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Abstract

The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable1

opportunities for broad and deep biological investigations through integrative analyses. However,2

harmonizing such datasets requires integration approaches to be not only computationally3

scalable, but also capable of preserving a wide range of fine-grained cell populations. We4

created Portal, a unified framework of adversarial domain translation to learn harmonized5

representations of datasets. With innovation in model and algorithm designs, Portal achieves6

superior performance in preserving biological variation during integration, while achieving7

integration of millions of cells in minutes with low memory consumption. We show that Portal8

is widely applicable to integrating datasets across samples, platforms and data types (including9
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scRNA-seq, snRNA-seq and scATAC-seq). Finally, we demonstrate the power of Portal by10

applying it to the integration of cross-species datasets with limited shared information among11

them, elucidating biological insights into the similarities and divergences in the spermatogenesis12

process among mouse, macaque and human.13

Introduction14

Advances in single-cell sequencing have enabled identification of novel cell types [1, 2], in-15

vestigation of gene regulation networks [3, 4], and understanding of cellular differentiation16

processes [5, 6]. As single-cell technologies rapidly evolved over recent years, its experimental17

throughput substantially increased, allowing researchers to profile increasingly complex and18

diverse samples, and accelerating the accumulation of vast numbers of rich datasets over time19

[7, 8, 9]. Integrative and comparative analyses of such large-scale datasets originating from20

various samples, different platforms and data modalities, as well as across multiple species, offer21

unprecedented opportunities to establish a comprehensive picture of diverse cellular behaviors.22

Integration is a critical step, to account for heterogeneity of different data sources when taking23

advantage of single-cell data from different studies [10]. Thus, integration methods that can24

efficiently and accurately harmonize a wide range of data sources are essential for accelerating25

life sciences research [11].26

Although integration methods for single-cell transcriptomics analysis have evolved along27

with single-cell sequencing technologies, the rapid accumulation of new and diverse single-cell28

datasets has introduced three major challenges to the integration task. First, as the sample size29

of each single-cell dataset grows dramatically, numerous extensive datasets with hundreds of30

thousands or even millions of cells have been produced [8, 9, 12]. The emergence of large-scale31

datasets requires integration methods to be fast, memory-efficient, and scalable to millions32

of cells. Second, technology now allows effective, comprehensive characterization of complex33

organs, containing rare subpopulations of cells that can now be captured, albeit in small34

numbers, thanks to the scale of profiling that is now possible [7, 13]. Investigation into high-35

level heterogeneity among cell populations is essential for understanding the mechanism of36

complex biological systems. Hence, the ideal integration method needs to carefully preserve fine-37

grained cell populations from each atlas-level dataset. Third, the biological origins of datasets38

has expanded in diversity, with data now spanning across not only different technological39
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platforms and data types, different individual donors, but even across different species, which40

can be especially interesting for evolutionary studies [14, 15, 16]. Integrative analysis of such41

diverse datasets would allow researchers to unify resources to address a wider range of biological42

questions. Recent single-cell atlasing efforts are a primary example of these challenges – various43

human tissue atlases [12, 17], mouse multi-tissue atlases [7, 18], and non-human primate atlases44

[19, 20] have been generated, culminating in data from millions of single cells and single45

nuclei. Both within and across atlas comparisons are of interest. To perform integrative and46

comparative analyses based on such diverse data sources, there is an urgent need for methods47

that can flexibly account for heterogeneous dataset-specific effects, while maintaining a high48

level of integration accuracy.49

Many methods have been developed to align single-cell datasets [10], including Harmony50

[21], Seurat [22], online iNMF [23], VIPCCA [24], scVI [25], fastMNN [26], Scanorama [27] and51

BBKNN [28]. Several of these methods that were designed for large datasets at the time of52

publication are now less attractive in terms of scalability in the face of atlas-level dataset sizes.53

For instance, a representative category of methods leverages the mutual nearest neighbors54

(MNN) to perform data alignment. These MNN-based methods, such as Seurat, fastMNN and55

Scanorama, require identification of MNN pairs across datasets, thus the time and memory56

costs quickly become unbearably high when the dataset exceeds one million cells. Another57

limitation of existing methods is that they are mainly targeted towards integrating datasets of58

less complex tissues, utilizing strategies such as MNN, matrix factorization, and soft-clustering59

to capture major biological variations. With these strategies, inaccurate mixing of different cell60

types can be avoided when clear clustering patterns are present; but when dealing with more61

complex tissues, they tend to overcorrect fine-grained cell subpopulations, resulting in the loss62

of power in revealing interesting biological variations [29, 30]. Lastly, most existing methods63

are designed to correct batch effects caused by technical artifacts. To this end, a number of64

methods, like BBKNN and fastMNN, assume that the biological variation is much larger than65

the variation of batch effects. This assumption may not be true when applied across data types66

and species.67

To simultaneously address the above three challenges, we created Portal, a machine learning-68

based algorithm for aligning atlas-level single-cell datasets with high efficiency, flexibility, and69

accuracy. Viewing datasets from different studies as distinct domains with domain-specific70

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2021.11.16.468892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468892
http://creativecommons.org/licenses/by-nc-nd/4.0/


effects (including technical variation and other sources of unwanted variation), Portal achieves71

extraordinary data alignment performance through a unified framework of domain translation72

networks that incorporates an adversarial learning mechanism [31]. To find the correspondence73

between two domains, our domain translation network utilizes an encoder to embed cells from74

one domain into a latent space where domain-specific effects are removed, and then uses a75

generator to map latent codes to another domain. The generator simulates the generation76

process of domain-specific effects. In each domain, a discriminator is trained to identify where77

poor alignment between the distributions of original cells and transferred cells occurs. The78

feedback signal from the discriminator is used to strengthen the domain translation network79

for better alignment. The nonlinearity of encoders and generators in the adversarial domain80

translation framework enables Portal to account for complex domain-specific effects. In contrast81

to existing domain translation methods [32, 33, 34], Portal has the following unique features.82

First, Portal has a uniquely designed discriminator which can adaptively distinguish domain-83

shared cell types and domain-unique cell types. Therefore, Portal will not force the alignment84

of domain-unique cell types, avoiding the risk of overcorrection. Second, without using any85

cell type label information, three regularizers of Portal can guide domain translation networks86

to find correct correspondence between domains, account for domain-specific effects, and87

retain biological variation in the latent space. Third, through a tailored design of lightweight88

neural networks and mini-batch optimization accelerated by graphics processing units (GPUs),89

Portal can scale up to datasets containing millions of cells in minutes with nearly constant90

memory usage. With the above innovations in model and algorithm designs, Portal enables91

fast and accurate integration of atlas-level datasets across samples, technological platforms,92

data modalities, and species.93

Through a comprehensive benchmarking study, where integration of heterogeneous collec-94

tions of atlas-level single-cell RNA sequencing (scRNA-seq) data are included, Portal shows its95

superiority over state-of-the-art alignment algorithms in terms of both computational efficiency96

and accuracy. We then show that Portal can accurately align cells from complex tissues profiled97

by scRNA-seq and single-nucleus RNA sequencing (snRNA-seq) as well as align scRNA-seq data98

and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data,99

even in the presence of highly unbalanced cell type compositions. We also apply Portal to the100

integration of cells in differentiation processes, especially the alignment of the gradient of cells101
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in the spermatogenesis process across multiple species (mouse, macaque, and human). Using102

these diverse and challenging experiments, we demonstrate Portal’s versatility and power for a103

broad range of applications. Comprehensive analyses of real, expert annotated data confirm104

that integrated cell embeddings provided by Portal can be reliably used for identification of105

rare cell populations via clustering or label transfer, studies of differentiation trajectories,106

and transfer learning across data types and across species. Portal is now publicly available107

as a Python package (https://github.com/YangLabHKUST/Portal), serving as an efficient,108

reliable and flexible tool for integrative analyses.109

Results110

Method Overview: Portal learns a harmonized representation of111

different datasets with adversarial domain translation.112

Expression measurements from different datasets fall into different domains due to the existence113

of domain-specific effects, including technical variation and other sources of unwanted variation114

(Fig. 1a), causing difficulty when performing joint analyses. Without loss of generality, here we115

consider two domains, X and Y . We assume that domain X and domain Y can be connected116

through a low-dimensional shared latent space Z, which captures the biological variation and117

is not affected by the domain-specific effects. By taking the measurements of cells from X and118

Y as inputs, we aim to learn a harmonized representation of cells in latent space Z to obtain119

data alignment between X and Y .120

We achieve the above goal through a unified framework of adversarial domain translation,121

namely “Portal”. Domains and the shared latent space are connected by encoders and122

generators (Fig. 1b). Encoder E1(·) : X → Z is designed to remove the domain-specific123

effects when mapping cells from X into Z, and generator G1(·) : Z → X is designed to124

simulate the domain-specific effects when mapping cells from Z into X . By symmetry, encoder125

E2(·) : Y → Z and generator G2(·) : Z → Y are designed with the same role in connecting126

Y and Z. To transfer cells between Y and X through shared latent space Z (Fig. 1b),127

encoder E2(·) and generator G1(·) work together to form one domain translation network128

G1(E2(·)) : Y → Z → X . Clearly, encoder E1(·) and generator G2(·) form another domain129

translation network G2(E1(·)) : X → Z → Y. To achieve the mixing of original cells and130

transferred cells, discriminators D1(·) and D2(·) are deployed in domains X and Y to identify131
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where poor mixing occurs (Fig. 1c). The discriminators’ feedback then guides the domain132

translation networks to improve the mixing.133

However, the well mixing of original cells and transferred cells in each domain does not134

imply extraordinary data alignment across domains. First, a domain-unique cell population135

should not be mixed with cells from another domain. Second, cell types A and B in domain136

X could be incorrectly aligned with cell types B and A in domain Y, respectively, although137

the distributions of original cells and transferred cells are well mixed. To address these issues,138

Portal has the following unique features, which distinguishes it from existing adversarial domain139

translation frameworks [32, 33]. On one hand, we deploy the tailored design of discriminators140

D1(·) and D2(·) such that they can distinguish domain-unique cell types from cell types shared141

across different domains. The domain-unique cell types will be treated as outliers and left142

in the discriminator’s inactive region (Fig. 1c). In such a way, these cell types will not be143

enforced for alignment, avoiding the risk of overcorrection. On the other hand, we design three144

regularizers to find correct correspondence across domains and avoid incorrect alignment when145

the distributions are well mixed.146

Specifically, let x and y be the samples from domains X and Y , respectively. We consider147

the following framework of adversarial domain translation,148

min
{E1,G1,E2,G2}

max
{D1,D2}

LX (D1, E2, G1) + LY(D2, E1, G2),

subject to RAE(E1, G1, E2, G2) ≤ tAE,

RLA(E1, G1, E2, G2) ≤ tLA,

Rcos(E1, G1, E2, G2) ≤ tcos.

