following framework of adversarial domain translation,147

min
{E1,G1,E2,G2}

max
{D1,D2}

LX (D1, E2, G1) + LY(D2, E1, G2),

subject to RAE(E1, G1, E2, G2) ≤ tAE,

RLA(E1, G1, E2, G2) ≤ tLA,

Rcos(E1, G1, E2, G2) ≤ tcos.

(1)

In model (1), LX (D1, E2, G1) := E[logD1(x)]+E[log(1−D1(G1(E2(y))))] and LY(D2, E1, G2) :=148

E[logD2(y)] +E[log(1−D2(G2(E1(x))))] are the objective functions for adversarial learning of149

domain translation networks G1(E2(·)) and G2(E1(·)) in X and Y , respectively. Discriminators150

D1(·) and D2(·) are trained to distinguish between “real” cells (i.e. original cells in a domain),151

and “fake” cells (i.e. transferred cells generated by domain translation networks) by minimizing152

LX + LY , while the domain translation networks are trained against the discriminators by153

maximizing LX +LY . These three regularizers RAE, RLA and Rcos play a critical role in finding154

correct correspondence of cells between two domains, accounting for domain-specific effects,155

and retaining biological variation in the latent space (Fig. 1d). More specifically, the first156

regularizer RAE := 1
p
{E [‖x−G1(E1(x))‖22] +E [‖y −G2(E2(y))‖22]}, where p is the dimension-157

ality of domains X and Y, requires the autoencoder consistency in domains X and Y; the158

second regularizer RLA := 1
q
{E [‖E1(x)− E2(G2(E1(x)))‖22] + E [‖E2(y)− E1(G1(E2(y)))‖22]},159
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where q is the dimensionality of Z, imposes the consistency constraint in the latent space;160

and the third regularizer Rcos := E
[
1− <x,G2(E1(x))>

‖x‖2‖G2(E1(x))‖2

]
+ E

[
1− <y,G1(E2(y))>

‖y‖2‖G1(E2(y))‖2

]
introduces161

the cross-domain correspondence by preserving the cosine similarity between a sample and162

its transferred version; tAE, tLA and tcos are their corresponding constraint parameters. More163

detailed explanation can be found in the Method section.164

We solve the above optimization problem via alternating updates by stochastic gradient165

descent. The algorithm is extremely computationally efficient with the support of stochastic166

optimization accelerated by GPUs. After the training process, Portal learns a harmonized167

representation of different domains in shared latent space Z. Samples from X and Y can168

be transferred into latent space Z to form an integrated dataset {E1(x)}x∈X ∪ {E2(y)}y∈Y169

using encoders E1(·) and E2(·), facilitating the downstream integrative analysis of cross-domain170

single-cell datasets.171

Accurate integration of atlas-level datasets within minutes and re-172

quiring lower memory consumption compared to other methods.173

The rapid accumulation of large-scale single-cell datasets requires integration algorithms174

to efficiently handle datasets containing millions of cells without loss of accuracy. For a175

comprehensive comparison, we first benchmarked Portal against multiple methods, including176

Harmony [21], Seurat v3 [22], online iNMF [23], fastMNN [24], Scanorama [25] and BBKNN177

[26], in terms of integration performance. Using massive scRNA-seq datasets from diverse tissue178

types with curated cell cluster annotations, including mouse spleen, marrow, and bladder [7], we179

quantitatively evaluated the integration performance of each method. We evaluated alignment180

performance, which can sometimes be interpreted as batch effects removal performance, using181

k-nearest neighbor batch-effect test (kBET) [32]; the higher the kBET score, the higher the182

degree of mixing across datasets. We also assessed cluster identity preservation performance183

using the adjust rand index (ARI) and average silhouette width (ASW) metrics. Using the184

authors’ cell type annotations as ground truth, higher ARI and ASW scores denote that correct185

cell type identities are preserved after integration, while lower scores indicate inappropriate186

merging of cell types during integration. Based on these metrics, we found that in general,187

fastMNN, Scanorama, and BBKNN have less satisfactory integration performance compared to188

the other four methods (Figs. 2, S3 and S4): as indicated by the relatively lower kBET scores189
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Figure 1: Overview of Portal. a. Portal regards different single-cell datasets as different

domains. Joint analyses of these datasets are confounded by domain-specific effects, representing

the unwanted technical variation. b. Portal employs encoders E1(·), E2(·) to embed the

biological variation of domains X and Y into a shared latent space Z, where domain-specific

effects are removed. The generating process of domain-specific effects are captured by two

generators G1(·) and G2(·). Encoder E1(·) and generator G2(·) form a domain translation

network G2(E1(·)) mapping from X to Y; Encoder E2(·) and generator G1(·) form another

domain translation network mapping from Y to X . c. Encoders and generators are trained

by competing against specially designed discriminators D1(·) and D2(·). In each domain, a

discriminator is trained to distinguish between original cells in this domain and cells transferred

from another domain, providing feedback signals to assist alignment. To prevent overcorrection

of domain-unique cell types, the discriminators in Portal with the tailored design are also

able to distinguish between domain-unique cell types and domain-shared cell types. With this

design, Portal can focus only on merging cells of high probability to be of domain-shared cell

types, while it remains inactive on cells of domain-unique cell types. d. Portal leverages three

regularizers to help it find correct and consistent correspondence across domains, including the

autoencoder regularizer, the latent alignment regularizer and the cosine similarity regularizer.

of these three methods, we found that observable batch effects still exist in the integration190

results they produced (Fig. 2a); in addition, their ARI and ASW metrics are also lower (Fig.191

2b).192

Among those methods with high user popularity, Harmony, Seurat, and online iNMF193
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a b

Figure 2: Comparison of integration methods based on mouse spleen data. We

integrated mouse spleen scRNA-seq datasets profiled by 10X Genomics (10X) and SMART-seq2

(SS2). a. UMAP [31] plots colored by profiling methods and cell types. b. Alignment (kBET)

and cluster preservation performance (ARI and ASW) of compared methods evaluated on the

mouse spleen data.

also showed the best alignment performance results. To offer precise and robust integration194

performance, Seurat [22] utilizes the detection of mutual nearest neighbors (MNN) to build195

correspondence between datasets in the shared embedding space obtained by applying canonical196

correlation analysis (CCA). Harmony [21] learns a simple linear correction for dataset-specific197

effects by running an iterative soft clustering algorithm, enabling fast computation on large198

datasets. Online iNMF [23] is a recently developed approach based on widely used integration199

method LIGER [33]. It extends LIGER’s non-negative matrix factorization to an iterative200

and incremental version to improve its scalability, while it has nearly the same performance201

as LIGER. For the remainder of this study, we focus our discussion on comparisons between202

Portal and these three high-performing and popular methods (Fig. 3) in the main text. The203

comparisons with other methods are provided in Supplementary Information (Fig. S5).204

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468892
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

c

b

Figure 3: Benchmark of Portal, Harmony, Seurat and online iNMF. a, b. Running

time and peak running memory required by benchmarked methods. The datasets were sampled

from two mouse brain atlas datasets (n = 100, 000, 250, 000, 500, 000, and 1, 100, 167). Seurat

requires 24.52 GB on the dataset with 100, 000 cells, which is not comparable to the other three

benchmarked methods in terms of peak running memory usage. c. Alignment (kBET) and

cluster preservation performance (ARI and ASW) evaluated using three shared tissues from two

mouse brain atlases (profiled by Drop-seq and 10X), including cerebellum, hippocampus, and

thalamus. Cluster preservation performance was assessed based on fine-grained annotations

provided by the original publications [8, 9]. A full comparison among all methods is provided

in Supplementary Information (Fig. S5).

Next, we evaluated the speed, memory usage, alignment quality, and integration accuracy205

using a more challenging integration task. We used two mouse brain atlases [8, 9] as bench-206

marking datasets for a more in-depth comparison of Portal and three other methods. One atlas207

contains Drop-seq data of 939,489 cells, and another one contains 10X Genomics (10X) data208

of 160,678 cells. These two mouse brain atlases have data from three shared brain regions:209

cerebellum, hippocampus, and thalamus. There are many small clusters of neuron subtypes210

in these datasets, where gene expressions between subclusters could have a relatively small211

difference. Thus, these datasets are more challenging to integrate compared to data with clear212

clustering patterns.213
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First, Portal has superior integration accuracy even when handling datasets which contain214

many subclusters with small difference. The ARI and ASW show that Portal outperforms215

other state-of-the-art methods in cluster identity preservation. In particular, for all three brain216

regions tested, Portal has the highest ARI score among all the benchmarked methods (Fig. 3c).217

Second, Portal also outperforms the other three methods on scalability, in terms of time218

and memory consumption. For this benchmark test, we obtained datasets from the original219

full-sized datasets by combining the two atlases and subsampling proportionally from each220

atlas, with each dataset having increasing sample size ranging from 100,000 to 1,100,167 (full221

dataset). The running time and peak running memory of all methods were recorded using222

these datasets on the same GPU server. The results show that Portal’s running time and peak223

running memory remained almost constant even when the sample size increased dramatically224

(Fig. 3a, b). Compared to the other three methods, the running time required by Portal was225

also substantially less (Fig. 3a). On the dataset containing 500,000 cells, Portal’s running226

time was 80 seconds; when number of cells grew to 1,100,167, Portal’s running time only227

increased to 120 seconds. In comparison, Harmony and online iNMF both needed more than228

