1	Genome-wide identification of novel sRNAs in Streptococcus mutans
2	Madeline C Krieger ^{1,2} , Justin Merritt ² , Rahul Raghavan ^{1,3}
3	
4	¹ Department of Biology, Portland State University, Portland, OR, USA.
5	² Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science
6	University, Portland, OR, USA.
7	³ Department of Molecular Microbiology and Immunology, The University of Texas at San
8	Antonio, San Antonio, TX, USA.
9	
10	Author for correspondence:
11	Rahul Raghavan Email: rahul.raghavan@utsa.edu
12	
13	Key words: sRNA, Streptococcus mutans, 6S RNA, sugar-phosphate stress, sorbitol,
14	transcriptome
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 ABSTRACT

25 Streptococcus mutans is a major pathobiont involved in the development of dental caries. Its 26 ability to utilize numerous sugars and to effectively respond to environmental stress promotes S. 27 *mutans* proliferation in oral biofilms. Because of their quick action and low energetic cost, non-28 coding small RNAs (sRNAs) represent an ideal mode of gene regulation in stress response 29 networks, yet their roles in oral pathogens have remained largely unexplored. We identified 15 30 novel sRNAs in S. mutans and show that they respond to four stress-inducing conditions 31 commonly encountered by the pathogen in human mouth: sugar-phosphate stress, hydrogen 32 peroxide exposure, high temperature, and low pH. To better understand the role of sRNAs in S. 33 *mutans*, we further explored the function of the novel sRNA, SmsR4. Our data demonstrate that 34 SmsR4 regulates the EIIA component of the sorbitol phosphotransferase system, which 35 transports and phosphorylates the sugar alcohol sorbitol. The fine-tuning of EIIA availability by 36 SmsR4 likely promotes S. mutans growth while using sorbitol as the main carbon source. Our 37 work lays a foundation for understanding the role of sRNAs in regulating gene expression in 38 stress response networks in *S. mutans* and highlights the importance of the underexplored 39 phenomenon of posttranscriptional gene regulation in oral bacteria.

41 **IMPORTANCE**

- 42 Small RNAs (sRNAs) are important gene regulators in bacteria, but the identities and functions
- 43 of sRNAs in *Streptococcus mutans*, the principal bacterium involved in the formation of dental
- 44 caries, are unknown. In this study, we identified 15 putative sRNAs in *S. mutans* and show that
- 45 they respond to four common stress-inducing conditions present in human mouth: sugar-
- 46 phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. We further show
- 47 that the novel sRNA SmsR4 likely modulates sorbitol transport into the cell by regulating
- 48 SMU_313 mRNA, which encodes the EIIA subunit of the sorbitol phosphotransferase system.
- 49 Gaining a better understanding of sRNA-based gene regulation may provide new opportunities to
- 50 develop specific inhibitors of *S. mutans* growth, thereby improving oral health.

52 **INTRODUCTION**

53 The gram-positive oral pathogen *Streptococcus mutans* plays a principal role in the formation of 54 dental caries and is often considered to be the primary causative agent of the disease (1-3). 55 Central to S. mutans cariogenicity is its ability to ferment a wide variety of sugars, resulting in 56 the formation of acidic microenvironments that drive the decline of commensal species and the 57 proliferation of aciduric bacteria (4). One factor that allows S. mutans to metabolize a variety of 58 carbon sources is the presence of 14 phosphotransferase systems (PTSs) (5, 6). PTSs act by 59 transporting carbohydrates across the cell membrane and immediately phosphorylating them for 60 intracellular retention and entry into glycolysis (7). While glucose is the preferred carbon source 61 for *S. mutans*, other PTSs, including the sorbitol (glucitol) PTS, are inducible in its absence. 62 Sorbitol is a sugar-alcohol found naturally in many fruits and is a popular low-calorie anticariogenic sweetener (7, 8). The anticariogenic action of sorbitol is due to the relatively low 63 64 amounts of acid produced during sorbitol fermentation by S. mutans compared to that of glucose 65 or sucrose metabolism (8, 9). 66 The success of S. *mutans* in the oral cavity is enhanced not only by proficient sugar 67 utilization but also by its ability to quickly respond to rapidly changing environmental conditions 68 and multiple stressors (10). Small RNAs (sRNAs) are non-coding transcripts that typically bind 69 to their target mRNAs to regulate gene expression (11). Due to their low energetic cost, fast 70 action, and capacity for co-degradation with mRNA targets, sRNAs are an ideal mode of 71 posttranscriptional control when a bacterium is experiencing environmental stress (12).