(1)

In model (1), LX (D1, E2, G1) := E[logD1(x)]+E[log(1−D1(G1(E2(y))))] and LY(D2, E1, G2) :=149

E[logD2(y)] +E[log(1−D2(G2(E1(x))))] are the objective functions for adversarial learning of150

domain translation networks G1(E2(·)) and G2(E1(·)) in X and Y , respectively. Discriminators151

D1(·) and D2(·) are trained to distinguish between “real” cells (i.e. original cells in a domain),152

and “fake” cells (i.e. transferred cells generated by domain translation networks) by minimizing153

LX + LY , while the domain translation networks are trained against the discriminators by154

maximizing LX +LY . These three regularizers RAE, RLA and Rcos play a critical role in finding155

correct correspondence of cells between two domains, accounting for domain-specific effects,156

and retaining biological variation in the latent space (Fig. 1d). More specifically, the first157

regularizer RAE := 1
p
{E [∥x−G1(E1(x))∥22] +E [∥y −G2(E2(y))∥22]}, where p is the dimension-158
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ality of domains X and Y, requires the autoencoder consistency in domains X and Y; the159

second regularizer RLA := 1
q
{E [∥E1(x)− E2(G2(E1(x)))∥22] + E [∥E2(y)− E1(G1(E2(y)))∥22]},160

where q is the dimensionality of Z, imposes the consistency constraint in the latent space;161

and the third regularizer Rcos := E
[
1− <x,G2(E1(x))>

∥x∥2∥G2(E1(x))∥2

]
+ E

[
1− <y,G1(E2(y))>

∥y∥2∥G1(E2(y))∥2

]
introduces162

the cross-domain correspondence by preserving the cosine similarity between a sample and163

its transferred version; tAE, tLA and tcos are their corresponding constraint parameters. More164

detailed explanation can be found in the Methods section.165

We solve the above optimization problem via alternating updates by stochastic gradient166

descent. The algorithm is extremely computationally efficient with the support of stochastic167

optimization accelerated by GPUs. After the training process, Portal learns a harmonized168

representation of different domains in shared latent space Z. Samples from X and Y can169

be transferred into latent space Z to form an integrated dataset {E1(x)}x∈X ∪ {E2(y)}y∈Y170

using encoders E1(·) and E2(·), facilitating the downstream integrative analysis of cross-domain171

single-cell datasets.172

Accurate integration of atlas-level datasets within minutes and re-173

quiring lower memory consumption compared to other methods.174

The rapid accumulation of large-scale single-cell datasets requires integration algorithms175

to efficiently handle datasets containing millions of cells without loss of accuracy. For a176

comprehensive comparison, we first benchmarked Portal and existing representative methods,177

including Harmony [21], Seurat v3 [22], online iNMF [23], VIPCCA [24], scVI [25], fastMNN178

[26], Scanorama [27] and BBKNN [28], in terms of integration performance following a recent179

benchmarking study [30]. Using a number of scRNA-seq datasets from diverse tissue types180

with curated cell cluster annotations, including mouse spleen, marrow, and bladder [7], we181

quantitatively evaluated the integration performance of each method. We first evaluated182

alignment performance, which can sometimes be interpreted as batch correction performance, of183

all compared methods. The score for batch correction was computed by leveraging a collection184

of batch correction metrics designed in existing studies, including k-nearest neighbor batch-effect185

test (kBET) [35], principal component regression of the batch covariate (PCR batch) [35],186

average silhouette width across batches (batch ASW) [35], graph integration local inverse187

Simpson’s Index (graph iLISI) [30, 21] and graph connectivity [30]. The higher the batch188
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Figure 1: Overview of Portal. a. Portal regards different single-cell datasets as different

domains. Joint analyses of these datasets are confounded by domain-specific effects, representing

the unwanted technical variation. b. Portal employs encoders E1(·), E2(·) to embed the

biological variation of domains X and Y into a shared latent space Z, where domain-specific

effects are removed. The generating process of domain-specific effects are captured by two

generators G1(·) and G2(·). Encoder E1(·) and generator G2(·) form a domain translation

network G2(E1(·)) mapping from X to Y; Encoder E2(·) and generator G1(·) form another

domain translation network mapping from Y to X . c. Encoders and generators are trained

by competing against specially designed discriminators D1(·) and D2(·). In each domain, a

discriminator is trained to distinguish between original cells in this domain and cells transferred

from another domain, providing feedback signals to assist alignment. To prevent overcorrection

of domain-unique cell types, the discriminators in Portal with the tailored design are also

able to distinguish between domain-unique cell types and domain-shared cell types. With this

design, Portal can focus only on merging cells of high probability to be of domain-shared cell

types, while it remains inactive on cells of domain-unique cell types. d. Portal leverages three

regularizers to help it find correct and consistent correspondence across domains, including the

autoencoder regularizer, the latent alignment regularizer and the cosine similarity regularizer.

correction score, the higher the degree of mixing across datasets. We also assessed the score189

for conservation of biological variation using different metrics, including adjusted rand index190

(ARI) [36], normalized mutual information (NMI) [37], cell type ASW, graph cell type local191

inverse Simpson’s Index (graph cLISI) [30, 21], isolated label F1 [30], isolated label silhouette192
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[30] and cell cycle conservation [30]. By jointly accounting for these metrics, the score can be193

used to evaluate different methods’ ability to preserve information such as cell type identities.194

Inappropriate merging of cell types during integration will result in a low score of biological195

variation conservation. Finally, we computed the overall score as a 40:60 weighted average of196

the batch correction score and the conservation of biological variation score to indicate the197

overall integration performance. Based on our benchmarking results, we found that in general,198

BBKNN, Scanorama, fastMNN, scVI and VIPCCA had less satisfactory overall integration199

performance compared to the other four methods (Fig. 2a, the first three columns; Figs. S5, S7,200

S9 and S11). As indicated by the relatively low batch correction scores of BBKNN, Scanorama,201

fastMNN and scVI, we found that observable batch effects still exist in the integration results202

that they produced (Figs. S6, S8 and S10). Although VIPCCA showed reasonable performance203

in terms of removing batch effects, incorrect mixing of distinct cell types was often observed in204

VIPCCA’s integration results (Fig. S6). Therefore, its overall scores are relatively low due to205

the loss of biological variation (Figs. S5, S7).206

Among those methods with high user popularity, Harmony, Seurat, and online iNMF also207

showed the best overall integration performance results (Fig. 2a, the first three columns; Figs.208

S6, S8 and S10). To offer precise and robust integration performance, Seurat [22] utilizes209

the detection of mutual nearest neighbors (MNN) to build correspondence between datasets210

in the shared embedding space obtained by applying canonical correlation analysis (CCA).211

Harmony [21] learns a simple linear correction for dataset-specific effects by running an iterative212

soft clustering algorithm, enabling fast computation on large datasets. Online iNMF [23] is a213

recently developed approach based on widely used integration method LIGER [38]. It extends214

LIGER’s non-negative matrix factorization to an iterative and incremental version to improve215

its scalability, while it has nearly the same performance as LIGER. For the remainder of this216

study, we focus our discussion on comparisons between Portal and these three high-performing217

and popular methods in the main text. The comparisons with other methods are provided in218

Fig. 2a (the last three columns), and Supplementary Information (Figs. S12 - S18).219

Next, we evaluated the speed, memory usage, alignment quality, and integration accuracy220

using a more challenging integration task. We used two mouse brain atlases [8, 9] as bench-221

marking datasets for a more in-depth comparison of Portal and three other methods. One atlas222

contains Drop-seq data of 939,489 cells, and another one contains 10X Genomics (10X) data223
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c
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b

Figure 2: Benchmarking of Portal and other state-of-the-art integration methods.

a. Overall scores of the compared methods evaluated on mouse spleen, marrow, bladder,

cerebellum, hippocampus and thalamus datasets. The ranking was visualized by color gradient,

where lighter color indicates better performance. b. The running time and the peak running

memory required by the benchmarked methods. The datasets were sampled from two mouse

brain atlas datasets (n = 100, 000, 250, 000, 500, 000, and 1, 100, 167). Seurat required 24.52 GB

on the dataset with 100, 000 cells, which was not comparable to the other three benchmarked

methods in terms of the peak running memory usage. c. Batch correction and biological

variation conservation evaluated using three shared tissues from two mouse brain atlases

(profiled by Drop-seq and 10X), including cerebellum, hippocampus, and thalamus. Biological

variation conservation performance was assessed based on fine-grained annotations provided by

the original publications [8, 9].

of 160,678 cells. These two mouse brain atlases have data from three shared brain regions:224

cerebellum, hippocampus, and thalamus. There are many small clusters of neuron subtypes225

in these datasets, where gene expressions between subclusters could have a relatively small226

difference. Thus, these datasets are more challenging to integrate compared to data with clear227

clustering patterns.228
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First, Portal has superior integration accuracy even when handling datasets which contain229

many subclusters with small difference. The score of biological variation conservation shows230

that Portal outperforms other state-of-the-art methods in cluster identity preservation, as the231

scores were assessed based on fine-grained cell type and subtype annotations. In particular, for232

all three brain regions tested, Portal has the highest ARI and NMI scores among the compared233

methods (Fig. 2c).234

Second, Portal also outperforms the other three methods on scalability, in terms of time235

and memory consumption. For this benchmarking test, we obtained datasets from the original236

full-sized datasets by combining the two atlases and subsampling proportionally from each237

atlas, with each dataset having increasing sample size ranging from 100,000 to 1,100,167 (full238

dataset). The running time and the peak running memory of all methods were recorded using239

these datasets on the same GPU server. The results show that Portal’s running time and peak240

running memory remained almost constant even when the sample size increased dramatically241