40 minutes to integrate 500,000 cells and more than 100 minutes to complete the integration229

of the full dataset. The running time of Seurat increased most rapidly among the compared230

methods. It took as much as 511 minutes (over 8.5 hours) to integrate the 500,000-cell dataset.231

The computational efficiency of Portal is owing to two important factors in its design: 1) its232

algorithm takes advantage of GPU-accelerated stochastic optimization, such that Portal reads233

data in mini-batches from the disk rather than having to load the entire dataset at once, which234

enables fast integration of large single-cell datasets using small amounts of memory; and 2)235

lightweight neural networks are adopted in Portal to further improve computational efficiency.236

As such, Portal is also the most memory-efficient approach among the benchmarked methods237

(Fig. 3b). Peak running memory required by Portal ranged from 0.10 GB on 100,000-cell238

dataset to 0.29 GB on the full million-cell dataset. Notably, Portal’s lightweight networks and239

mini-batch stochastic optimization algorithm enable us to control GPU peak running memory240

usage at a constant level of 0.06 GB. Among compared methods, online iNMF used less memory241

than Harmony and Seurat when the sample size became larger than 500,000, because it is also242

trained in mini-batches. However, its peak running memory was 2.10 GB on the million-cell243

dataset, which is 6 times more than Portal’s. Seurat required remarkably more memory usage244
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than the other three methods. For clarity of visualization, we did not display the peak running245

memory required by Seurat as it ranged from 24.52 GB on the 100,000-cell dataset to 276.41246

GB on the 500,000-cell dataset.247

Finally, and importantly, Portal’s high performance in speed and memory consumption does248

not compromise its ability to align cell type clusters. The kBET shows that Portal’s alignment249

ability is comparable to, if not better than, the other benchmarked methods, indicating that250

Portal is capable to effectively remove domain-specific effects.251

Portal preserves subcluster and small cluster identities in complex252

tissues thereby facilitating identification of rare subpopulations.253

When integrating complex tissues, one problem that can arise is the inadvertent loss of small254

cell populations and subpopulations. Due to more nuanced differences between clusters, or due255

to the imbalance in cell numbers for very small cell populations, these “fine-grained” groups of256

cells may become inappropriately combined with other groups after integration. In the brain,257

for example, there are many subpopulations of neurons which are distinguished from each other258

using a few key gene markers while still all bearing the neuron signature; furthermore, some of259

these neuronal subtypes could be rare compared to other subtypes. To demonstrate that Portal260

can preserve the nuanced information of such small cell populations and subpopulations, we261

performed further analysis on the mouse hippocampus tissue integration results. Both mouse262

brain atlas datasets contain extensive data for this brain region (Fig. 4), and both studies263

identified a wide range of transcriptionally distinct cell subpopulations, including a variety264

of neuron subtypes, whose nuanced transcriptional differences should ideally be preserved by265

integration methods.266

After applying Portal and the other three benchmarked methods to integrate the data, we267

used the integrated cell representations to perform clustering. Using the Louvain method [34]268

with default resolution, we obtained 29 (Portal), 29 (Harmony), 25 (Seurat) and 30 (online269

iNMF) clusters, respectively (Fig. S6). Particularly, we focused on one region where the cell270

proportions between two datasets were highly unbalanced, as marked in Fig. 4a. Only a271

few of cells in this region are from the 10X dataset, making it challenging to build alignment272

between datasets while preserving subpopulations from the Drop-seq dataset. In the original273

publication [8], cells from the Drop-seq dataset within the marked region were all annotated274
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a

c

b

Figure 4: Preservation of fine-grained neuron subpopulations in the integration of

hippocampus datasets. a. We visualized integration results from Portal, Harmony, Seurat

and online iNMF of hippocampus datasets profiled by Drop-seq and 10X with UMAP. Top

panels are UMAP plots colored by profiling methods. Middle and bottom panels are UMAP

plots of cells from the 10X dataset, the Drop-seq dataset after integration respectively, colored

by fine-grained annotations (c). b. We marked a region containing three distinct neuron

subpopulations. Results from Louvain clustering algorithm were presented for a comparison

of cluster identity preservation performance. c. Cell type annotations and proportions of the

two datasets from their original publications [8, 9]. The comparison among proportions of

subpopulations was visualized by the sizes of corresponding dots.

as neurons but further classified into three transcriptionally distinct subpopulations, namely:275

Cbln1+/Grp88+ medial entorhinal cortex neurons; Slc17a6+ neurons; and Cbln4+ neurons.276

Among the benchmarked methods, Portal was the only method that clearly clustered these277
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cells into three coherent groups in the integrated embedding space. Specifically, clusters 4, 13,278

26 identified by the Louvain method recovered the Slc17a6+ neuron; Cbln1+/Grp88+ medial279

entorhinal cortex neuron; and the Cbln4+ neuron subpopulations, respectively (Fig. 4b). Each280

cluster was confirmed by the high expression level of the annotated marker genes (Fig. S7a).281

Notably, these three groups only accounted for 4.79%, 1.76% and 0.32% of the total sample282

size, respectively, demonstrating Portal’s ability to preserve identities of rare subpopulations.283

However, the differences among these three subpopulations were not well preserved by the other284

three methods, making it difficult to detect them each distinctly using the Louvain clustering285

method (Fig. 4a, b). As shown in Fig. S7c, we also identified eight protein coding genes286

that were the most significantly differentially expressed among clusters, indicating the different287

functions of each of the three neuron subtypes. Cluster 4 showed high expression levels of288

Camk2n1, Map1b, Nrgn, Syt1, and no detectable expression of Camk2d, Igfbp5, Nr4a2 and289

Ntng1. A different pattern was observed in cluster 13: High expression of Camk2d, Camk2n1,290

Map1b and Syt1, and no detectable expression of the other four genes. Cluster 26, meanwhile,291

showed moderate levels of expression of all eight genes. In the marked region, cells from the292

10X dataset were mainly concentrated in cluster 4. The alignment by Portal was confirmed293

by the consistent gene expression levels seen in cluster 4 between the two datasets (Fig. S7b).294

Besides the eight differentially expressed genes, we also examined a larger set of genes, and295

computed the cross correlation of these genes pairwise between cells from all three groups.296

This analysis showed that cells within each cluster had higher similarity in gene expression297

than cells from other clusters, further showing the biological difference between these three298

clusters that should not be mixed after integration. The above results highlight Portal’s power299

to preserve rare cell types (Fig. S7d).300

The integrative analysis on the hippocampus tissue demonstrates Portal’s ability to maintain301

nuanced transcriptional differences for small subpopulations. This means that Portal can also302

be used to “call out” rare subpopulations in one dataset based on integration with another303

dataset via label transfer. To illustrate this feature, we take 10X and SMART-seq2 (SS2) data304

generated for a mouse lung scRNA-seq atlas [7] as an example: the typically larger sample size305

of the 10X dataset facilitates powerful clustering analyses for identification of cell types; while306

the greater sequencing depth and sensitivity of SS2 enables deeper investigation into cell biology307

[35]. To leverage the different strengths of the two technologies, we used Portal to perform308
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integrated analysis on 1,676 SS2 cells and 5,404 10X cells (Fig. S8a). Specifically, we defined309

the 10X dataset annotations from the original publication [7] as reference labels (Fig. S8b),310

then made use of the Portal’s integration results to identify cell types for the SS2 dataset based311

on these reference labels. After integration, for each SS2 cell, label transfer was performed312

by detecting its nearest neighbors among 10X cells. From this analysis, we identified four313

subpopulations of myeloid cells for the SS2 dataset, namely alveolar macrophages, dendritic314

cell and interstitial macrophages, classical monocytes, and non-classical monocytes (Fig. S8d).315

Transferred labels of these four subpopulations were validated by known marker gene expression316

levels [36]. For example, compared to classical monocytes, non-classical monocytes showed317

lower expression of Ccr2 and higher expressions of Treml4 (Fig. S9). Consistent with the gene318

expression pattern of alveolar macrophages in the 10X dataset, alveolar macrophages annotated319

by Portal in the SS2 dataset had high expression levels of marker genes Mrc1 and Siglec5.320

Notably, in the SS2 dataset, the alveolar macrophage subpopulation only accounted for 0.78%321

of total sample size, and could not be distinguished from the other SS2-profiled macrophages in322

the original publication [7]. Based on the original labels, alveolar macrophages were unidentified323

as they were labeled in a more general group named “dendritic cell, alveolar macrophage,324

and interstitial macrophage” (Fig. S8c). Making good use of the larger 10X dataset, Portal325

successfully identified extremely rare subpopulations within the SS2 dataset. We then used the326

mouse lemur bladder scRNA-seq datasets from Tabula Microcebus Consortium [37] as another327

example to demonstrate Portal’s ability for discovering rare subpopulations via label transfer.328

In this example, mouse lemur bladder tissue was also profiled by both SS2 and 10X. When we329

integrated these datasets and transferred labels from the 10X dataset to the SS2 dataset using330

Portal, we were able to distinguish a very small myofibroblast subpopulation of just 11 cells in331

the SS2 dataset from the rest of the fibroblasts (Fig. S10a). We verified their myofibroblast332

identity based on their high expressions of known marker genes ACTA2, MYH11, TAGLN [38]333