Surprisingly little is known about sRNA-based regulation in *S. mutans* and there have been no

functional analyses of sRNA utility in *S. mutans* to date. In this study, we identified 15 putative

- sRNAs in *S. mutans* that respond to multiple stress conditions and describe a novel sRNA that
- 75 promotes bacterial growth in the presence of sorbitol.
- 76

77 **RESULTS**

78 Identification and validation of novel sRNAs

- 79 We used an RNA-seq-based approach that we developed previously (13–15) to identify 15 novel
- 80 sRNAs named SmsR for "S. mutans small RNA" expressed in S. mutans during
- 81 exponential (OD₆₀₀ 0.5-0.6) growth in Brain Heart Infusion (BHI) broth (Figure 1). Nine of the
- 82 novel sRNAs overlapped with candidates predicted by a previous genome-wide scan and a
- 83 search against the Rfam database identified three of the sRNAs as RNase P, 6S RNA, and
- tmRNA (16, 17) (**Table 1**). All candidate sRNAs have putative -10 promoter sites, and 10 have
- 85 predicted rho-independent terminators at their 3' ends (Table 2), indicating these as authentic
- 86 sRNAs. We further verified all 15 putative sRNA transcripts using Northern blot (Figure 1).
- 87 Interestingly, in a few cases, higher molecular weight bands in addition to the sRNAs were

88 observed, presumably because the sRNAs were cleaved from longer transcripts, as observed in

89 other bacteria (18–23).

90

91 sRNAs respond to environmental stress

We evaluated the expression of the 15 novel sRNAs following *S. mutans* exposure to four stressinducing conditions relevant to the human oral cavity: sugar-phosphate stress, hydrogen peroxide (H₂O₂), high temperature, and low pH (**Table 3**). All sRNAs showed patterns of differential expression in at least one of these conditions, suggesting likely roles in stress tolerance networks (**Figure 2**). Acid and sugar-phosphate stress induced differential expression of 12 sRNAs, while

97 eight sRNAs were affected by heat stress and four responded to oxidative stress (Figure 2).

98 Upregulation of sRNA expression was more common than downregulation across all conditions

99 except for heat stress.

100

101 SmsR14 and SmsR4 are unrelated sRNAs

102 6S RNA, a global regulator of transcription, is widely conserved among bacteria (24–26). Two

103 copies of 6S RNA are present in *Bacillus subtilis*, a model gram-positive bacterium: one in the

104 intergenic region between genes for azoreductase and RecQ helicase, and the other between two

105 tRNA-associated genes (Figure 3) (27). The prevalence of 6S RNA in *Streptococcus* has not

106 been examined previously. SmsR14, one of the newly-discovered sRNAs, is a 6S homolog and is

107 located between *rarA* and tRNA-Lys genes in *S. mutans* (Figure 3). A covariance modeling

108 (cm)-based search for 6S homologs in other Streptococcus species revealed only one copy of the

109 sRNA in all genomes we analyzed (Figure 4). Interestingly, another novel sRNA (SmsR4)

110 occupies the genomic location at which 6S RNA is present in *Escherichia coli*, i.e., upstream of

111 the gene encoding 5-formyltetrahydrofolate cyclo-ligase (5-FTC) (**Figure 3**) (24, 26, 28).