(Fig. 2b). Compared to the other three methods, the running time required by Portal was also242

substantially less. On the dataset containing 500,000 cells, Portal’s running time was 80 seconds;243

when number of cells grew to 1,100,167, Portal’s running time only increased to 120 seconds. In244

comparison, Harmony and online iNMF both needed more than 40 minutes to integrate 500,000245

cells and more than 100 minutes to complete the integration of the full dataset. The running246

time of Seurat increased most rapidly among the compared methods. It took as much as 511247

minutes (over 8.5 hours) to integrate the 500,000-cell dataset. The computational efficiency248

of Portal is owing to two important factors in its design: 1) its algorithm takes advantage of249

GPU-accelerated stochastic optimization, such that Portal reads data in mini-batches from the250

disk rather than having to load the entire dataset at once, which enables fast integration of251

large single-cell datasets using small amounts of memory; and 2) lightweight neural networks252

are adopted in Portal to further improve computational efficiency. As such, Portal is also the253

most memory-efficient approach among the benchmarked methods (Fig. 2b). Peak running254

memory required by Portal ranged from 0.29 GB on 500,000-cell dataset to 0.57 GB on the255

full million-cell dataset. Notably, Portal’s lightweight networks and mini-batch stochastic256

optimization algorithm enable us to control the GPU peak running memory usage at a constant257

level of 0.06 GB. Among compared methods, online iNMF used less memory than Harmony258

and Seurat when the sample size became larger than 500,000, because it is also trained in259
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mini-batches. However, its peak running memory was 2.10 GB on the million-cell dataset,260

which is 2.7 times more than Portal’s. Seurat required remarkably more memory usage than261

the other three methods. For clarity of visualization, we did not display the peak running262

memory required by Seurat as it ranged from 24.52 GB on the 100,000-cell dataset to 276.41263

GB on the 500,000-cell dataset.264

Finally, and importantly, Portal’s high performance in speed and memory consumption265

does not compromise its ability to align cell type clusters. The batch correction score shows266

that Portal’s alignment ability is comparable to, if not better than, the other state-of-the-art267

methods, indicating that Portal is capable to effectively remove domain-specific effects.268

Portal preserves subcluster and small cluster identities in complex269

tissues thereby facilitating identification of rare subpopulations.270

When integrating complex tissues, one problem that can arise is the inadvertent loss of small271

cell populations and subpopulations. Due to more nuanced differences between clusters, or due272

to the imbalance in cell numbers for very small cell populations, these “fine-grained” groups of273

cells may become inappropriately combined with other groups after integration. In the brain,274

for example, there are many subpopulations of neurons which are distinguished from each other275

using a few key gene markers while still all bearing the neuron signature; furthermore, some of276

these neuronal subtypes could be rare compared to other subtypes. To demonstrate that Portal277

can preserve the nuanced information of such small cell populations and subpopulations, we278

performed further analysis on the mouse hippocampus tissue integration results. Both mouse279

brain atlas datasets contain extensive data for this brain region (Fig. 3), and both studies280

identified a wide range of transcriptionally distinct cell subpopulations, including a variety281

of neuron subtypes, whose nuanced transcriptional differences should ideally be preserved by282

integration methods.283

After applying Portal and the other three benchmarked methods to integrate the data, we284

used the integrated cell representations to perform clustering. Using the Louvain method [40]285

with default resolution, we obtained 29 (Portal), 29 (Harmony), 25 (Seurat) and 30 (online286

iNMF) clusters, respectively (Fig. S19). Particularly, we focused on one region where the287

cell proportions between two datasets were highly unbalanced, as marked in Fig. 3a. Only a288

few of cells in this region are from the 10X dataset, making it challenging to build alignment289
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a

c

b

Figure 3: Preservation of fine-grained neuron subpopulations in the integration of

hippocampus datasets. a. We visualized integration results from Portal, Harmony, Seurat

and online iNMF of hippocampus datasets profiled by Drop-seq and 10X with UMAP [39]. Top

panels are UMAP plots colored by profiling methods. Middle and bottom panels are UMAP

plots of cells from the 10X dataset, the Drop-seq dataset after integration respectively, colored

by fine-grained annotations (c). b. We marked a region containing three distinct neuron

subpopulations. Results from Louvain clustering algorithm were presented for a comparison

of cluster identity preservation performance. c. Cell type annotations and proportions of the

two datasets from their original publications [8, 9]. The comparison among proportions of

subpopulations was visualized by the sizes of corresponding dots.

between datasets while preserving subpopulations from the Drop-seq dataset. In the original290

publication [8], cells from the Drop-seq dataset within the marked region were all annotated291

as neurons but further classified into three transcriptionally distinct subpopulations, namely:292
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Cbln1+/Grp88+ medial entorhinal cortex neurons; Slc17a6+ neurons; and Cbln4+ neurons.293

Among the benchmarked methods, Portal was the only method that clearly clustered these cells294

into three coherent groups in the integrated embedding space. Specifically, clusters 4, 13, and295

26 identified by the Louvain method recovered the Slc17a6+ neuron; Cbln1+/Grp88+ medial296

entorhinal cortex neuron; and the Cbln4+ neuron subpopulations, respectively (Fig. 3b). Each297

cluster was confirmed by the high expression level of the annotated marker genes (Fig. S20a).298

Notably, these three groups only accounted for 4.79%, 1.76% and 0.32% of the total sample299

size, respectively, demonstrating Portal’s ability to preserve identities of rare subpopulations.300

However, the differences among these three subpopulations were not well preserved by the other301

three methods, making it difficult to detect them each distinctly using the Louvain clustering302

method (Fig. 3a, b). As shown in Fig. S20c, we also identified eight protein coding genes303

that were the most significantly differentially expressed among clusters, indicating the different304

functions of each of the three neuron subtypes. Cluster 4 showed high expression levels of305

Camk2n1, Map1b, Nrgn, Syt1, and no detectable expression of Camk2d, Igfbp5, Nr4a2 and306

Ntng1. A different pattern was observed in cluster 13: high expression of Camk2d, Camk2n1,307

Map1b and Syt1, and no detectable expression of the other four genes. Cluster 26, meanwhile,308

showed moderate levels of expression of all eight genes. In the marked region, cells from the 10X309

dataset were mostly concentrated in clusters 4 and 13. The alignment by Portal was confirmed310

by the consistent gene expression levels in clusters 4 and 13 between the two datasets (Fig.311

S20b). Besides the eight differentially expressed genes, we also examined a larger set of genes,312

and computed the cross correlation of these genes pairwise between cells from all three groups.313

This analysis showed that cells within each cluster had higher similarity in gene expression314

than cells from other clusters, further showing the biological difference between these three315

clusters that should not be mixed after integration (Fig. S20d). The above results highlight316

Portal’s power to preserve rare cell types.317

The integrative analysis on the hippocampus tissue demonstrates Portal’s ability to maintain318

nuanced transcriptional differences for small subpopulations. This means that Portal can also319

be used to “call out” rare subpopulations in one dataset based on integration with another320

dataset via label transfer. To illustrate this feature, we take 10X and SMART-seq2 (SS2) data321

generated for a mouse lung scRNA-seq atlas [7] as an example: the typically larger sample size322

of the 10X dataset facilitates powerful clustering analyses for identification of cell types; while323
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the greater sequencing depth and sensitivity of SS2 enables deeper investigation into cell biology324

[41]. To leverage the different strengths of the two technologies, we used Portal to perform325

integrated analysis on 1,676 SS2 cells and 5,404 10X cells (Fig. S21a). Specifically, we defined326

the 10X dataset annotations from the original publication [7] as reference labels (Fig. S21b),327

then made use of the Portal’s integration results to identify cell types for the SS2 dataset based328

on these reference labels. After integration, for each SS2 cell, label transfer was performed329

by detecting its nearest neighbors among 10X cells. From this analysis, we identified four330

subpopulations of myeloid cells for the SS2 dataset, namely alveolar macrophages, dendritic331

cell and interstitial macrophages, classical monocytes, and non-classical monocytes (Fig. S21d).332

Transferred labels of these four subpopulations were validated by known marker gene expression333

levels [42]. For example, compared to classical monocytes, non-classical monocytes showed334

lower expression of Ccr2 and higher expressions of Treml4 (Fig. S22). Consistent with the gene335

expression pattern of alveolar macrophages in the 10X dataset, alveolar macrophages annotated336

by Portal in the SS2 dataset had high expression levels of marker genes Mrc1 and Siglec5.337

Notably, in the SS2 dataset, the alveolar macrophage subpopulation only accounted for 0.78%338

of total sample size, and could not be distinguished from the other SS2-profiled macrophages in339

the original publication [7]. Based on the original labels, alveolar macrophages were unidentified340

as they were labeled in a more general group named “dendritic cell, alveolar macrophage,341

and interstitial macrophage” (Fig. S21c). Making good use of the larger 10X dataset, Portal342

successfully identified extremely rare subpopulations within the SS2 dataset. We then used343

the mouse lemur bladder scRNA-seq datasets from the Tabula Microcebus Consortium [43] as344

another example to demonstrate Portal’s ability for discovering rare subpopulations via label345

transfer. In this example, mouse lemur bladder tissue was also profiled by both SS2 and 10X.346

When we integrated these datasets and transferred labels from the 10X dataset to the SS2347

dataset using Portal, we were able to distinguish a very small myofibroblast subpopulation of348

just 11 cells in the SS2 dataset from the rest of the fibroblasts (Fig. S23a). We verified their349

myofibroblast identity based on their high expressions of known marker genes ACTA2, MYH11,350

TAGLN [44] (Fig. S23b).351
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a
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c d e

Figure 4: Construction of mouse cell atlas across the entire organism by integrating

atlas datasets from the Tabula Muris project. We applied Portal to integrate the

datasets obtained by 10X and SS2. There were cells from unique tissues presented in the SS2

dataset. a. UMAP plots of Portal’s integration results in the shared latent space, colored by

profiling methods, cell types and tissues. b. Portal also transferred cells from the space of SS2

dataset to the space of the 10X dataset (10X space). In the 10X space, 10X cells were fixed

as reference. Portal only aligned SS2 cells of shared cell types between datasets to 10X cells,

while maintaining the identities of SS2 cells belonging to tissue-unique cell types. This was

achieved by the special design of discriminator activity in Portal. c, d. Correlations among

cells from subpopulations of B cells (c) and epthelial cells (d). e. Transcriptional distinction

between macrophage and microglial cells.