(Fig. S10b).334

Integration of comprehensive whole-organism cell atlases.335

So far, Portal has shown impressive performance in aligning tissue-level atlases where nuanced336

transcriptional differences among subpopulations can be maintained after integration. We337

next assess Portal’s capabilities under another challenging scenario: integrating two atlases338
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a

b

c d e

Figure 5: Construction of mouse cell atlas across entire organism by integrating

atlas datasets from the Tablula Muris project. We applied Portal to integrate the

datasets obtained by 10X and SS2. There were cells from unique tissues presented in the SS2

dataset. a. UMAP plots of Portal’s integration results in the shared latent space, colored by

profiling methods, cell types and tissues. b. Portal also transferred cells from the space of SS2

dataset to the space of the 10X dataset (10X space). In 10X space, 10X cells were fixed as

reference. Portal only aligned SS2 cells of shared cell types between datasets to 10X cells, while

maintaining the identities of SS2 cells belonging to tissue-unique cell types. This was achieved

by the special design of discriminator activity in Portal. c, d. Correlations among cells from

subpopulations of B cells (c) and epthelial cells (d). e. Transcriptional distinction between

macrophage and microglial cells.

across an entire organism, where one of the atlases includes many more organs and tissue339

types than the other. This is known to be problematic for some integration algorithms due to340

having “missing cell types” in one of the datasets [24]. In contrast to these approaches, Portal341

uses discriminators with tailored design in the adversarial domain translation framework to342

distinguish domain-specific cell types from cell types shared across domains automatically, and343
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is thus robust to non-overlapped tissue samples.344

To build a foundation for extensive study of cell populations across the whole organism,345

Tabula Muris Consortium [7] profiled cells from 20 tissues using a combination of SS2 (44,779346

cells) and 10X (54,865 cells) (Fig. 5). Notably, seven of these 20 tissues were only profiled by347

SS2 but not 10X: brain (myeloid and non-myeloid), diaphragm, fat, large intestine, pancreas348

and skin. We used Portal to build a comprehensive integrated mouse atlas that merges all349

the cells, and we found Portal to show extraordinary accuracy in aligning cells of the same350

cell type from the two datasets profiled by different platforms, not only in the shared latent351

space but also in both domains (Figs. 5a, b and S11). After Portal integration, tissue-specific352

cell types of SS2-only tissues, such as microglial cells in brain (myeloid), cell types in large353

intestine, and pancreatic islets cells, were all successfully and correctly remained separated354

from other cell types. The other three benchmarked methods, however, failed to retain many355

tissue-specific cell types unmixed with other cell types. For instance, they mixed microglial356

cells together with other macrophage cells, even though the data from these two cell types were357

clearly transcriptionally different (Figs. 5e, S11).358

Using this construction of a mouse cell atlas across organs, we also confirmed that the359

designed boundaries for discriminator active region in Portal (Fig. 1c) indeed helped to360

maintain the biological variation. By looking into the domain of 10X data (10X space), the361

discriminator in the 10X domain was found inactive for tissue-specific cell types that were only362

in the SS2 dataset (Fig. 5b). For these cells, Portal ensured that their identities were preserved363

by making the adversarial learning objective inactive on them automatically. Portal’s ability364

to conserve information of cell populations indicates its reliability for integrating atlas-level365

single-cell datasets across entire organisms.366

Besides the alignment between datasets, Portal’s integration result could characterize the367

similarities and differences among cell types. For example, immune cells such as B cells, T cells,368

natural killer cells (NK cells), monocytes and macrophages were profiled by both platforms369

and contained in multiple tissues including brain (myeloid), diaphragm, fat, kidney, limb370

muscle, liver, lung, mammary gland, marrow, spleen, and thymus. Portal correctly kept the371

subpopulations belonging to the same type of immune cells close to each other, revealing the372

resemblance of immune cells across different tissues. For instance, the transcriptional correlation373

of all types of B cells, containing B cells, naive B cells, immature B cells, precursor B cells, and374
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late pro-B cells confirmed such similarity (Fig. 5c). In addition, the epithelial cells of different375

tissues were identified by Portal as disjoint clusters, which was consistent with the biological376

distinction among these cell types (Fig. 5d).377

Portal successfully and efficiently aligns single-cell RNA-seq data378

and single-nucleus RNA-seq data.379

For frozen samples such as biobanked tissues, and for tissue types that have unique morphology380

or phenotypes, such as brain, fat, or bone, it can be challenging or sometimes even impossible381

to extract intact cells for scRNA-seq profiling [39, 40]. To bypass this issue, single-nucleus RNA382

sequencing (snRNA-seq) has been developed. Although nuclear transcriptomes are shown to be383

representative of the whole cell [41], distinctions between the whole cell and nucleus in terms384

of the transcript type and composition make scRNA-seq data and snRNA-seq data intrinsically385

different [39]. Aligning these two types of data is desirable, as the combined dataset enables386

joint analysis that can take advantages of both techniques, and help to improve statistical387

power for the analysis. Especially for comparing multiple complex tissues, with some cell types388

being shared and others being non-overlapping, researchers could benefit from such integrated389

joint analysis – one example being the integration of brain snRNA-seq data with scRNA-seq390

data of blood to examine similarities and differences between immune cells in each tissue391

milieu. However, due to the inherent difference in these two data types, aligning scRNA-seq392

and snRNA-seq data is not the same as batch effects correction. Compared to batch effects393

among scRNA-seq datasets, technical noise and unwanted variation arising from different data394

types are often more complex and have higher strength [39, 42]. Thus, using standard batch395

effects correction to integrate across data types may result in loss of alignment accuracy or396

important biological signals.397

We evaluated Portal’s ability to integrate snRNA-seq data and scRNA-seq data using three398

mouse brain atlas datasets, including one snRNA-seq dataset profiled by SPLiT-seq [43], and399

two scRNA-seq datasets profiled by Drop-seq and 10X [8, 9]. In this task, we applied integration400

methods to harmonize these three atlases across all brain regions. To test the accuracy of401

integration results, we only used cells that had annotations provided by the authors in each402

atlas project. After selecting cells with cell type annotations, 319,359 cells in the Drop-seq403

dataset, 160,678 cells in the 10X dataset, and 74,159 nuclei in the SPLiT-seq remained for404
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integration.405

Prior to any integration, the raw datasets were clustered by the experimental method rather406

than the cell type (Fig. S12a), and shared cell types between the three datasets did not align407

well, indicating the initial discrepancy between the three large datasets. After integration,408

UMAP visualizations showed that the different alignment methods gave varying results. Portal409

(Fig. S12b) and Seurat (Fig. S12d) achieved the best alignment of data across different410

methods, showing good mixing of cells annotated with the same cell type label, while also411

preserving subcluster data structure in the integrated results. In particular, the alignment of412

scRNA-seq (10X, Drop-seq) and snRNA-seq (SPLiT-seq) datasets was comparably good as that413

of the two scRNA-seq datasets, indicating successful alignment between the two data types414

without loss of biologically important variations between clusters. Online iNMF (Fig. S12e),415

although it successfully clustered and aligned the same cell types together, within each cluster416

the streaky pattern suggested potential numerical artefacts in the integrated data. Furthermore,417

online iNMF alignment resulted in loss of biological variation, which was most easily observable418

in the coalescence of the previously distinct neuron subpopulations (Fig. S12a) into one large419

amorphous cluster (Fig. S12e). Harmony, however, showed poor mixing of the snRNA-seq420

data in some of the cell types, such as the astrocytes, where the scRNA-seq datasets were421

well-mixed after alignment, but the snRNA-seq data were not mixed well with the rest (Fig.422

S12c). Similar to online iNMF, some of the neurons’ subcluster structure appeared to be lost423

after the integration by Harmony. Overall, Portal and Seurat presented the best scRNA-seq424

and snRNA-seq data alignment performance; however, not including data preprocessing time,425

Seurat took over 17 hours to complete the task, while Portal only took 87 seconds.426

Portal aligns spermatogenesis differentiation process across multiple427

species.428

Portal does not need to specify the structure and the strength of unwanted variation when429

integrating datasets. Instead, it can flexibly account for general difference between datasets,430

including batch effects, technical noises, and other sources of unwanted variation, by nonlinear431

encoders and generators in the adversarial domain translation framework. Therefore, Portal is432

also applicable for merging datasets with intrinsic biological divergence, revealing biologically433

meaningful connections among these datasets. In this section, we demonstrate that Portal434
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a

b

c

Figure 6: Integration of spermatogenesis datasets across different species, including

mouse, macaque and human. a. UMAP plot of Portal’s result colored by species, as

well as UMAP plots of integrated mouse, macaque, human datasets visualized separately. b.