112 SmsR4, however, is much shorter than 6S (110 nt vs 194 nt), has a predicted secondary structure

113 that is distinct from that of 6S, and is encoded on the opposite strand as 5-FTC gene (Figure 3).

114 These differences suggest that SmsR4 is unrelated to 6S RNA and could have distinct functions

115 in *S. mutans*.

116

117 SmsR4 arose in the Pyogenes-Equinus-Mutans clade of *Streptococcus*

118 The genus Streptococcus could broadly be classified into two clades: Mitis-Suis and Pyogenes-

119 Equinus-Mutans (29). Our cm-based search identified SmsR4 homologs only in the Pyogenes-

120 Equinus-Mutans clade (Figure 4). Further, an evolutionary reconstruction showed that SmsR4 121 arose at the root of this clade but was later lost in the common ancestor of Sobrinus, Salivarus, 122 Halotolerans and Porci subclades. While the rest of the Pyogenes subclade members contain 123 SmsR4, it is absent in *Streptococcus equi*; similarly, in Entericus subclade, *Streptococcus* 124 *marimmalium* has lost the sRNA, but it is retained by *Streptococcus entericus*. Despite these 125 disparate cases of sRNA loss, the broad pattern of conservation of SmsR4 across a major clade 126 of Streptococcus suggests that the novel sRNA has important functions. 127 128 SmsR4 promotes S. mutans growth in sorbitol-containing media 129 To identify the functions of SmsR4 in S. mutans, we first confirmed the 5' and 3' boundaries of 130 SmsR4 and generated an SmsR4-deletion (DEL) strain. We measured the growth of wild-type 131 (WT) and DEL strains using a phenotypic microarray (30). In this analysis, DEL had reduced 132 growth in comparison to WT in media containing sorbitol as the sole carbon source (Figure S1). 133 We verified this phenotype by measuring bacterial growth in BTR medium that contained either 134 0.5% glucose (BTR-G) or 0.5% sorbitol (BTR-S). In this assay DEL had weaker growth than 135 WT in BTR-S despite displaying a growth pattern identical to that of WT in BTR-G (Figure 5). 136 The growth defect of DEL in BTR-S was overcome by a complementation strain (COMP) in 137 which SmsR4 was expressed on the shuttle vector pDL278 (31, 32), indicating that the loss of 138 SmsR4 caused DEL's reduced growth. Probably because multiple copies of the SmsR4-carrying 139 plasmid were present in each cell, COMP grew considerably better than WT in BTR-S, again 140 denoting a role for the sRNA in promoting robust bacterial growth when using sorbitol as the 141 carbon source.

143 SmsR4 regulates the EIIA component of the sorbitol PTS

144 In accordance with SmsR4's potential role in regulating bacterial growth on sorbitol, in silico sRNA target prediction indicated that SmsR4 could bind to SMU 313, the gene encoding 145 146 enzyme IIA of the sorbitol PTS (Figure 6; Table S1). An SMU 313-deletion strain failed to 147 achieve meaningful growth in BTR-S but grew at comparable levels to WT in BTR-G (Figure 148 S2), demonstrating that SMU 313 is essential for growth on sorbitol but not glucose. We 149 confirmed the interaction between SmsR4 and SMU 313 mRNA with an RNA-RNA 150 electrophoretic mobility shift assay (EMSA), which showed that SmsR4 binds well to the 5' 151 UTR of SMU 313 mRNA (Figure 7A). The putative-SmsR4-binding site identified by in silico 152 analyses (Figure 6) is likely required for this interaction, as a mutation of the predicted SmsR4-153 binding site in SMU 313 inhibited its in vitro interaction with SmsR4 (Figure 7B). Taken 154 together, our data indicate that SmsR4 modulates sorbitol import into the cell, likely by 155 antagonizing translation of SMU 313 mRNA, which encodes the EIIA subunit of the sorbitol 156 PTS.