Integration of comprehensive whole-organism cell atlases.352

So far, Portal has shown impressive performance in aligning tissue-level atlases where nuanced353

transcriptional differences among subpopulations can be maintained after integration. We354

next assess Portal’s capabilities under another challenging scenario: integrating two atlases355

across an entire organism, where one of the atlases includes many more organs and tissue356
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types than the other. This can be very challenging for some integration algorithms due to357

having “missing cell types” in one of the datasets [10]. In contrast to these approaches, Portal358

uses discriminators with tailored design in the adversarial domain translation framework to359

distinguish domain-specific cell types from cell types shared across domains automatically, and360

is thus robust to non-overlapped tissue samples.361

To build a foundation for extensive study of cell populations across the whole organism, the362

Tabula Muris Consortium [7] profiled cells from 20 tissues using a combination of SS2 (44,779363

cells) and 10X (54,865 cells) (Fig. 4). Notably, seven of these 20 tissues were only profiled by364

SS2 but not 10X: brain (myeloid and non-myeloid), diaphragm, fat, large intestine, pancreas365

and skin. We used Portal to build a comprehensive integrated mouse atlas that merges all366

the cells, and we found Portal to show extraordinary accuracy in aligning cells of the same367

cell type from the two datasets profiled by different platforms, not only in the shared latent368

space but also in both domains (Figs. 4a, b and S24). After Portal integration, tissue-specific369

cell types of SS2-only tissues, such as microglial cells in brain (myeloid), cell types in large370

intestine, and pancreatic islets cells, were all successfully and correctly remained separated371

from other cell types. The other three benchmarked methods, however, failed to retain many372

tissue-specific cell types unmixed with other cell types. For instance, they mixed microglial373

cells together with other macrophage cells, even though the data from these two cell types were374

clearly transcriptionally different (Figs. 4e and S24).375

Using this construction of a mouse cell atlas across organs, we also confirmed that the376

designed boundaries for discriminator active region in Portal (Fig. 1c) indeed helped to377

maintain the biological variation. By looking into the domain of 10X data (10X space), the378

discriminator in the 10X domain was found inactive for tissue-specific cell types that were only379

in the SS2 dataset (Fig. 4b). For these cells, Portal ensured that their identities were preserved380

by making the adversarial learning objective inactive on them automatically. Portal’s ability381

to conserve information of cell populations indicates its reliability for integrating atlas-level382

single-cell datasets across entire organisms.383

Besides the alignment between datasets, Portal’s integration result could characterize the384

similarities and differences among cell types. For example, immune cells such as B cells, T cells,385

natural killer cells (NK cells), monocytes and macrophages were profiled by both platforms386

and contained in multiple tissues including brain (myeloid), diaphragm, fat, kidney, limb387
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muscle, liver, lung, mammary gland, marrow, spleen, and thymus. Portal correctly kept the388

subpopulations belonging to the same type of immune cells close to each other, revealing the389

resemblance of immune cells across different tissues. For instance, the transcriptional correlation390

of all types of B cells, containing B cells, naive B cells, immature B cells, precursor B cells, and391

late pro-B cells confirmed such similarity (Fig. 4c). In addition, the epithelial cells of different392

tissues were identified by Portal as disjoint clusters, which was consistent with the biological393

distinction among these cell types (Fig. 4d).394

Portal successfully and efficiently aligns datasets across different data395

types.396

As most of existing methods were developed only for integrating scRNA-seq datasets, aligning397

datasets with different data types could be problematic for these approaches. Here we illustrate398

that Portal can flexibly account for the distinction between different data types and yield399

accurate integration results.400

We first examined integration of scRNA-seq data and snRNA-seq data. For frozen samples401

such as biobanked tissues, and for tissue types that have unique morphology or phenotypes, such402

as brain, fat, or bone, it can be challenging or sometimes even impossible to extract intact cells403

for scRNA-seq profiling [45, 46]. To bypass this issue, snRNA-seq has been developed. Although404

nuclear transcriptomes are shown to be representative of the whole cell [47], distinctions between405

the whole cell and nucleus in terms of the transcript type and composition make scRNA-seq406

data and snRNA-seq data intrinsically different [45]. Aligning these two types of data is407

desirable, as the combined dataset enables joint analysis that can take advantages of both408

techniques, and help to improve statistical power for the analysis. Especially for comparing409

multiple complex tissues, with some cell types being shared and others being non-overlapping,410

researchers could benefit from such integrated joint analysis – one example being the integration411

of brain snRNA-seq data with scRNA-seq data of blood to examine similarities and differences412

between immune cells in each tissue milieu. However, due to the inherent difference in these two413

data types, aligning scRNA-seq and snRNA-seq data is not the same as batch effects correction.414

Compared to batch effects among scRNA-seq datasets, technical noise and unwanted variation415

arising from different data types are often more complex and have higher strength [45, 48].416

Thus, using standard batch effects correction to integrate across data types may result in loss417
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of alignment accuracy or important biological signals.418

We evaluated Portal’s ability to integrate snRNA-seq data and scRNA-seq data using three419

mouse brain atlas datasets, including one snRNA-seq dataset profiled by SPLiT-seq [49], and420

two scRNA-seq datasets profiled by Drop-seq and 10X [8, 9]. In this task, we applied integration421

methods to harmonize these three atlases across all brain regions. To test the accuracy of422

integration results, we only used cells that had annotations provided by the authors in each423

atlas project. After selecting cells with cell type annotations, 319,359 cells in the Drop-seq424

dataset, 160,678 cells in the 10X dataset, and 74,159 nuclei in the SPLiT-seq remained for425

integration.426

Prior to any integration, the raw datasets were clustered by the experimental methods427

rather than the cell types (Fig. S25a), and shared cell types between the three datasets did not428

align well, indicating the initial discrepancy between the three large datasets. After integration,429

UMAP visualizations showed that the different alignment methods gave varying results. Portal430

(Fig. S25b) and Seurat (Fig. S25d) achieved the best alignment of data among different431

methods, showing good mixing of cells annotated with the same cell type label, while also432

preserving subcluster data structure in the integrated results. In particular, the alignment of433

scRNA-seq (10X, Drop-seq) and snRNA-seq (SPLiT-seq) datasets was comparably good as that434

of the two scRNA-seq datasets, indicating successful alignment between the two data types435

without loss of biologically important variations between clusters. Online iNMF (Fig. S25e),436

although it successfully clustered and aligned the same cell types together, within each cluster437

the streaky pattern suggested potential numerical artefacts in the integrated data. Furthermore,438

online iNMF alignment resulted in loss of biological variation, which was most easily observable439

in the coalescence of the previously distinct neuron subpopulations (Fig. S25a) into one large440

amorphous cluster (Fig. S25e). Harmony, however, showed poor mixing of the snRNA-seq441

data in some of the cell types, such as the astrocytes, where the scRNA-seq datasets were442

well-mixed after alignment, but the snRNA-seq data were not mixed well with the rest (Fig.443

S25c). Similar to online iNMF, some of the neurons’ subcluster structure appeared to be lost444

after the integration by Harmony. Overall, Portal and Seurat presented the best scRNA-seq445

and snRNA-seq data alignment performance; however, not including data preprocessing time,446

Seurat took over 17 hours to complete the task, while Portal only took 87 seconds (details of447

the procedure are included in the Methods section).448
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We further assessed Portal’s ability to integrate across data types when no cell type, or449

very few cell types are shared. In this scenario, we applied Portal to integrate one human450

PBMC scRNA-seq dataset [50] with two human brain snRNA-seq datasets [51, 52], respectively,451

as two examples. In the first example (Fig. S26), where no cell type was shared between452

datasets, Portal did not mixed any two populations of cells together, showing its robustness.453

More importantly, it embedded monocytes and dendritic cells from the PBMC dataset close to454

macrophages from the brain dataset, indicating the similarities among these immune cells across455

tissue types. In comparison, overcorrection was observed in results from other state-of-the-art456

methods. For example, Seurat mixed T cells from blood with excitatory neurons and inhibitory457

neurons from brain inappropriately (Fig. S26). The reliability of Portal was also demonstrated458

in the second example (Fig. S27). It correctly aligned cells of the only shared cell type (T cell)459

between datasets, while it did not mix other distinct cell types (Fig. S27).460

Besides integration of scRNA-seq data and snRNA-seq data, we then applied Portal to461

align scRNA-seq data and scATAC-seq data. As an epigenomic profiling method, scATAC-seq462

measures chromatin accessibility, providing a complementary view to scRNA-seq. Integrative463

analyses of scRNA-seq and scATAC-seq data are very helpful to leverage and unify information464

from the both aspects [53, 22]. For this task, we used one scRNA-seq PBMC dataset profiled465

by CITE-seq and one scATAC-seq PBMC dataset profiled by ASAP-seq [54]. For a better466

evaluation, we compared Portal with Seurat, online iNMF and VIPCCA, which had shown467

their ability of cross-omics integration in the original publications. A recent state-of-the-art468

method, scJoint [55], was also included in the comparison, as it was designed specifically for469

scRNA-seq and scATAC-seq data alignment.470

As shown in the UMAP visualizations (Fig. 5), Portal, scJoint and VIPCCA were able471

to align the two datasets correctly, while online iNMF and Seurat did not align some cell472

clusters: for example, monocytes in online iNMF’s integration, and a cluster of mixed cell types473

from ASAP-seq in Seurat’s result. Among the benchmarked methods, Portal showed superior474

performance on the preservation of biological signals. After Portal’s integration, B cells and T475

cells were kept as disjoint clusters, while subpopulations of T cells were remained to be close476

to each other. In comparison, the coalescence of the previously distinct cell type clusters in477

VIPCCA’s result indicates the loss of information. Unlike other methods, scJoint requires cell478

type label information of scRNA-seq datasets as its input. It utilizes the cell type annotations479
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Figure 5: Comparison of Portal and other cross-omics integration methods on the

alignment of scRNA-seq and scATAC-seq data. We applied Portal, scJoint, Seurat,

online iNMF, and VIPCCA to align the scRNA-seq dataset (profiled by CITE-seq) and the

scATACseq dataset (profiled by ASAP-seq) of peripheral blood mononuclear cells (PBMCs)

[54]. UMAP plots were colored by profiling methods and cell types, respectively.

to construct embedding of cells. As a result, cells from the scRNA-seq dataset with different480

cell type labels are forced to form disjoint clusters. Biological information was largely lost in481

scJoint’s integration of PBMC data: the subpopulations of T cells (naive CD4+ T cells, naive482

CD8+ T cells, effector CD4+ T cells, effector CD8+ T cells) lost their similarity and became483

far apart from each other (Fig. 5). Portal and scJoint were also benchmarked with a more484

challenging task: we manually removed B cells from the CITE-seq dataset such that B cells485

became a dataset-specific population. The results further demonstrated Portal’s robustness486

to unbalanced cell type compositions even in cross-omics integration, while scJoint showed487

comparatively inferior performance (Fig. S28).488
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a b
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Figure 6: Integration of spermatogenesis datasets across different species, including

mouse, macaque and human. a. The UMAP plot of Portal’s result colored by species,

as well as UMAP plots of integrated mouse, macaque, human datasets visualized separately.