Ten clusters were obtained by applying the Louvain clustering algorithm, facilitating detailed

comparative analysis across species. c. Portal identified 239 highly variable genes that are

shared in the spermatogenesis process across all three mammalian species.

can successfully align scRNA-seq datasets of the testes from different species including mouse,435

macaque and human (Fig. 6).436

Compared to merging datasets from the same species, cross-species integration poses437

additional unique challenges. Although the transcriptomes of different species may share438

expression of homologous or orthologous genes, the number of shared genes varies between439
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different species and is limited. Furthermore, two species may have genes with very similar440

sequence and be annotated in the transcriptome by the same name, but have altered function,441

which means that expression of the same gene in different species can denote different cell442

function [44]. In other words, the amount of information one can utilize for integration becomes443

limited and fuzzier while the variation across datasets becomes far larger, with limited number444

of shared genes and even fewer shared highly variable genes across different species. Nonetheless,445

cross-species integration can be very meaningful despite its challenges, as it can generate quick446

draft annotations of new or less-studied species’ atlases and cell types via label transfer from447

well-studied species. This saves time in the manual annotation process of single-cell tissue atlas448

generation for new species. Such integration can also enable detailed comparisons between449

species, such as comparisons of cell type composition, discovery of cell types unique to a450

particular species, or cross-species comparisons of the same cell types.451

Mammalian spermatogenesis is a continuous and irreversible differentiation process from452

spermatogonial stem cells (SSCs) to sperm cells [45, 46, 47, 48, 16]. Due to the unique453

degenerate nature of the Y chromosome (Y-chr), Y-chr gene expression is intricately and454

tightly regulated in the spermatogenesis process through meiotic sex chromosome inactivation455

(MSCI) [49, 50, 51, 52, 53]. Interestingly, Y-linked genes are highly divergent between different456

species, including between closely related primates such as the chimpanzee, macaque, and457

human [49, 54, 55]; yet MSCI as a process is conserved across many species and is required for458

male fertility [52, 56]. This evidence suggests that while the evolution of genes on the Y-chr459

generated diverse species-specific genetic combinations, the tight control of gene expression460

through MSCI is required to ensure genetic stability [49]. Recently, cross-species comparisons of461

“escape genes” that are able to maintain or re-activate their expression despite MSCI repression462

during spermatogenesis have generated fascinating insights on evolutionary biology, and on463

sex chromosome evolution [51, 53, 57, 16]. In this biological context, integrating datasets464

with continuous and gradient developmental trajectories, such as for spermatogenesis data,465

requires integration methods to preserve the continuous structure of each dataset, while still466

providing high accuracy of cell type alignment between datasets. This is more difficult when,467

like in spermatogenesis data, there are no distinct clusters, making integration of such data a468

particularly difficult task. Here, we perform cross-species integration of testes datasets from469

three species, including one mouse [47], one macaque and one human [16], aligning the different470
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stages of spermatogenesis across species thereby highlighting unique features of each. The471

successful integration of these spermatogenesis trajectories serves as a demonstration of the472

power of Portal in complex and low-information data alignment, and how it can facilitate the473

annotation and discovery process for new single-cell tissue atlases.474

We first annotated the mouse sample according to the pattern of marker genes (Sper-475

matogonia: Sycp1, Uchl1, Crabp1, Stra8; Spermatocytes: Piwil1, Pttg1, Insl6, Spag6; Early476

spermatids: Tssk1, Acrv1, Spaca1, Tsga8 ; Late spermatids: Prm1, Prm2, Tnp1, Tnp2) [45, 46].477

Then we used Portal to harmonize the three samples, where the integration was accomplished478

in the mouse sample domain: The cells from the mouse sample were used as reference, and479

cells from the other two species were mapped to the mouse sample domain by Portal. Based on480

our annotation of the mouse sample, we transferred the broad cell type labels to cells from the481

macaque and human samples according to the nearest neighbors, using the alignment given by482

Portal (Fig. 6a). To check whether the alignments were correct for broad cell type identities, we483

visualized the UMAPs for cells from each species labeled by their original published annotations484

[16], and we confirmed concordant cell type integration across species (Fig. S13). Then, we used485

Louvain clustering algorithm to cluster the cells from all three species based on integrated cell486

representations. Ten clusters were found, and the cluster names were relabeled by their order487

of progression from the spermatogonia along the developmental trajectory (Fig. 6b). We then488

visualized the expression of known spermatogenesis markers [45, 46, 16] in each Louvain cluster489

and found that the Louvain clusters generated by Portal’s alignment clearly captured the key490

transcriptomic features for each stage of spermatogenesis, and correctly identified cells from491

each stage for all three species (Fig. S14, S15). Furthermore, each Louvain cluster represented492

a more fine-grained classification of cells within the labeled broad spermatogenesis cell types.493

Using these clusters we assessed the transcriptomic changes throughout the differentiation494

trajectory with higher resolution (Fig. S14, S15). Notably, many of the marker genes known495

to define stages of spermatogenesis in human were not shared or sometimes not expressed in496

macaque and/or mouse scRNA-seq data. For example, human genes SYCP3, YBX2, SPACA4,497

H1FNT, PRM1, and TNP1 were known to mark human spermatogenesis progression, but they498

were absent in the macaque dataset. As only highly variable genes that were expressed in all499

three species were considered in the integration process, these genes were not used by Portal.500

However, they showed clear expression in the cell clusters where they were expected to be501

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.16.468892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468892
http://creativecommons.org/licenses/by-nc-nd/4.0/


expressed after integration (Fig. S15), confirming the correctness of Portal’s integration result.502

The above results show that Portal can provide an accurate integration even for genes not503

measured by all three samples.504

Cross-species data integration can be a quick and easy way to generate draft cell atlas505

annotations for new species via label transfer from well-annotated species, but moreover, such506

integrated data can be used to highlight interesting biological features of shared cell types. In507

our Louvain clusters for spermatogenesis, for each species, we selected top 200 highly expressed508

genes of every cluster. By taking the intersection of those genes across three species, we then509

identified 239 highly variable genes that are shared in the spermatogenesis process across all510

three mammalian species (Fig. 6c). For the highly expressed genes that were unique to only one511

species, we compared their expressions across all three species (Fig. S16). Such comparisons512

could give insight into shared and divergent features of spermatogenesis across different species.513

Discussion514

Taking advantage of machine learning methodologies, Portal is an efficient and powerful tool for515

single-cell data integration that easily scales to handle large datasets with sample sizes in the516

millions. As a machine learning-based model, Portal is easy to train, and its training process is517

greatly accelerated by using GPUs. Meanwhile, mini-batch optimization allows Portal to be518

trained with a low memory usage. Besides, it also makes Portal applicable in the situation519

where the dataset is not fully observed, but arrives incrementally.520

The nonlinearity of neural networks makes Portal a flexible approach that can adjust for521

complex dataset-specific effects. Nonetheless, according to benchmarking studies, strong ability522

for removing dataset-specific effects often comes with the weakness in conserving biological523

variation [42, 58], e.g., being prone to overcorrection. Portal overcomes this challenge by its524

model and algorithm designs. First, the boundaries of discriminator scores help Portal to525

protect dataset-unique cell types from overcorrection. Second, the use of three specifically526

designed regularizers not only assists Portal to find correct correspondence across domains, but527

also enables Portal to have high-level preservation of subcluster and small cluster identities in528

both datasets.529

Two existing popular methods are Seurat and BBKNN. Seurat often provides integration530

results with high accuracy, but also requires high computational cost, preventing its usage on531
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large-scale datasets; while BBKNN is well-known for its extremely fast speed, its comparatively532

less precise results are sometimes a concern for users (Figs. 2, S3, S4, and S5). A major advance533

of Portal over these existing state-of-the-art integration approaches is its ability to achieve534

high efficiency and accuracy simultaneously. With speed comparable or faster than BBKNN,535

and significantly lower memory requirement than BBKNN (Fig. S5a), Portal presents similar536

alignment performance as well as superior information preservation performance compared to537

that of Seurat (Figs. 2, 3a, 4b, S3 and S4).538

By leveraging the adversarial domain translation framework, Portal can build meaningful539

alignment between datasets with efficient utilization of information. From single tissue types540

to complex cell atlases, Portal showed extraordinary information preservation performance541

throughout all integration tasks. This feature of Portal is exemplified by integration of the542

spermatogenesis trajectory across three species, where only a limited number of highly variable543

genes were shared and utilized by Portal. Improvements can further be made if an effective544

way of leveraging the whole transcriptome of all species is developed, which is left for future545

work to address. Nonetheless, such cross-species integration allows biologists to easily identify546

shared and divergent cellular programs across different species, which is particularly useful547

for addressing questions of evolutionary biology. In our example of mouse, macaque, and548

human testes tissue integration, identifying genes that are primate-specific can help to generate549

hypotheses about the evolution of primates and shed light on the applicability of various animal550

models for biological research.551

Recently, two other generative adversarial networks based approaches have been proposed for552

single-cell data integration, namely cross-modal autoencoders [59] and iMAP [60]. Cross-modal553

autoencoders rely on cell type label information or paired data to obtain accurate integration554

results, and such paired information may not always be available. iMAP software faces scaling555

challenges when working on datasets of 500,000 cells or more, due to its high GPU memory556

consumption; further, as a two-stage integration method, iMAP results often rely on the MNN557

pairs detected in the first stage as anchors. By these reasons, we believe that Portal has made558

significant progress in the development of single-cell methods, as it is a unified framework559

which utilizes advanced techniques in domain translation with its tailored designs to achieve560

efficiency, scalability, flexibility and accuracy simultaneously.561

It is now clear that using single-cell technologies to assemble comprehensive whole organism562
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atlases encompassing diverse cell types is accelerating biological discovery, and this demand563

will only grow as more datasets are generated. The demand for integration of such datasets,564

along with the size of these datasets, will expand correspondingly. We expect that Portal, with565

its fast, versatile, and robust integration performance, will play a valuable and essential role in566

the modern life scientist’s single-cell analysis toolkit.567

Methods568

The model of Portal569

Expression measurements of cells from two different studies are viewed as datasets originated570

from two different domains X and Y. After standard data preprocessing of the expression571

data, Portal performs joint principle component analysis (PCA) across datasets and adopts the572

first p principal components of cells as the low-dimensional representation of cells, namely, cell573

embeddings. Portal takes the cell embeddings as the input to achieve data alignment between574