157

158 DISCUSSION

sRNAs are critical for posttranscriptional gene regulation in bacteria, but their roles in the dental pathogen *S. mutans* have remained largely unknown. Prior to our study, a mostly bioinformaticsbased analysis of gene expression in *S. mutans* grown with various carbon sources identified 243 sRNA candidates (17). In contrast, our approach combined genome-wide analysis with experimental validation and uncovered 15 sRNAs expressed under a single growth condition (BHI, OD₆₀₀ 0.5-0.6) (**Figure 1**); hence, it is certainly possible that *S. mutans* transcribes additional undetected sRNAs in growth conditions different from those examined here. We

166	noticed several sRNAs that appeared to be processed from larger parent transcripts, e.g., SmsR3
167	and SmsR20 (Figure 1). The generation of sRNAs from processed mRNAs has been well
168	documented; for example, OppZ and CarZ are produced by RNase E cleavage of the oppABCDF
169	and carAB mRNAs in Vibrio cholera, ArgX is produced from argR mRNA in Lactococcus
170	lactis, and RsaC is formed via RNase III digestion of mntACB mRNA in Staphylococcus aureus
171	(20, 33–37). Alternatively, some of these sRNAs may be regulatory elements with multiple
172	products formed from premature transcriptional termination and transcriptional read-through
173	(38).
174	The genomic contexts of sRNAs likely have implications for their functions (Figure 1).
175	For instance, some of the sRNAs located in the 5' UTRs of downstream genes (e.g., SmsR5,
176	SmsR6, SmsSR8, SmsR16, SmsR20, SmsR22) could function as riboswitch-like elements (39),
177	or sRNAs that are transcribed divergently from downstream protein-coding genes (e.g., SmsR1,
178	SmsR3, SmsR19) could function as antisense sRNAs that regulate cis-encoded targets (40, 41).
179	A few sRNA genes in other bacteria have been shown to contain small open reading frames
180	(ORFs) that encode proteins (42). We searched the 15 sRNA sequences for ORFs and found that
181	SmsR12 potentially encodes a small protein (33 amino acids). Although we could not detect a
182	ribosome binding site upstream of the ORF and a BlastP search did not produce any hits in other
183	bacteria, further studies would be required to determine whether the ORF is indeed functional.
184	Because sRNAs identified in this study exhibited differential expression under stress and their
185	existence as discrete transcripts were validated via Northern blot, it is likely that they represent
186	bona fide sRNAs participating in regulatory networks. Aside from SmsR4, the functions of these
187	novel sRNAs are currently unknown, but preliminary in silico target predictions suggest that
188	many of them are involved in processes critical to adaptation and virulence. For instance, SmsR2

189	and SmR22 are predicted to bind to PTS components, indicating that additional sRNAs may
190	regulate sugar transport (Table S1), a process critical for S. mutans cariogenicity.
191	Among the 15 novel sRNAs, SmsR4 was intriguing because its genomic location is
192	similar to that of 6S RNA in many proteobacteria (24), and as observed for 6S, SmsR4 was
193	maximally expressed during the transition from exponential to stationary phase (Figure S3) (25).
194	In gammaproteobacteria, expression of 6S is thought to be controlled by its linkage to the
195	neighboring 5-FTC gene, which responds to nutrient limitation during the transition to stationary
196	phase (24). In a similar manner, SMU_320, the 5-FTC homolog in S. mutans, could influence the
197	expression of SmsR4; however, unlike with 5-FTC and 6S in gram-negative bacteria, SMU_320
198	and SmsR4 are encoded on opposite DNA strands and hence are not co-transcribed. Instead, a
199	unique promoter likely initiates SmsR4 transcription (Table 2).
200	Because sugar transport is central to the proliferation and cariogenicity of S. mutans, it is
201	unsurprising to find an sRNA regulator of its sorbitol usage. While further work is required to
202	delineate the molecular details of its action, our results indicate that SmsR4 likely functions by
203	modulating translation of the EIIA component of the sorbitol PTS. When sugars are transported
204	through PTS systems, EIIA (e.g., SMU_313) participates in phosphorylation of the incoming
205	sugar molecule as it enters into the cytoplasm (43). If left unchecked, phosphorylated sugars can
206	accumulate in the cell and trigger sugar-phosphate stress (44). In E. coli and Salmonella enterica,
207	the sRNA SgrS plays a key role in restoring glycolytic balance during sugar-phosphate stress by
208	blocking the translation of mRNAs encoding the corresponding sugar-transporters (45, 46). In a
209	similar fashion, SmsR4 could be modulating sorbitol intake by regulating the expression of
210	SMU_313 (EIIA ^{sorb}) to relieve <i>S. mutans</i> sugar-phosphate stress during the transition from
211	exponential to stationary phase growth in sorbitol-containing growth medium. Alternatively,