Ten clusters were obtained by applying the Louvain clustering algorithm, facilitating detailed

comparative analysis across species. b. Integration results of Harmony, Seurat and online

iNMF. c. Portal identified 228 highly variable genes that are shared in the spermatogenesis

process across all three mammalian species.

Portal aligns spermatogenesis differentiation process across multiple489

species.490

Portal does not need to specify the structure and the strength of unwanted variation when491

integrating datasets. Instead, it can flexibly account for general difference between datasets,492
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including batch effects, technical noises, and other sources of unwanted variation, by nonlinear493

encoders and generators in the adversarial domain translation framework. Therefore, Portal is494

also applicable for merging datasets with intrinsic biological divergence, revealing biologically495

meaningful connections among these datasets. In this section, we demonstrate that Portal496

can successfully align scRNA-seq datasets of the testes from different species including mouse,497

macaque and human (Fig. 6).498

Compared to merging datasets from the same species, cross-species integration poses499

additional unique challenges. Although the transcriptomes of different species may share500

expression of homologous or orthologous genes, the number of shared genes varies between501

different species and is limited. Furthermore, two species may have genes with very similar502

sequence and be annotated in the transcriptome by the same name, but have altered function,503

which means that expression of the same gene in different species can denote different cell504

function [56]. In other words, the amount of information one can utilize for integration becomes505

limited and fuzzier while the variation across datasets becomes far larger, with limited number506

of shared genes and even fewer shared highly variable genes across different species. Nonetheless,507

cross-species integration can be very meaningful despite its challenges, as it can generate quick508

draft annotations of new or less-studied species’ atlases and cell types via label transfer from509

well-studied species. This saves time in the manual annotation process of single-cell tissue atlas510

generation for new species. Such integration can also enable detailed comparisons between511

species, such as comparisons of cell type composition, discovery of cell types unique to a512

particular species, or cross-species comparisons of the same cell types.513

Mammalian spermatogenesis is a continuous and irreversible differentiation process from514

spermatogonial stem cells (SSCs) to sperm cells [57, 58, 59, 60, 16]. Due to the unique515

degenerate nature of the Y chromosome (Y-chr), Y-chr gene expression is intricately and516

tightly regulated in the spermatogenesis process through meiotic sex chromosome inactivation517

(MSCI) [61, 62, 63, 64, 65]. Interestingly, Y-linked genes are highly divergent between different518

species, including between closely related primates such as the chimpanzee, macaque, and519

human [61, 66, 67]; yet MSCI as a process is conserved across many species and is required for520

male fertility [64, 68]. This evidence suggests that while the evolution of genes on the Y-chr521

generated diverse species-specific genetic combinations, the tight control of gene expression522

through MSCI is required to ensure genetic stability [61]. Recently, cross-species comparisons of523
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“escape genes” that are able to maintain or re-activate their expression despite MSCI repression524

during spermatogenesis have generated fascinating insights on evolutionary biology, and on525

sex chromosome evolution [63, 65, 69, 16]. In this biological context, integrating datasets526

with continuous and gradient developmental trajectories, such as for spermatogenesis data,527

requires integration methods to preserve the continuous structure of each dataset, while still528

providing high accuracy of cell type alignment between datasets. This is more difficult when,529

like in spermatogenesis data, there are no distinct clusters, making integration of such data a530

particularly difficult task. After confirming Portal’s capability of preserving the gradual change531

of cells based on two examples (Figs. S29 and S30), we perform cross-species integration of532

testes datasets from three species, including one mouse [59], one macaque and one human533

[16], aligning the different stages of spermatogenesis across species thereby highlighting unique534

features of each. The successful integration of these spermatogenesis trajectories serves as a535

demonstration of the power of Portal in complex and low-information data alignment, and how536

it can facilitate the annotation and discovery process for new single-cell tissue atlases.537

We first annotated the mouse sample according to the pattern of marker genes (Sper-538

matogonia: Sycp1, Uchl1, Crabp1, Stra8; Spermatocytes: Piwil1, Pttg1, Insl6, Spag6; Early539

spermatids: Tssk1, Acrv1, Spaca1, Tsga8 ; Late spermatids: Prm1, Prm2, Tnp1, Tnp2) [57, 58].540

Then we used Portal to harmonize the three samples, where the integration was accomplished541

in the mouse sample domain: The cells from the mouse sample were used as reference, and542

cells from the other two species were mapped to the mouse sample domain by Portal. Based on543

our annotation of the mouse sample, we transferred the broad cell type labels to cells from the544

macaque and human samples according to the nearest neighbors, using the alignment given by545

Portal (Fig. 6a). To check whether the alignments were correct for broad cell type identities, we546

visualized the UMAPs for cells from each species labeled by their original published annotations547

[16], and we confirmed concordant cell type integration across species (Fig. S31). Then, we used548

Louvain clustering algorithm to cluster the cells from all three species based on integrated cell549

representations. Ten clusters were found, and the cluster names were relabeled by their order550

of progression from the spermatogonia along the developmental trajectory (Fig. 6a). We then551

visualized the expression of known spermatogenesis markers [57, 58, 16] in each Louvain cluster552

and found that the Louvain clusters generated by Portal’s alignment clearly captured the key553

transcriptomic features for each stage of spermatogenesis, and correctly identified cells from554
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each stage for all three species (Fig. S32, S33). Furthermore, each Louvain cluster represented555

a more fine-grained classification of cells within the labeled broad spermatogenesis cell types.556

Using these clusters we assessed the transcriptomic changes throughout the differentiation557

trajectory with higher resolution (Fig. S32, S33). Notably, many of the marker genes known558

to define stages of spermatogenesis in human were not shared or sometimes not expressed in559

macaque and/or mouse scRNA-seq data. For example, human genes SYCP3, YBX2, SPACA4,560

H1FNT, PRM1, and TNP1 were known to mark human spermatogenesis progression, but561

they were absent in the macaque dataset. As only highly variable genes that were expressed562

in all three species were considered in the integration process, these genes were not used by563

Portal. However, they showed clear expression in the cell clusters where they were expected to564

be expressed after integration (Fig. S33), confirming the correctness of Portal’s integration565

result. The above results show that Portal can provide an accurate integration even for genes566

not measured by all three samples. As a comparison, Harmony, Seurat and online iNMF567

were also applied. However, Harmony and online iNMF were unable to maintain the gradient568

developmental trajectories of spermatogenesis process for at least one species. All of the three569

methods showed less satisfactory ability to align cells across the three species (Fig. 6b).570

Cross-species data integration can be a quick and easy way to generate draft cell atlas571

annotations for new species via label transfer from well-annotated species, but moreover, such572

integrated data can be used to highlight interesting biological features of shared cell types. In573

our Louvain clusters for spermatogenesis, for each species, we selected top 200 highly expressed574

genes of every cluster. By taking the intersection of those genes across three species, we then575

identified 228 highly variable genes that are shared in the spermatogenesis process across all576

three mammalian species (Fig. 6c). For the highly expressed genes that were unique to only one577

species, we compared their expressions across all three species (Fig. S34). Such comparisons578

could give insight into shared and divergent features of spermatogenesis across different species.579

Discussion580

Taking advantage of machine learning methodologies, Portal is an efficient and powerful tool for581

single-cell data integration that easily scales to handle large datasets with sample sizes in the582

millions. As a machine learning-based model, Portal is easy to train, and its training process is583

greatly accelerated by using GPUs. Meanwhile, mini-batch optimization allows Portal to be584
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trained with a low memory usage. Besides, it also makes Portal applicable in the situation585

where the dataset is not fully observed, but arrives incrementally.586

The nonlinearity of neural networks makes Portal a flexible approach that can adjust for587

complex dataset-specific effects. Nonetheless, according to benchmarking studies, strong ability588

for removing dataset-specific effects often comes with the weakness in conserving biological589

variation [48, 30], e.g., being prone to overcorrection. Portal overcomes this challenge by its590

model and algorithm designs. First, the boundaries of discriminator scores help Portal to591

protect dataset-unique cell types from overcorrection. Second, the use of three specifically592

designed regularizers not only assists Portal to find correct correspondence across domains, but593

also enables Portal to have high-level preservation of subcluster and small cluster identities in594

both datasets.595

Two existing popular methods are Seurat and BBKNN. Seurat often provides integration596

results with high accuracy, but also requires high computational cost, preventing its usage on597

large-scale datasets; while BBKNN is well-known for its extremely fast speed, its comparatively598

less precise results are sometimes a concern for users (Figs. S5 - S17). A major advance of599

Portal over these existing state-of-the-art integration approaches is its ability to achieve high600

efficiency and accuracy simultaneously. With speed comparable or faster than BBKNN, and601

significantly lower memory requirement than BBKNN (Fig. S18), Portal presents similar batch602

correction performance as well as superior information preservation performance compared to603

that of Seurat (Figs. S5 - S17).604

Portal also has advantages over several existing deep learning-based methods for single-605

cell data integration. Currently, the majority of deep learning-based methods leverages the606

variational autoencoders (VAEs) framework [70]. scVI [25], as a prominent representative of607