X and Y. To learn a harmonized representation of cells, Portal introduces a q-dimensional575

latent space Z to connect X and Y, where the latent codes of cells in Z are not affected by576

domain-specific effects but capture biological variation.577

Portal achieves the integration of datasets through training a unified framework of adversarial578

domain translation. Let x and y be the cell embeddings in X and Y , respectively. For domain579

X , Portal first employs encoder E1(·) : X → Z to get a latent code E1(x) ∈ Z for all x ∈ X .580

Encoder E1(·) is designed to remove domain-specific effects in X . To transfer cells from X to581

Y , Portal then uses generator G2(·) : Z → Y to model the data generating process in domain582

Y, where domain-specific effects in Y are induced. E1(·) and G2(·) together form a domain583

translation network G2(E1(·)) that maps cells from X to Y along X → Z → Y . By symmetry,584

encoder E2(·) : Y → Z and generator G1(·) : Z → X are utilized to transfer cells from Y to X585

along the path Y → Z → X .586

Portal trains domain translation network G2(E1(·)) : X → Y, such that the distribution587

of transferred cells G2(E1(x)) can be mixed with the distribution of cell embeddings y in588

domain Y . Discriminator D2(·) is employed in domain Y to identify where the poor mixing of589

the two distributions occurs. The competition between domain translation network G2(E1(·))590

and discriminator D2(·) is known as adversarial learning [27]. Discriminator D2(·) will send a591
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feedback signal to improve the domain translation network G2(E1(·)) until the two distributions592

are well mixed. By symmetry, domain translation network G1(E2(·)) : Y → X and discriminator593

D1(·) deployed in domain X form another adversarial learning pair. The feedback signal from594

D1(·) improves G1(E2(·)) until the well mixing of the transferred cell distribution G1(E2(y))595

and the original cell distribution x in domain X .596

Notice that the well mixing of the transferred distribution and the original distribution does597

not necessarily imply the correct correspondence established between X and Y. First, cells598

from a unique cell population in domain X should not be forced to mix with cells in domain Y .599

Second, cell types A and B in domain X could be incorrectly aligned with cell types B and A600

in domain Y, respectively, even if the two distributions are well mixed. These problems can601

occur because we don’t have any cell type label information as an anchor for data alignment602

across domains. To address these, Portal has the following unique features, distinguishing it603

from existing domain translation methods [28, 29]. First, Portal has a tailored discriminator604

for the integrative analysis of single-cell data, which can prevent mixing of unique cell types605

in one domain with a different type of cell in another domain. Second, Portal deploys three606

regularizers to find correct correspondence during adversarial learning; These regularizers also607

play a critical role in accounting for domain-specific effects and retaining biological variation in608

the shared latent space Z.609

We propose to train domain translation networks under the following framework:

min
{E1,G1,E2,G2}

max
{D1,D2}

LX (D1, E2, G1) + LY(D2, E1, G2), (2)

subject to RAE(E1, G1, E2, G2) ≤ tAE, (3)

RLA(E1, G1, E2, G2) ≤ tLA, (4)

Rcos(E1, G1, E2, G2) ≤ tcos, (5)

where component (2) is the objective function of adversarial learning for single-cell data inte-610

gration; components (3), (4) and (5) are regularizers for imposing the autoencoder consistency,611

the latent alignment consistency and cosine similarity to preserve cross-domain correspondence,612

respectively. We have investigated the roles of each component in Portal and provided more613

results (Figs. S1 and S2) in the Supplementary Information. We explain each component in614

more detail in the next section.615

Adversarial learning with discriminator score thresholding. The adversarial training616

between discriminators and domain translation networks is formulated as a min-max opti-617
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mization problem (2), where LX (D1, E2, G1) = E[logD1(x)] + E[log(1−D1(G1(E2(y))))] and618

LY(D2, E1, G2) = E[logD2(y)] + E[log(1 − D2(G2(E1(x))))] are the objective functions for619

adversarial learning in domain X and domain Y, respectively. Given domain translation620

network G1(E2(·)), discriminator D1(·) : X → (0, 1) is trained to distinguish the transferred621

cells G1(E2(y)) from the original cells x, where a high score (close to 1) indicates a “real622

cell” in domain X , and a low score (close to 0) indicates a “transferred cell” from domain Y.623

This is achieved by maximizing LX with respect to D1(·). Similarly, discriminator D2(·) in624

domain Y is updated by maximizing LY . Given discriminators D1(·) and D2(·), the domain625

translation networks are trained by minimizing LX + LY with respect to E1(·), G2(·) and626

E2(·), G1(·), such that the discriminators cannot distinguish transferred cells from real cells.627

This is equivalent to min{E1,G1,E2,G2} E[log(1−D1(G1(E2(y))))] + E[log(1−D2(G2(E1(x))))].628

However, direct optimization of this objective function is known to suffer from severe gradient629

vanishing [27, 61]. Therefore, we adopt the “logD-trick” [27] to stabilize the training process.630

Denote LlogD
X = −E[logD1(G1(E2(y)))] and LlogD

Y = −E[logD2(G2(E1(x)))]. In practice, we631

minimize LlogD
X + LlogD

Y = −{E[logD1(G1(E2(y)))] + E[logD2(G2(E1(x)))]} with respect to632

E1(·), G2(·) and E2(·), G1(·), instead of minimizing LX + LY = E[log(1 −D1(G1(E2(y))))] +633

E[log(1−D2(G2(E1(x))))].634

Although the above adversarial learning can make the transferred cells and real cells well635

mixed, it can falsely force cells of a unique cell population in one domain to mix with cells in636

another domain, leading to overcorrection. Consider a cell population that is present in X but637

absent in Y as an example. On one hand, discriminator D1(·) can easily identify cells from638

the unique cell population as real cells in X . Cells in the nearby region of this cell population639

have extremely high discriminator scores. Some cells in Y will be mapped into this region640

by the domain translation network G1(E2(·)), leading to incorrect mixing of cell types in X .641

On the other hand, cells transferred from X -unique population will have low D2 scores in Y.642

Discriminator D2(·) will incorrectly force the domain translation network G2(E1(·)) to mix643

these cells with real cells in domain Y . The cell identity as a domain-unique population in X644

is lost.645

From the above reasoning, domain-unique cell populations are prone to be assigned with646

extreme discriminator scores, either too high in the original domain or too low in the transferred647

domain. Such extreme scores can lead to overcorrection. To address this issue in single-cell data648
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integration tasks, we set boundaries for discriminator scores to make discriminators inactive649

on such cells. Specifically, the outputs of standard discriminators are transformed into (0, 1)650

with the sigmoid function, i.e., Di(x) = sigmoid(di(x)) = 1/(1 + exp(−di(x))), i = 1, 2, where651

di(x) ∈ (−∞,∞) is the logit of the output. We bound the discriminator score by thresholding652

its logit to a reasonable range [−t, t]:653

D̃i(x) = 1/(1 + exp(−clamp(di(x)))), (6)

where clamp(·) = max(min(·, t),−t). By clamping the logit di(x), D̃i(x) becomes a constant654

when di(x) < −t or di(x) > t, providing zero gradients for updating the parameters of encoders655

and generators. Meanwhile, D̃i(x) remains the same as Di(x) when di(x) ∈ [−t, t]. By such656

design, the adversarial learning mechanism in Portal is only applied to cell populations that657

are likely to be common across domains. In Portal, we then use this modified version of658

discriminators D̃i(·) to avoid incorrect alignment of domain-unique cell populations. For clarity,659

we still use the notation Di(·) to represent D̃i(·) hereinafter.660

Regularization for autoencoder consistency. Encoder E1(·) : X → Z and generator661