212	modulation of SMU_313 expression by SmsR4 could impact alternative functions of EIIA. For
213	example, this protein has been shown to negatively impact glycerol metabolism in Klebsiella
214	pneumoniae and to reduce S. enterica virulence (47, 48). In conclusion, our in silico and
215	biochemical data both support a role for sRNAs as posttranscriptional regulators of sugar
216	transport through PTS systems. Further insights into these regulatory mechanisms may provide
217	new opportunities to develop specific inhibitors of S. mutans growth in the oral cavity.
218	
219	MATERIALS AND METHODS
220	Bacterial strains and growth assays
221	Growth experiments were conducted by diluting overnight cultures of S. mutans UA159 in fresh
222	media. BTR broth base (1% Bacto-Tryptone, 0.1% yeast extract, 0.61% K ₂ HPO ₄ , 0.2% KH ₂ PO ₄)
223	supplemented with either 0.5% glucose (BTR-G) or 0.5% sorbitol (BTR-S) was utilized for
224	growth assays. For experiments comparing the growth of WT, DEL, and COMP strains, 1 mg/ml
225	spectinomycin was added to the growth media to retain the pDL278 plasmid. All growth assays
226	were done at 37°C in an anaerobic chamber (5% hydrogen, 5% carbon dioxide, 90% nitrogen).
227	
228	Phenotypic microarray
229	Biolog Phenotypic microarray assays were conducted per manufacturer's recommendations (36).
230	Briefly, overnight cultures from single bacterial colonies were diluted in fresh Brain Heart

231 Infusion (BHI) broth and grown to an OD_{600} of 0.6-0.7 at 37°C in an anaerobic chamber. Cells

were collected via centrifugation (3,000xg, 5 min) and washed twice with PBS and resuspended

to an OD₆₀₀ of 0.4 in IF-0a GN/GP base. Inoculating fluid was prepared and combined with cells

at 81% turbidity and 100 μ l of the mixture was added to each well and overlaid with 40 μ l

mineral oil. Temperature was maintained at 37°C while absorbance values at 590 nm and 750 nm
were collected every 20 min for 24 h using a Multiskan Spectrum plate reader (Thermo Fischer
Scientific). Results were obtained by subtracting the measurements at 750 nm from those at 590
nm, and the average of two replicates was used to construct a growth curve for each well.

239

240 sRNA discovery

241 Bacterial cultures were grown in BHI broth to an OD₆₀₀ of 0.5-0.6. RNA stop solution (5%

242 Phenol, 95% Ethanol) was added to bacterial cultures (1.25 mL stop solution per 10 mL culture)

and cells were pelleted by centrifugation at 10,000xg for 10 min at 4°C. Bacterial pellets were

resuspended in 1 ml of TRI reagent (Thermo Fischer Scientific) and total RNA was extracted

245 using the manufacturer's protocol. RNA was resuspended in nuclease-free water and DNA was

246 removed by TURBO DNase (Thermo Fischer Scientific) treatment. RNA sequencing was

247 performed at the Yale Center for Genome Analysis using Illumina NovaSeq (paired-end, 150

bp). Raw reads have been deposited in the NCBI Sequence Read Archive under the accession

249 number PRJNA726731. RNA-seq reads were processed using Trimmomatic to remove low-

250 quality reads and adapters (49). CLC Genomics workbench was used to map the reads to the S.