VAE-based methods, is scalable to atlas-level datasets. It utilizes the zero-inflated negative608

binomial (ZINB) distribution in its modeling, which may be less efficient in capturing complex609

data structures [24]. scANVI [71] is another VAE-based method with similar pros and cons610

of scVI, as it is an extension of scVI that incorporates cell type information into its model.611

Recently, VIPCCA [24] was proposed to leverage VAE-based networks to perform nonlinear612

canonical correlation analysis (CCA) efficiently. However, we empirically found that it favors613

the removal of batch effects over the preservation of biological information (Figs. S6, S12 and614

S16). scGen [72] utilizes a VAE to find a difference vector in the latent space of each cell type615
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across batches. Similar to scANVI, scGen requires cell type information as its input. There616

are also some methods using strategies other than VAEs. One category is deep learning-based617

methods utilizing searched MNN pairs as the reference, and then using neural networks to618

correct batch effects, such as iMAP [73] and deepMNN [74]. Consequently, the second stage of619

correcting batch effects heavily relies on the first stage of constructing MNN pairs. Moreover,620

searching MNN pairs is usually performed on CPUs and could be less computationally efficient621

for larger datasets. Some deep learning-based methods focus on integrating cross-omics datasets,622

including cross-modal autoencoder [75] and scJoint [55]. However, they require additional623

information like cell type information or paired data points for data alignment. They may not624

be applicable when such information is unavailable. Compared to existing deep learning-based625

methods, Portal neither relies on a parametric distribution for single-cell data, nor requires626

MNN pairs to serve as anchors for integration. Owing to its unified framework with unique627

designs for single-cell datasets, Portal enjoys high flexibility to handle complex datasets and628

dataset-specific effects with varying strength, and high scalability to deal with millions of cells629

efficiently.630

By leveraging the adversarial domain translation framework, Portal can build meaningful631

alignment between datasets with efficient utilization of information. From single tissue types632

to complex cell atlases, Portal showed extraordinary information preservation performance633

throughout all integration tasks. This feature of Portal is exemplified by integration of the634

spermatogenesis trajectory across three species, where only a limited number of highly variable635

genes were shared and utilized by Portal. Improvements can further be made if an effective636

way of leveraging the whole transcriptome of all species is developed, which is left for future637

work to address. Nonetheless, such cross-species integration allows biologists to easily identify638

shared and divergent cellular programs across different species, which is particularly useful639

for addressing questions of evolutionary biology. In our example of mouse, macaque, and640

human testes tissue integration, identifying genes that are primate-specific can help to generate641

hypotheses about the evolution of primates and shed light on the applicability of various animal642

models for biological research.643

It is now clear that using single-cell technologies to assemble comprehensive whole organism644

atlases encompassing diverse cell types is accelerating biological discovery, and this demand645

will only grow as more datasets are generated. The demand for integration of such datasets,646
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along with the size of these datasets, will expand correspondingly. We expect that Portal, with647

its fast, versatile, and robust integration performance, will play a valuable and essential role in648

the modern life scientist’s single-cell analysis.649

Methods650

The model of Portal651

Expression measurements of cells from two different studies are viewed as datasets originated652

from two different domains X and Y. After standard data preprocessing of the expression653

data, Portal performs joint principle component analysis (PCA) across datasets and adopts the654

first p principal components of cells as the low-dimensional representation of cells, namely, cell655

embeddings. Portal takes the cell embeddings as the input to achieve data alignment between656

X and Y. To learn a harmonized representation of cells, Portal introduces a q-dimensional657

latent space Z to connect X and Y, where the latent codes of cells in Z are not affected by658

domain-specific effects but capture biological variation.659

Portal achieves the integration of datasets through training a unified framework of adversarial660

domain translation. Let x and y be the cell embeddings in X and Y , respectively. For domain661

X , Portal first employs encoder E1(·) : X → Z to get a latent code E1(x) ∈ Z for all x ∈ X .662

Encoder E1(·) is designed to remove domain-specific effects in X . To transfer cells from X to663

Y , Portal then uses generator G2(·) : Z → Y to model the data generating process in domain664

Y, where domain-specific effects in Y are induced. E1(·) and G2(·) together form a domain665

translation network G2(E1(·)) that maps cells from X to Y along X → Z → Y . By symmetry,666

encoder E2(·) : Y → Z and generator G1(·) : Z → X are utilized to transfer cells from Y to X667

along the path Y → Z → X .668

Portal trains domain translation network G2(E1(·)) : X → Y, such that the distribution669

of transferred cells G2(E1(x)) can be mixed with the distribution of cell embeddings y in670

domain Y . Discriminator D2(·) is employed in domain Y to identify where the poor mixing of671

the two distributions occurs. The competition between domain translation network G2(E1(·))672

and discriminator D2(·) is known as adversarial learning [31]. Discriminator D2(·) will send a673

feedback signal to improve the domain translation network G2(E1(·)) until the two distributions674

are well mixed. By symmetry, domain translation network G1(E2(·)) : Y → X and discriminator675
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D1(·) deployed in domain X form another adversarial learning pair. The feedback signal from676

D1(·) improves G1(E2(·)) until the well mixing of the transferred cell distribution G1(E2(y))677

and the original cell distribution x in domain X .678

Notice that the well mixing of the transferred distribution and the original distribution does679

not necessarily imply the correct correspondence established between X and Y. First, cells680

from a unique cell population in domain X should not be forced to mix with cells in domain Y .681

Second, cell types A and B in domain X could be incorrectly aligned with cell types B and A682

in domain Y, respectively, even if the two distributions are well mixed. These problems can683

occur because we don’t have any cell type label information as an anchor for data alignment684

across domains. To address these, Portal has the following unique features, distinguishing it685

from existing domain translation methods [32, 33]. First, Portal has a tailored discriminator686

for the integrative analysis of single-cell data, which can prevent mixing of unique cell types687

in one domain with a different type of cell in another domain. Second, Portal deploys three688

regularizers to find correct correspondence during adversarial learning; these regularizers also689

play a critical role in accounting for domain-specific effects and retaining biological variation in690

the shared latent space Z.691

We propose to train domain translation networks under the following framework:

min
{E1,G1,E2,G2}

max
{D1,D2}

LX (D1, E2, G1) + LY(D2, E1, G2), (2)

subject to RAE(E1, G1, E2, G2) ≤ tAE, (3)

RLA(E1, G1, E2, G2) ≤ tLA, (4)

Rcos(E1, G1, E2, G2) ≤ tcos, (5)

where component (2) is the objective function of adversarial learning for single-cell data inte-692

gration; components (3), (4) and (5) are regularizers for imposing the autoencoder consistency,693

the latent alignment consistency and cosine similarity to preserve cross-domain correspondence,694

respectively. We have investigated the roles of each component in Portal and provided more695

results (Figs. S1 and S2) in the Supplementary Information. We explain each component in696

more detail in the next section.697

Adversarial learning with discriminator score thresholding. The adversarial training698

between discriminators and domain translation networks is formulated as a min-max opti-699

mization problem (2), where LX (D1, E2, G1) = E[logD1(x)] + E[log(1−D1(G1(E2(y))))] and700

LY(D2, E1, G2) = E[logD2(y)] + E[log(1 − D2(G2(E1(x))))] are the objective functions for701
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adversarial learning in domain X and domain Y, respectively. Given domain translation702

network G1(E2(·)), discriminator D1(·) : X → (0, 1) is trained to distinguish the transferred703

cells G1(E2(y)) from the original cells x, where a high score (close to 1) indicates a “real704

cell” in domain X , and a low score (close to 0) indicates a “transferred cell” from domain Y.705

This is achieved by maximizing LX with respect to D1(·). Similarly, discriminator D2(·) in706

domain Y is updated by maximizing LY . Given discriminators D1(·) and D2(·), the domain707

translation networks are trained by minimizing LX + LY with respect to E1(·), G2(·) and708

E2(·), G1(·), such that the discriminators cannot distinguish transferred cells from real cells.709

This is equivalent to min{E1,G1,E2,G2} E[log(1−D1(G1(E2(y))))] + E[log(1−D2(G2(E1(x))))].710

However, direct optimization of this objective function is known to suffer from severe gradient711

vanishing [31, 76]. Therefore, we adopt the “logD-trick” [31] to stabilize the training process.712

Denote LlogD
X = −E[logD1(G1(E2(y)))] and LlogD

Y = −E[logD2(G2(E1(x)))]. In practice, we713

minimize LlogD
X + LlogD

Y = −{E[logD1(G1(E2(y)))] + E[logD2(G2(E1(x)))]} with respect to714

E1(·), G2(·) and E2(·), G1(·), instead of minimizing LX + LY = E[log(1 −D1(G1(E2(y))))] +715

E[log(1−D2(G2(E1(x))))].716

Although the above adversarial learning can make the transferred cells and real cells well717

mixed, it can falsely force cells of a unique cell population in one domain to mix with cells in718

another domain, leading to overcorrection. Consider a cell population that is present in X but719

absent in Y as an example. On one hand, discriminator D1(·) can easily identify cells from720

the unique cell population as real cells in X . Cells in the nearby region of this cell population721

have extremely high discriminator scores. Some cells in Y will be mapped into this region722

by the domain translation network G1(E2(·)), leading to incorrect mixing of cell types in X .723

On the other hand, cells transferred from X -unique population will have low D2 scores in Y.724

Discriminator D2(·) will incorrectly force the domain translation network G2(E1(·)) to mix725

these cells with real cells in domain Y . The cell identity as a domain-unique population in X726

is lost.727

From the above reasoning, domain-unique cell populations are prone to be assigned with728

extreme discriminator scores, either too high in the original domain or too low in the transferred729

domain. Such extreme scores can lead to overcorrection. To address this issue in single-cell data730

integration tasks, we set boundaries for discriminator scores to make discriminators inactive731

on such cells. Specifically, the outputs of standard discriminators are transformed into (0, 1)732
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with the sigmoid function, i.e., Di(x) = sigmoid(di(x)) = 1/(1 + exp(−di(x))), i = 1, 2, where733

di(x) ∈ (−∞,∞) is the logit of the output. We bound the discriminator score by thresholding734

its logit to a reasonable range [−t, t]:735

D̃i(x) = 1/(1 + exp(−clamp(di(x)))), (6)

where clamp(·) = max(min(·, t),−t). By clamping the logit di(x), D̃i(x) becomes a constant736

when di(x) < −t or di(x) > t, providing zero gradients for updating the parameters of encoders737

and generators. Meanwhile, D̃i(x) remains the same as Di(x) when di(x) ∈ [−t, t]. By such738

design, the adversarial learning mechanism in Portal is only applied to cell populations that739

are likely to be common across domains. In Portal, we then use this modified version of740

discriminators D̃i(·) to avoid incorrect alignment of domain-unique cell populations. For clarity,741

we still use the notation Di(·) to represent D̃i(·) hereinafter.742

Regularization for autoencoder consistency. Encoder E1(·) : X → Z and generator743