G1(·) : Z → X form an autoencoder structure, where E1(·) removes domain-specific effects662

in X , and G1(·) recovers them. Similarly, E2(·) : Y → Z and G2(·) : Z → Y form another663

autoencoder structure. Therefore, we use the regularizer in (3) for the autoencoder consistency,664

where RAE = 1
p
{E [‖x−G1(E1(x))‖22] + E [‖y −G2(E2(y))‖22]}, p is the dimensionality of X665

and Y .666

Regularization for cosine similarity correspondence. Besides the autoencoder consis-667

tency, the cosine similarity regularizer in (5) plays a critical role in data alignment between668

domains, where Rcos = E
[
1− <x,G2(E1(x))>

‖x‖2‖G2(E1(x))‖2

]
+ E

[
1− <y,G1(E2(y))>

‖y‖2‖G1(E2(y))‖2

]
is the regularizer that669

imposes the cross-domain correspondence on domain translation. The key idea is that a cell670

and its transferred version should not be largely different from each other in terms of cosine671

similarity. This is because cosine similarity is scale invariant and insensitive to domain-specific672

effects, including differences in sequencing depth and capture efficiency of protocols used673

across datasets [62, 24, 21]. Thus, the cosine similarity regularizer is helpful to uncover robust674

correspondence between cells of the same cell type across domains.675

Domain-specific effects removal in the shared latent space by latent alignment regu-676

larization. Portal decouples domain translation into the encoding process X → Z (or Y → Z)677

and the generating process Z → Y (or Z → X ). Although adversarial learning enables the do-678
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main translation networks to effectively transfer cells across domains, it can not remove domain-679

specific effects in shared latent space Z. To enable encoders E1(·), E2(·) to eliminate domain-680

specific effects in X and Y , we propose the latent alignment regularizer in (4) for the consistency681

in latent space Z, whereRLA = 1
q
{E [‖E1(x)− E2(G2(E1(x)))‖22] + E [‖E2(y)− E1(G1(E2(y)))‖22]},682

q is the dimensionality of Z, E1(x) is the latent code of a real cell x ∈ X and E2(G2(E1(x)))683

is the latent code of its transferred version, E2(y) is the latent code of a real cell y ∈ Y and684

E1(G1(E2(y))) is the latent code of its transferred version. The regularizer (4) encourages the685

latent codes of the same cell to be close to each other. This regularizer helps encoders E1(·)686

and E2(·) to remove domain-specific effects, such that the latent codes in Z preserve biological687

variation of cells from different domains.688

Algorithm. Now we develop an alternative updating algorithm to solving the optimization689

problem of adversarial domain translation with the three regularizers. To efficiently solve the690

optimization problem, we replace the constraints (3), (4) and (5) by its Lagrange form. We691

introduce three regularization parameters λAE, λLA and λcos as coefficients for the regularizers.692

The optimization problem of Portal is rewritten as693

min
{E1,G1,E2,G2}

max
{D1,D2}

LX + LY + λAERAE + λLARLA + λcosRcos. (7)

As we adopt the “logD-trick” for updating domain translation networks formed by E1(·), G2(·)694

and E2(·), G1(·), the optimization problem (7) is modified accordingly as695

min
{E1,G1,E2,G2}

max
{D1,D2}

Ladv + λAERAE + λLARLA + λcosRcos,

where Ladv stands for the adversarial learning objective, whose value is LX+LY when maximizing696

with respect to D1(·), D2(·), and it is replaced with LlogD
X +LlogD

Y when minimizing with respect697

to E1(·), G1(·), E2(·), G2(·).698

Let the parameters of the networks E1(·), E2(·), G1(·), G2(·), D1(·) and D2(·) be denoted as699

θE1 , θE2 , θG1 , θG2 , θD1 and θD2 . Then we collect the parameter sets as θE = {θE1 , θE2}, θG =700

{θG1 , θG2} and θD = {θD1 , θD2}. We use the Monte Carlo estimators to approximate expectations701

in Portal’s objective. With a mini-batch of 2m samples including {x(1),x(2), · · · ,x(m)} from X702
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and {y(1),y(2), · · · ,y(m)} from Y , the Monte Carlo estimators are given by703

L̂X =
1

m

m∑
i=1

[logD1(x
(i)) + log(1−D1(G1(E2(y

(i)))))], L̂logD
X = − 1

m

m∑
i=1

logD1(G1(E2(y
(i)))),

L̂Y =
1

m

m∑
i=1

[logD2(y
(i)) + log(1−D2(G2(E1(x

(i)))))], L̂logD
Y = − 1

m

m∑
i=1

logD2(G2(E1(x
(i)))),

R̂AE =
1

mp

m∑
i=1

[‖x(i) −G1(E1(x
(i)))‖22 + ‖y(i) −G2(E2(y

(i)))‖22],

R̂LA =
1

mq

m∑
i=1

[‖E1(x
(i))− E2(G2(E1(x

(i))))‖22 + ‖E2(y
(i))− E1(G1(E2(y

(i))))‖22],

R̂cos =
1

m

m∑
i=1

{[
1− < x(i), G2(E1(x

(i))) >

‖x(i)‖2‖G2(E1(x(i)))‖2

]
+

[
1− < y(i), G1(E2(y

(i))) >

‖y(i)‖2‖G1(E2(y(i)))‖2

]}
.

The implementation of Portal is summarized in Algorithm 1.704

Algorithm 1 Stochastic gradient descent training of Portal.

Require: Batch size m, coefficients λAE, λLA and λcos
for number of training iterations do

Sample m cells {x(1),x(2), · · · ,x(m)} from X and m cells {y(1),y(2), · · · ,y(m)} from Y .

Calculate L̂X , L̂Y , L̂logD
X , L̂logD

Y , R̂AE, R̂LA, and R̂cos.

Update discriminators by stochastic gradient descent with ∇θD [−(L̂X + L̂Y)].

Update encoders and generators simultaneously by stochastic gradient descent with

∇θE ,θG(L̂logD
X + L̂logD

Y + λAER̂AE + λLAR̂LA + λcosR̂cos).

end for

After training, cells from domains X and Y are encoded into Z to construct an integrated705

dataset, which can be applied to downstream analysis. In each domain, the original cells and706

transferred cells are also well integrated. For integration of multiple datasets, Portal can handle707

them incrementally, by transferring all other datasets into the domain formed by one dataset.708

Analysis details709

Data preprocessing. For all datasets, we used raw read or unique molecular identifier (UMI)710

matrices depending on the data source. We then performed standard data preprocessing for711

each count matrix, including log-normalization, feature selection, scaling and dimensionality712

reduction. For each dataset represented by a cell-by-gene count matrix, we first adopted the713

log-normalization, following the Seurat and Scanpy pipelines [22, 63]. For each cell, its library714

size was normalized to 10, 000 reads. Specifically, the counts abundance of each gene was715
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divided by the total counts for each cell, then multiplied by a scaling factor of 10, 000. The716

normalized dataset was then transformed to log scale by the function log(1 + x). In order717

to identify a subset of features that highlight variability across individual cells, we adopted718

the feature selection procedure from the Seurat pipeline. For each dataset, we selected K top719

highly variable genes ranked by dispersion with the control of means. In this paper, we used720

K = 4, 000 throughout all analyses except for the cross-species analysis. In the cross-species721

analysis, we used K = 3, 000 since the usage of a larger number of features would result in722

the situation that correspondence across species is dominated by the distinction (e.g., altered723

functions of genes annotated by the same name). For each selected variable gene, we centered724

and standardized its expressions across individual cells to have mean at zero and variance725

at one. After the above procedures, which were applied to individual datasets, we continued726

to preprocess data across datasets. For those datasets to be integrated, we collected genes727

that were identified as top highly variable genes in all of them as features for integration. We728

extracted the scaled data with these features from each dataset, and then concatenated them729

based on features to perform joint PCA. Top p = 30 principle components were kept for all730

dataset as inputs to Portal. For the shared latent space, we set its dimensionality to be q = 20731

throughout all analyses.732

Hyperparameter setting. Hyperparameters used in Portal are m, t, λAE, λLA, λcos, where m733

is the batch size used by Portal for mini-batch training; t is the absolute value of boundaries734

for the logit of discriminator scores (−t < di(x) < t, i = 1, 2); λAE, λLA, λcos are coefficients for735

autoencoder consistency regularizer RAE, latent alignment regularizer RLA and cosine similarity736

regularizer Rcos respectively. Throughout all analyses, we set m = 500, t = 5.0, λAE = 10.0,737

λLA = 10.0. Hyperparameter λcos was tuned within the range [10.0, 50.0] with interval 5.0738

according to the mixing metric, where the mixing metric was designed in Seurat to evaluate739

how well the datasets mixed after integration. The insight into tuning λcos is as follows: During740

domain translations, there is a trade-off between preservation of similarity across domains741

and flexibility of modeling domain differences. Since Rcos is designed to preserve the cosine742

similarity during translations, a higher value of λcos can enhance the cosine similarity as the743

cross-domain correspondence, and a lower λcos allows domain translation networks to deal with744

remarkable differences between domains. Following this intuition, we empirically find out that745

λcos = 10.0 has a good performance when harmonizing datasets with intrinsic differences, for746
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example, datasets used in cross-species analysis. For other integration tasks, λcos = 20.0 often747

yields reasonable results, which is adopted as the default setting in our package. Slightly better748

alignment results could be achieved by tuning λcos.749

Label transfer. Suppose we wish to transfer labels from domain X to domain Y . As Portal750

produces integrated cell representations in each domain and the shared latent space, we can751

use any of these representations to perform label transfer. For each cell in domain Y , we find752

its k = 20-nearest neighbors among the cells in domain X based on the integrated result. The753

metric for finding nearest neighbors can be Euclidean distance in shared latent space, or cosine754

similarity in domains. The labels in domain Y are finally determined by majority voting.755

Evaluation metrics. We assessed all metrics based on Portal’s integration results in shared756

latent space Z. We used kBET [32] for quantitative evaluation of integration approaches in757

terms of domain-specific effects removal ability. Firstly, kBET creates a k-nearest neighbour758

matrix. Then, 10% of the samples are chosen for hypothesis testing, where the null hypothesis759

is that all batches are well-mixed. For each of selected samples, kBET adopts a Pearson’s760

χ2-based test to check whether the batch label distribution in its neighbourhood is similar761

to the global batch label distribution or not. In our experiments, we ran 100 replicates of762

kBET with 1,000 random samples, and used the median of the 100 average acceptance rates as763

the final result. We used the neighbourhood size following the default setting in the official764

implementation of kBET. To evaluate the cluster preservation performance, we used ARI and765

ASW. ARI measures the degree to which the two clustering results match. It outputs scores766

ranging from 0 to 1, where 0 indicates that the two clustering labels are independent to each767

other, and 1 means that the two clustering labels are the same up to a permutation. We768

obtained clustering results following the Seurat clustering pipeline with its default setting,769

and assessed ARI by comparing identified clusters and cell type annotations. ASW is another770

metric to quantify cluster preservation. The silhouette width for cell x from cell type C is771

defined as (b(x) − a(x))/max(a(x), b(x)), where a(x) is the average distance from cell x to772

all cells from cell type C, and b(x) is the minimum value of average distances from cell x to773

all cells from each cell type other than C. ASW lies between −1 and 1, where a higher score774

means that cells are closer to cells of the same cell type, indicating good cluster preservation.775

Benchmarking of running time and memory usage. Standard data preprocessing such as776

normalization, feature selection and dimension reduction could be performed incrementally using777
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mini-batches to control memory usage. In Portal’s preprocessing, we adopted the incremental778

strategy and used a chunk size of 20,000. For example, the preprocessing of Portal took 63.4779

minutes, requiring 22.0 GB peak running memory on the two mouse brain atlases datasets780

with 1,100,167 cells. The preprocessing time could be reduced to 37.7 minutes when the chunk781

size was increased to 200,000, with 36.4 GB peak running memory. Some other methods may782

not be able to adopt a mini-batch implementation. For the two mouse brain atlases datasets,783

Harmony took 17.6 minutes to finish preprocessing, but required 127.1 GB memory usage.784

Online iNMF performed preprocessing with mini-batches. Its default preprocessing procedure785

on the two mouse brain atlases datasets took 15.9 hours, with 0.6 GB memory usage. For a786

fair comparison, time and memory usages of data preprocessing procedures were not included787

in our benchmarking.788

Visualization. We used the UMAP algorithm [31] for visualization of cell representations789

in a two-dimensional space. In all analyses, the UMAP algorithm was run with 30-nearest790

neighbors, minimum distance 0.3, and correlation metric.791
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Data availability806

All data used in this work are publicly available through online sources.807

• Mouse Brain cells from Saunders et al [8] (http://dropviz.org).808

• Mouse Brain cells from Zeisel et al [9] (http://mousebrain.org/downloads.html).809

• Mouse Brain cells from Rosenberg et al [43] (GSE110823).810

• Mouse cell atlas from the Tabula Muris Consortium [7] (https://figshare.com/projects/811

Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_812

Mus_musculus_at_single_cell_resolution/27733).813

• Mouse lemur cell atlas from the Tabula Microcebus Consortium (https://figshare.814

com/projects/Tabula_Microcebus/112227).815

• Mouse spermatogenesis cells from Ernst et al [47] (https://www.ebi.ac.uk/arrayexpress/816

experiments/E-MTAB-6946/).817

• Human spermatogenesis cells from Shami et al [16] (GSE142585).818

• Macaque spermatogenesis cells from Shami et al [16] (GSE142585).819

Code availability820

Portal software is available at https://github.com/YangLabHKUST/Portal.821
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Supplementary Information1019

Investigation of the role of each component in Portal1020

In this section, we investigate the role of each component in Portal. The optimization problem1021

solved by Portal is1022

min
{E1,G1,E2,G2}

max
{D1,D2}

Ladv + λcosRcos + λLARLA + λAERAE, (S1)

where E1(·) and E2(·) are encoder networks; G1(·) and G2(·) are generator networks; D1(·)1023

and D2(·) are discriminator networks; Ladv stands for the adversarial learning objective, whose1024

value is LX + LY when maximizing with respect to D1(·), D2(·), and it is replaced with1025

LlogD
X +LlogD

Y when minimizing with respect to E1(·), G1(·), E2(·), G2(·) according to the “logD-1026

trick”; Rcos = Rcos(E1, G1, E2, G2) is a regularizer for the cosine similarity correspondence1027

cross domains; RLA = RLA(E1, G1, E2, G2) is a regularizer for the alignment consistency in1028

the latent space; RAE = RAE(E1, G1, E2, G2) is a regularizer for the autoencoder consistency;1029

λcos, λLA, λAE are coefficients for the three regularizers respectively. To demonstrate the roles1030

of the objective function Ladv and three regularizers (Rcos, RLA, and RAE), we rewrite the1031

optimization problem (S1) as1032

min
{E1,G1,E2,G2}

max
{D1,D2}

λadvLadv + λcosRcos + λLARLA + λAERAE, (S2)

with λadv set to 1.0 in Portal’s algorithm. Based on (S2), we are able to study on the impact1033

of each component of Portal by manually setting the corresponding coefficient to zero, and1034

then compare its performance with that of the standard algorithm empirically. Recall that1035

the discriminators are designed to deal with domain-unique cell types by discriminator score1036

thresholding. In this section, we also experimentally verify the effectiveness of such design.1037

Here we took mouse mammary gland scRNA-seq atlas from the Tabula Muris consortium as an1038

example. In the mouse mammary gland data, 4,481 cells were profiled by 10X Genomics (10X),1039

and 2,405 cells were profiled by SMART-seq2 (SS2). With these two datasets, we investigate1040

the role of each component in Portal.1041

Role of objective function Ladv. The objective function Ladv plays an essential role in1042

learning effective domain translation across different datasets. To demonstrate the importance1043

of adversarial training using Ladv, we removed it from Portal by setting λadv to zero, then1044

applied this version of Portal (Portal (λadv = 0)) to integrate mouse mammary gland datasets.1045
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Comparison between integration results obtained by Portal (Fig. S2a) and Portal (λadv = 0))1046

(Fig. S2b) confirmed that cells from different datasets could not be well mixed without the1047

objective function.1048

Role of regularizer Rcos. Regularizer Rcos helps to establish reliable alignment between1049

different domains. It guides domain translation networks to find correspondence of the same cell1050

type across domains. To confirm this, we fixed λcos in (S2) as zero to remove Rcos from Portal,1051

and we denoted this version of Portal as Portal (λcos = 0). After applying Portal (λcos = 0),1052

cells from the two datasets were well mixed, however, the obtained alignment between these1053

datasets was problematic. For example, basal cells from SS2 dataset were incorrectly aligned1054

with B cells and T cells from 10X dataset (Fig. S1c). In contrast, the standard version of1055

Portal built the alignment correctly (Fig. S1a). The difference between results obtained by1056

Portal and Portal (λcos = 0) verified the usefulness of Rcos to establish robust correspondence1057

between datasets.1058

Role of regularizer RLA. Regularizer RLA is introduced to impose the consistency constraint1059

for latent representations of cells. It is helpful to remove domain-specific effects in the latent1060

space. To demonstrate the effectiveness of RLA, we set λLA = 0. For Portal (λLA = 0), the1061

learned representation in the latent space showed a poor alignment of two datasets (Fig. S1d).1062

This result indicated that the learned representation in the latent space would not be a valid1063

integration result without adopting regularizer RLA.1064

Role of regularizer RAE. {E1(·), G1(·)} and {E2(·), G2(·)} form two autoencoder structures1065

in Portal’s framework, RAE is hence introduced for regularizing autoencoder consistency. Here1066

we set λAE = 0 to evaluate the role of RAE with Portal (λAE = 0). Comparison between results1067

obtained by Portal (Fig. S1a) and Portal (λAE = 0) (Fig. S1e) indicated that RAE was useful1068

to improve the accuracy of Portal’s results by imposing the consistency between encoders and1069

generators.1070

Role of discriminator score thresholding. The discriminator score thresholding in Portal1071

is a tailored design for single-cell integration tasks. With such design, Portal does not force the1072

alignment of domain-unique cell types, preventing overcorrection of domain-specific effects. To1073

illustrate the role of the discriminators, we used the same mouse mammary gland data. We1074

manually removed all basal cells from the 10X dataset and thereby basal cell type became a1075

domain-unique cell type in the SS2 dataset. We applied standard Portal and Portal without1076
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discriminator score thresholding (denoted as “Portal w/o D score thresholding”) for integration.1077

The results in Fig. S2 indicated that, without discriminator score thresholding, Portal could1078

not retain the identity of basal cells in the SS2 dataset, and incorrectly aligned them with T1079

cells and B cells in the 10X dataset.1080

Supplementary Information: Figures1081

a b

c d

e

Figure S1: Investigation of the roles of objective function Ladv and three regularizers

Rcos, RLA and RAE in Portal. We used the mouse mammary gland scRNA-seq datasets

from Tabluma Muris Consortium in this study. a. We applied Portal to integrate the two

datasets as a baseline. b-e. Then we fixed λadv, λcos, λLA, λAE in (S2) at zero to evaluate the

effectiveness of Ladv, Rcos, RLA and RAE, respectively. Clearly, each component of Poral plays

its important role in data integration.
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a b

Figure S2: Investigation of the role of discriminator score thresholding in Portal.