G1(·) : Z → X form an autoencoder structure, where E1(·) removes domain-specific effects744

in X , and G1(·) recovers them. Similarly, E2(·) : Y → Z and G2(·) : Z → Y form another745

autoencoder structure. Therefore, we use the regularizer in (3) for the autoencoder consistency,746

where RAE = 1
p
{E [∥x−G1(E1(x))∥22] + E [∥y −G2(E2(y))∥22]}, p is the dimensionality of X747

and Y .748

Regularization for cosine similarity correspondence. Besides the autoencoder consistency,749

the cosine similarity regularizer in (5) plays a critical role in data alignment between domains,750

where Rcos = E
[
1− <x,G2(E1(x))>

∥x∥2∥G2(E1(x))∥2

]
+ E

[
1− <y,G1(E2(y))>

∥y∥2∥G1(E2(y))∥2

]
is the regularizer that imposes751

the cross-domain correspondence on domain translation. The key idea is that a cell and its752

transferred version should not be largely different from each other in terms of cosine similarity.753

This is because cosine similarity is scale invariant and insensitive to domain-specific effects,754

including differences in sequencing depth and capture efficiency of protocols used across datasets755

[77, 26, 21]. Thus, the cosine similarity regularizer is helpful to uncover robust correspondence756

between cells of the same cell type across domains.757

Domain-specific effects removal in the shared latent space by latent alignment regu-758

larization. Portal decouples domain translation into the encoding process X → Z (or Y → Z)759

and the generating process Z → Y (or Z → X ). Although adversarial learning enables the do-760

main translation networks to effectively transfer cells across domains, it can not remove domain-761

specific effects in shared latent space Z. To enable encoders E1(·), E2(·) to eliminate domain-762
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specific effects in X and Y , we propose the latent alignment regularizer in (4) for the consistency763

in latent space Z, whereRLA = 1
q
{E [∥E1(x)− E2(G2(E1(x)))∥22] + E [∥E2(y)− E1(G1(E2(y)))∥22]},764

q is the dimensionality of Z, E1(x) is the latent code of a real cell x ∈ X and E2(G2(E1(x)))765

is the latent code of its transferred version, E2(y) is the latent code of a real cell y ∈ Y and766

E1(G1(E2(y))) is the latent code of its transferred version. The regularizer (4) encourages the767

latent codes of the same cell to be close to each other. This regularizer helps encoders E1(·)768

and E2(·) to remove domain-specific effects, such that the latent codes in Z preserve biological769

variation of cells from different domains.770

Algorithm. Now we develop an alternative updating algorithm to solving the optimization771

problem of adversarial domain translation with the three regularizers. To efficiently solve the772

optimization problem, we replace the constraints (3), (4) and (5) by its Lagrange form. We773

introduce three regularization parameters λAE, λLA and λcos as coefficients for the regularizers.774

The optimization problem of Portal is rewritten as775

min
{E1,G1,E2,G2}

max
{D1,D2}

LX + LY + λAERAE + λLARLA + λcosRcos. (7)

As we adopt the “logD-trick” for updating domain translation networks formed by E1(·), G2(·)776

and E2(·), G1(·), the optimization problem (7) is modified accordingly as777

min
{E1,G1,E2,G2}

max
{D1,D2}

Ladv + λAERAE + λLARLA + λcosRcos,

where Ladv stands for the adversarial learning objective, whose value is LX+LY when maximizing778

with respect to D1(·), D2(·), and it is replaced with LlogD
X +LlogD

Y when minimizing with respect779

to E1(·), G1(·), E2(·), G2(·).780

Let the parameters of the networks E1(·), E2(·), G1(·), G2(·), D1(·) and D2(·) be denoted as781

θE1 , θE2 , θG1 , θG2 , θD1 and θD2 . Then we collect the parameter sets as θE = {θE1 , θE2}, θG =782

{θG1 , θG2} and θD = {θD1 , θD2}. We use the Monte Carlo estimators to approximate expectations783

in Portal’s objective. With a mini-batch of 2m samples including {x(1),x(2), · · · ,x(m)} from X784
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and {y(1),y(2), · · · ,y(m)} from Y , the Monte Carlo estimators are given by785

L̂X =
1

m

m∑
i=1

[logD1(x
(i)) + log(1−D1(G1(E2(y

(i)))))], L̂logD
X = − 1

m

m∑
i=1

logD1(G1(E2(y
(i)))),

L̂Y =
1

m

m∑
i=1

[logD2(y
(i)) + log(1−D2(G2(E1(x

(i)))))], L̂logD
Y = − 1

m

m∑
i=1

logD2(G2(E1(x
(i)))),

R̂AE =
1

mp

m∑
i=1

[∥x(i) −G1(E1(x
(i)))∥22 + ∥y(i) −G2(E2(y

(i)))∥22],

R̂LA =
1

mq

m∑
i=1

[∥E1(x
(i))− E2(G2(E1(x

(i))))∥22 + ∥E2(y
(i))− E1(G1(E2(y

(i))))∥22],

R̂cos =
1

m

m∑
i=1

{[
1− < x(i), G2(E1(x

(i))) >

∥x(i)∥2∥G2(E1(x(i)))∥2

]
+

[
1− < y(i), G1(E2(y

(i))) >

∥y(i)∥2∥G1(E2(y(i)))∥2

]}
.

The implementation of Portal is summarized in Algorithm 1.786

Algorithm 1 Stochastic gradient descent training of Portal.

Require: Batch size m, coefficients λAE, λLA and λcos

for number of training iterations do

Sample m cells {x(1),x(2), · · · ,x(m)} from X and m cells {y(1),y(2), · · · ,y(m)} from Y .

Calculate L̂X , L̂Y , L̂logD
X , L̂logD

Y , R̂AE, R̂LA, and R̂cos.

Update discriminators by stochastic gradient descent with ∇θD [−(L̂X + L̂Y)].

Update encoders and generators simultaneously by stochastic gradient descent with

∇θE ,θG(L̂
logD
X + L̂logD

Y + λAER̂AE + λLAR̂LA + λcosR̂cos).

end for

After training, cells from domains X and Y are encoded into Z to construct an integrated787

dataset, which can be applied to downstream analysis. In each domain, the original cells and788

transferred cells are also well integrated. For integration of multiple datasets, Portal can handle789

them incrementally, by transferring all other datasets into the domain formed by one dataset.790

Network structure. Portal uses lightweight networks which enable computationally efficient791

training when dealing with large-scale datasets. The details of Portal’s networks, including792

network structures, the number of layers and parameters are shown in the Supplementary793

Information (Tables S1, S2 and S3).794

Analysis details795

Data preprocessing. We used raw read or unique molecular identifier (UMI) matrices depend-796

ing on the data source for all scRNA-seq and snRNA-seq datasets, and gene activity matrices797
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for scATAC-seq datasets. We then performed standard data preprocessing for each count798

matrix, including log-normalization, feature selection, scaling and dimensionality reduction. For799

each dataset represented by a cell-by-gene count matrix, we first adopted the log-normalization,800

following the Seurat and Scanpy pipelines [22, 78]. For each cell, its library size was normalized801

to 10, 000 reads. Specifically, the counts abundance of each gene was divided by the total counts802

for each cell, then multiplied by a scaling factor of 10, 000. The normalized dataset was then803

transformed to log scale by the function log(1 + x). In order to identify a subset of features804

that highlight variability across individual cells, we adopted the feature selection procedure805

from the Seurat pipeline. For each dataset, we selected K top highly variable genes ranked by806

dispersion with the control of means. In this paper, we used K = 4, 000 throughout all analyses807

except for the cross-species analysis. In the cross-species analysis, we used K = 3, 000 since the808

usage of a larger number of features would result in the situation that correspondence across809

species is dominated by the distinction (e.g., altered functions of genes annotated by the same810

name). For each selected variable gene, we centered and standardized its expressions across811

individual cells to have mean at zero and variance at one. After the above procedures, which812

were applied to individual datasets, we continued to preprocess data across datasets. For those813

datasets to be integrated, we collected genes that were identified as top highly variable genes in814

all of them as features for integration. We extracted the scaled data with these features from815

each dataset, and then concatenated them based on features to perform joint PCA. Top p = 30816

principle components were kept for all dataset as inputs to Portal. For the shared latent space,817

we set its dimensionality to be q = 20 throughout all analyses.818

Unifying gene names for cross-species integration. We retrieved pairwise orthologues819

(human vs mouse, human vs macaque) respectively from Ensembl Biomart, and merged them820

to obtain one-to-one-to-one orthologues by using human Ensembl gene names as reference.821

One-to-one-to-one orthologues across the three species were used to unify gene names. Genes822

included in the list were used by Portal. To facilitate the usage of Portal, we have included823

the used gene lists (orthologues human mouse.txt, orthologues human macaque.txt) as well as824

the reproducible code for the cross-species integration, among all details for reproducing the825

experiments throughout our paper at https://github.com/YangLabHKUST/Portal.826

Hyperparameter setting. Hyperparameters used in Portal are m, t, λAE, λLA, λcos, where m827

is the batch size used by Portal for mini-batch training; t is the absolute value of boundaries828
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for the logit of discriminator scores (−t < di(x) < t, i = 1, 2); λAE, λLA, λcos are coefficients for829

autoencoder consistency regularizer RAE, latent alignment regularizer RLA and cosine similarity830

regularizer Rcos respectively. Throughout all analyses, we set m = 500, t = 5.0, λAE = 10.0,831