We used the same mouse mammary gland data from Tabluma Muris Consortium, and removed

all basal cells from the 10X dataset to make basal cell a domain-unique cell type in the SS2

dataset. a. We applied Portal to integrating the two datasets as a baseline. b. We removed

discriminator score thresholding in Portal to integrate the two datasets.
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a b

Figure S3: Comparison of integration methods based on mouse bladder data. a.

UMAP plots colored by profiling methods and cell types. b. Alignment (kBET) and cluster

preservation performance (ARI and ASW) evaluated using the mouse bladder data.
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a b

Figure S4: Comparison of integration methods based on mouse marrow data. a.

UMAP plots colored by methods and cell types. b. Alignment (kBET) and cluster preservation

performance (ARI and ASW) evaluated using the mouse marrow data.
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a

b

Figure S5: Benchmark of Portal, Harmony, Seurat, online iNMF, fastMNN,

Scanorama and BBKNN. a. We evaluated running time and memory required by all

compared methods. Datasets with a total sample size n = 100, 000, 250, 000, 50, 000, and

1, 100, 167 were sampled from two mouse brain atlas datasets. Considering running time and

peak running memory usage, Portal was the most efficient method. Since comparison among

Portal, Harmony, Seurat and online iNMF have been discussed in the main text, here we focus

on investigating the performance of fastMNN, Scanorama and BBKNN. Among all compared

methods, Portal and BBKNN were remarkably faster than other methods. However, BBKNN

required much more memory usage than Portal as sample size increased. More importantly,

BBKNN often provided less satisfactory integration performance as indicated by UMAP plots

and quantitative metrics in Figs. 2, S3, S4, and (b). Similar to BBKNN, the two methods

Scanorama and fastMNN also showed their comparatively limited performance compared to

that of Portal, Harmony, Seurat and online iNMF. These two methods showed similar pattern of

time and memory usage. Specifically, running Scanorama, fastMNN, BBKNN on full datasets

with 1,100,167 cells required 33.7, 41.7, 3.5 minutes, and 15.6, 57.8, 9.3 GB respectively. As

a comparison, running Portal used 2.0 minutes and 0.57 GB in the same experiment. Seurat

required 24.5 GB on the datasets with 100,000 cells, so we did not include it in the comparison

of peak running memory for clarity. b. Alignment (kBET) and cluster preservation perfor-

mance (ARI and ASW) evaluated using datasets of three shared tissues, including cerebellum,

hippocampus and thalamus, in two mouse brain atlas projects. Consistent with previous

benchmarking results, fastMNN, Scanorama and BBKNN presented less accurate alignment

results, indicated by low kBET, ARI and ASW scores.
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Figure S6: Clusters identified by applying the Louvain algorithm to cell embeddings

obtained by Portal, Harmony, Seurat and online iNMF after integration. With

default resolution setting, Louvain algorithm detected 29 (Portal), 29 (Harmony), 25 (Seurat),

30 (online iNMF) clusters as shown in UMAP plots. The UMAP plots were drawn separately

and colored by clusters identified in the cell embedding space of each method, respectively.

a

c d

b

Figure S7: Detailed verification of Portal’s integration result on hippocampus

datasets at transcriptome level. a. We confirmed Portal’s alignments of cluster 4, 13, 26

and the three neuron subpopulations by investigating the pattern of marker genes. b. The

integration result from Portal was validated by the consistent pattern of differentially expressed

genes across distinct clusters. Here we only investigated into cluster 4 as cells from the 10X

dataset only concentrated in cluster 4 in the marked region. c. We identified eight genes that

showed distinct expression patterns across the three clusters. d. Transcriptional difference

among the three clusters was further reflected by examining the correlation between cells using

more genes.
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a b

c d

Figure S8: Identification of rare subpopulations in mouse lung scRNA-seq data via

label transfer. Utilizing Portal’s integration result (a), we transferred annotations from the

10X dataset (b) to the SS2 dataset (d). Portal’s integration helped to identify fine-grained

subpopulation alveolar macrophage (d), which was not identified in its original labels (c). a.

UMAP plot of Portal’s integration result colored by profiling methods. b, c. UMAP plots of

integrated 10X, SS2 data colored by cell types obtained from their original publication [7]. d.

UMAP plot of integrated SS2 data colored by transferred labels provided by Portal.
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Figure S9: Marker gene pattern of identified rare subpopulations in mouse lung

scRNA-seq data. By transferring labels from the 10X dataset to SS2 dataset, Portal

identified four subpopulations of myeloid cells in SS2 dataset, including alveolar macrophage,

dendritic cell and interstitial macrophage, classical monocyte, and non-classical monocyte. To

validate the result, we examined four subpopulations’ expression levels of marker genes: Cd68

is a marker of macrophages and monocytes. Between classical monocytes and non-classical

monocytes, Ccr2 is a marker of classical monocytes, Cx3cr1, Treml4 are markers of non-classical

monocytes. Between alveolar macrophages and interstitial macrophages, Mrc1, Siglec5 are

markers of alveolar macrophages, Itgam, Cd86 are markers of interstitial macrophages.
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a

b

Figure S10: Identification of myofibroblast subpopulation from fibroblast population

in mouse lemur bladder scRNA-seq data via label transfer. a. Portal utilized its

integration result to transfer labels from the 10X dataset to the SS2 dataset. Portal successfully

identified myofibroblast cells in SS2 dataset, although there were only 11 of them. b. We

confirmed Portal’s identification of myofibroblast cells by validating marker gene pattern. We

collected eight marker genes: COL1A1, COL1A2, COL5A1, LOXL1, LUM are markers of

fibroblast and myofibroblast cells. Compared to fibroblast cells, myofibroblast cells should have

higher expression levels of markers ACTA2, MYH11 and TAGLN.
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Figure S11: Comparison of the capability of Portal, Harmony, Seurat and online

iNMF to construct a comprehensive cell atlas across entire organism. We applied

the four integration approaches to harmonize the SS2 dataset and the 10X dataset from the

Tabula Muris project, where mouse cells from 20 tissues were profiled. For a comprehensive

investigation into Portal’s performance, we visualized integration results of Portal in three

spaces, namely shared latent space, 10X data space, and SS2 data space. Notably, among the

20 tissues, only 13 of them were included in the 10X data, while all of them were included in

the SS2 data. In such a integration task, Portal preserved unique cell types contained in SS2

data, e.g., microglial cells, cell types in large intestine, and pancreatic islets cells. In contrast,

Harmony, Seurat and online iNMF provided less accurate results, e.g., they incorrectly mixed

microglial cells in brain myeloid with macrophage cells.
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Figure S12: Comparison of the ability of Portal, Harmony, Seurat and online iNMF

to build alignment across one snRNA-seq dataset and two scRNA-seq datasets. We

applied the four integration approaches to align one snRNA-seq dataset profiled by SPLiT-seq

[43], and two scRNA-seq datasets profiled by Drop-seq and 10X [8, 9]. We combined the cell

type annotations provided by the three datasets together, although they contained slightly

different annotations for non-neuron cells, e.g. immune cells and endothelial cells. a-e, UMAP

visualizations of combined raw data (a), integration results of Portal (b), Harmony (c), Seurat

(d) and online iNMF (e).
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Figure S13: UMAP visualization of the original published annotations for spermato-

genesis data of macaque and human [16].
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Figure S14: Marker gene patterns of mouse in Louvain clusters in cross-species

integration of spermatogenesis differentiation process. For mouse, Crabp1, Scml2,

Stra8, Sohlh2, Uchl, Dazl, Rpa2, Rad51, Sycp1 are markers of spermatogonia, Piwil1, Hormad1,

Pttg1, Spag6, Tbpl1, Insl6 are markers of spermatocytes, Acrv1, Spaca1, Tsga8, Tssk1 are

markers of early spermatids, and Prm1, Prm2, Tnp1, Tnp2 are markers of late spermatids.
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Figure S15: Marker gene patterns of macaque and human in Louvain clusters in

cross-species integration of spermatogenesis differentiation process. For macaque,

ID4, FMR1, L1TD1, BEND4, NR6A1, UCHL1, DMRT1, MORC1, DAZL are markers of

spermatogonia, SYCP1, PIWIL1, SYCP2, CENPU are markers of spermatocytes, BRDT,

ACRV1, CHD5, SPATA19 are markers of early spermatids, and TNP2, TPPP2, SPATA3,

TSSK6 are markers of late spermatids. For human, BEND4, DMRT1, ID4, UCHL1, L1TD1,

FMR1, NR6A1, MORC1, DAZL, ZBTB43, SYCP3 are markers of spermatogonia, SYCP2,

SYCP1, PIWIL1, MYBL1, SPATA16, YBX2 are markers of spermatocytes, BRDT, SPACA3,

SPACA4, ACRV1, H1FNT are markers of early spermatids, and TSSK6, PRM1, PRM2, TNP1,

SPATA3 are markers of late spermatids. The marker gene patterns validated the label transfer

results given by Portal.
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Figure S16: Gene expression heatmaps in Louvain clusters in cross-species integra-

tion of spermatogenesis differentiation process. For each species, we selected highly-

expressed genes for each cluster and combined them together. Gene expression patterns on genes

selected based on mouse (a), macaque (b) and human (c) showed connection and distinction

among spermatogenesis differentiation processes of different species.
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