λLA = 10.0. Hyperparameter λcos was tuned within the range [10.0, 50.0] with interval 5.0832

according to the mixing metric, where the mixing metric was designed in Seurat to evaluate833

how well the datasets mixed after integration. The insight into tuning λcos is as follows: During834

domain translations, there is a trade-off between preservation of similarity across domains835

and flexibility of modeling domain differences. Since Rcos is designed to preserve the cosine836

similarity during translations, a higher value of λcos can enhance the cosine similarity as the837

cross-domain correspondence, and a lower λcos allows domain translation networks to deal with838

remarkable differences between domains. Following this intuition, we empirically find out that839

λcos = 10.0 has a good performance when harmonizing datasets with intrinsic differences, for840

example, datasets used in cross-species analysis or cross-modal integration (scRNA-seq and841

scATAC-seq). For other integration tasks, λcos = 20.0 often yields reasonable results, which842

is adopted as the default setting in our package. Slightly better alignment results could be843

achieved by tuning λcos. Through a parameter sensitivity analysis, we have shown that Portal’s844

performance is insensitive to the choice of hyperparameters (Figs. S3, S4 in the Supplementary845

Information).846

Label transfer. Suppose we wish to transfer labels from domain X to domain Y . As Portal847

produces integrated cell representations in each domain and the shared latent space, we can848

use any of these representations to perform label transfer. For each cell in domain Y , we find849

its k = 20-nearest neighbors among the cells in domain X based on the integrated result. The850

metric for finding nearest neighbors can be Euclidean distance in shared latent space, or cosine851

similarity in domains. The labels in domain Y are finally determined by majority voting.852

Evaluation metrics. We assessed all metrics based on Portal’s integration results in shared853

latent space Z. We used kBET [35], PCR batch [35], batch ASW [35], graph iLISI [30, 21] and854

graph connectivity [30] to assess the ability of batch correction. We used ARI [36], NMI [37],855

cell type ASW, graph cLISI [30, 21], isolated label F1 [30], isolated label silhouette [30] and856

cell cycle conservation [30] to evaluate the conservation of biological variation. The metrics, if857

necessary, were rescaled to [0, 1] such that a higher value represents a better performance.858

kBET. For each selected cell, kBET adopts a Pearson’s χ2-based test to check whether the859

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2021.11.16.468892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468892
http://creativecommons.org/licenses/by-nc-nd/4.0/


batch label distribution in its neighbourhood is similar to the global batch label distribution or860

not. In our experiments, we ran 100 replicates of kBET with 1,000 random samples, and used861

the median of average acceptance rates as the output. The neighbourhood size was chosen862

following the default setting in kBET’s official code.863

PCR batch. PCR batch quantifies the removal of batch effects by comparing the variance864

contributions of the batch effects to datasets before integration (V Cbefore) and after integration865

(V Cafter), respectively. In our experiments, we concatenated datasets by batches to obtain the866

dataset before integration. PCR batch score was calculated as V Cbefore−V Cafter

V Cbefore
. We clamped867

PCR batch score to [0, 1], where a higher score means that the impact of batch effects is868

eliminated after integration.869

Batch ASW. Batch ASW calculates the silhouette width of cells with respect to batch labels.870

If batch effects are corrected in cell embeddings, the evaluated ASW (with respect to batches)871

should be close to -1, indicating the good mixing of cells across batches. We rescaled the score872

by 1−ASW(batch)
2

.873

Graph iLISI. The original iLISI is defined as the effective number of datasets in a neigh-874

borhood, where 1 means poor mixing, and 2 indicates good mixing of two datasets. Graph875

iLISI extends iLISI by enabling the calculation on graphs. The values were rescaled to [0, 1] by876

subtracting 1.877

Graph connectivity. Graph connectivity assesses whether the graph correctly connects878

cells of same cell type labels among batches. We used the Scanpy pipeline to derive graph879

representation of integrated cell embeddings. The neighborhood size was set to be 15 (default880

setting in Scanpy).881

ARI. ARI measures the degree to which the two clustering results match. It ranges from882

0 to 1, where 0 indicates that the two clustering labels are independent to each other, and 1883

means that the two clustering labels are the same up to a permutation. We obtained clustering884

results following the Seurat clustering pipeline with its default setting, and assessed ARI by885

comparing identified clusters and cell type annotations.886

NMI. NMI computes normalized mutual information between two clustering results, ranging887

from 0 to 1. An NMI value close to 0 means that there is nearly no mutual information, while888

a value close to 1 indicates high correlation between the two clustering results. Similar to ARI,889

we calculated NMI with clusters identified by the Seurat pipeline and cell type annotations.890
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Cell type ASW. Cell type ASW evaluates ASW with respect to cell type labels, where a891

higher score means that cells are closer to cells of the same cell type. As ASW lies between -1892

and 1, we rescaled the score by cell type ASW = 1+ASW(cell type)
2

.893

Graph cLISI. The original cLISI measures the effective number of cell types in a neighbor-894

hood, where 1 means that the cell population is well preserved, and larger values indicate the895

mixing of different cell populations. Graph cLISI extends cLISI by enabling the calculation on896

graphs. The values were rescaled to [0, 1], where higher values indicated good performance of897

preserving biological variation.898

Isolated label F1. Isolated label F1 is developed to measure the ability of integration methods899

to preserve dataset-specific cell types. We adopted the Seurat pipeline to cluster cells in the900

integrated dataset, and evaluated the cluster assignment of dataset-specific cell types based on901

the F1 score [79]. Isolated label F1 ranges between 0 and 1, where 1 shows that all cells of902

dataset-specific cell types are captured in seperate clusters.903

Isolated label silhouette. Isolated label silhouette, which is similar to Isolated label F1,904

also measures the conservation of dataset-specific cell types. Instead of using the F1 score, it905

evaluates ASW of dataset-specific cell types. In our experiments, we rescaled the score to [0,1].906

Cell cycle conservation. Cell cycle conservation measures how well the cell cycle effect is907

preserved by integration approaches. It compares cell cycle scores before integration (CCbefore)908

and after integration (CCbefore) by calculating |CCbefore−CCafter|
CCbefore

, where score 0 indicates perfect909

conservation of cell cycle effects. We used the gene list from the study [80] as reference, and910

calculated the cell cycle score based on the Scanpy pipeline. We rescaled the score to [0,1] such911

that a higher score indicates a better result.912

Benchmarking of the running time and the memory usage. Standard data preprocessing913

such as normalization, feature selection and dimension reduction could be performed incre-914

mentally using mini-batches to control memory usage. In Portal’s preprocessing, we adopted915

the incremental strategy and used a chunk size of 20,000. For example, the preprocessing of916

Portal took 63.4 minutes, requiring 22.0 GB peak running memory on the two mouse brain917

atlases datasets with 1,100,167 cells. The preprocessing time could be reduced to 37.7 minutes918

when the chunk size was increased to 200,000, with 36.4 GB peak running memory. Some919

other methods may not be able to adopt a mini-batch implementation. For the two mouse920

brain atlases datasets, Harmony took 17.6 minutes to finish preprocessing, but required 127.1921
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GB memory usage. Online iNMF performed preprocessing with mini-batches. Its default922

preprocessing procedure on the two mouse brain atlases datasets took 15.9 hours, with 0.6923

GB memory usage. For a fair comparison, the time and memory usages of data preprocessing924

procedures were not included in our benchmarking.925

Integration of multiple datasets. For multiple datasets, Portal integrates them in an926

incremental manner, by transferring all other datasets into the domain constructed by the first927

dataset. Here we used the integration of two scRNA-seq datasets (profiled by Drop-seq and928

10X) [8, 9] and one snRNA-seq dataset (profiled by SPLiT-seq) [49] to illustrate this procedure.929

In this example, Portal ran in two steps:930

Step 1. Portal trained domain translation networks between the 10X dataset (160,678 cells)931

and the Drop-seq dataset (319,359 cells), which took 45.48s. Then Portal used the trained932

networks to map 10X cells to the Drop-seq dataset domain, which took 0.08s.933

Step 2. Portal trained domain translation networks between the SPLiT-seq dataset (74,159934

cells) and the integrated 10X and Drop-seq dataset, which took 41.36s. Then Portal mapped935

SPLiT-seq cells to the integrated 10X and Drop-seq dataset domain, which took 0.06s.936

In total, Portal took 86.98s to integrate all three datasets.937

The integration of multiple datasets is implemented in one function in Portal package. The938

code for reproducing the experiment is available as a Jupyter Notebook at https://github.939

com/YangLabHKUST/Portal, serving as an example for the integration of multiple datasets.940

Visualization. We used the UMAP algorithm [39] for visualization of cell representations941

in a two-dimensional space. In all analyses, the UMAP algorithm was run with 30-nearest942

neighbors, minimum distance 0.3, and correlation metric.943
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Data availability963

All data used in this work are publicly available through online sources.964

• Mouse brain cells from Saunders et al. [8] (http://dropviz.org).965

• Mouse brain cells from Zeisel et al. [9] (http://mousebrain.org/downloads.html).966

• Mouse brain cells from Rosenberg et al. [49] (GSE110823).967

• Mouse cell atlas from the Tabula Muris Consortium [7] (https://figshare.com/projects/968

Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_969

Mus_musculus_at_single_cell_resolution/27733).970

• Mouse lemur cell atlas from Tabula Microcebus Consortium (https://figshare.com/971

projects/Tabula_Microcebus/112227).972

• Human peripheral blood mononuclear cells from Mimitou et al. [54] (GSE156478).973

• Human peripheral blood mononuclear cells from Ding et al. [81] (GSE132044).974

• Human peripheral blood mononuclear cells from 10X Genomics. [81] (https://support.975

10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k).976
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• Mouse spermatogenesis cells from Ernst et al. [59] (https://www.ebi.ac.uk/arrayexpress/977

experiments/E-MTAB-6946/).978

• Human spermatogenesis cells from Shami et al. [16] (GSE142585).979

• Macaque spermatogenesis cells from Shami et al. [16] (GSE142585).980

• Hematopoietic stem cells from Paul et al. [82] (GSE72857).981

• Hematopoietic stem cells from Nestorowa et al. [83] (GSE81682).982

• Reprogramming of induced pluripotent stem cells from Schiebinger et al. [84] (GSE122662).983

• Human brain cells from Fullard et al. [51] (GSE164485).984

• Human brain cells from Tran et al. [52] (https://github.com/LieberInstitute/985

10xPilot_snRNAseq-human#work-with-the-data).986

Code availability987

Portal software is available at https://github.com/YangLabHKUST/Portal.988
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