251 *mutans* UA159 genome (NC 004350.2) and to determine the total read count for each gene.

252 Coverage plots were generated by calculating reads mapped per nucleotide across the entire

253 genome using an in-house Perl script, as described previously (13). The Artemis genome

browser (50) was used for visual inspection of transcriptomics data and gggenes package in R

255 (version 0.4.1) was used to draw Figure 1. The putative 5' end of each sRNA was estimated from

sites on transcriptional coverage plots with sharp increases in reads mapped per nucleotide.

257 RNAalifold was used to predict secondary structure of SmsR4 and 6S RNA (51), and ARNold

was used to predict 3' Rho-independent terminator structures (52). For sRNAs without predicted
terminators, 3' ends were defined as sites on transcriptional coverage plots with a sharp decrease
in reads mapped per nucleotide. Potential open reading frames (ORFs) within sRNA genes were
detected using ORF Finder (53).

262

263 Stress induction

264 Overnight cultures of S. mutans UA159 were diluted 1:100 in BTR-G and grown to an OD₆₀₀ of 265 0.3-0.4 at 37°C in an anaerobic chamber. To induce sugar-phosphate stress, 6% xylitol in BTR 266 broth was added to one half (treatment) and grown for 15 minutes at 37°C, while an equal 267 volume of BTR broth without xvlitol was added to the control and incubated under the same 268 conditions. Similarly, for oxidative stress induction, 1mM H₂O₂ was added to one half of the 269 culture (treatment) while an equal volume of water was added to the control half and incubated 270 for 15 minutes. For heat stress, one half of the culture was incubated at 37°C for 15 minutes 271 (control), while the other was incubated at 45°C for 15 minutes (treatment). To induce acid 272 stress, cultures were centrifuged and one half was resuspended in BTR-G, pH 7 (control), while 273 the other half was resuspended in BTR-G, pH 5 (treatment), and incubated for 30 minutes at 274 37°C. Anaerobic conditions were maintained throughout the stress induction assays, RNA was 275 extracted as described above. To confirm stress induction, qRT-PCR was used to measure the 276 expression of stress marker genes previously associated with each tested stress condition (54–57) 277 (Figure S4). Contaminating DNA was removed by TURBO DNase (Thermo Fischer Scientific) 278 treatment and cDNA was synthesized with a High-Capacity cDNA Reverse Transcription Kit 279 (Thermo Fischer Scientific) using random primers. qRT-PCR was performed using SYBR Green 280 master mix (Thermo Fischer Scientific) and gene-specific primers (Table S2). RNA was

281	sequenced and RNA-seq reads were processed as described above. The DESeq2 package in R
282	was used to determine differential gene expression of sRNAs under the four stress-inducing
283	conditions compared to controls (58). Experiments were performed in triplicate for all conditions
284	except for acid stress, which was performed in duplicate.
285	

286 In vitro transcription

287 Amplification of gDNA for *in vitro* transcription was performed using PCR primers designed to

incorporate a T7 promoter (**Table S2**). PCR products to be used as DNA templates were cleaned

using a NucleoSpin Gel and PCR Clean-up kit (Takara Bio). In vitro transcription was performed

290 using MAXIscript T7 Transcription Kit (Thermo Fischer Scientific) per manufacturer's protocol

with a maximum of 1 µg of DNA used as template. Following TURBO DNase treatment, RNA

292 was purified using a Monarch RNA Cleanup Kit (New England Biolabs).

293

Northern blot

295 RNA was isolated from S. mutans cells under sugar-phosphate stress, oxidative, heat, or acid 296 stress as described above. Equal amounts of RNA were adjusted to 10 µl with nuclease-free 297 water, and 10 µl of 2x RNA loading dye (Thermo Fischer Scientific) was added and incubated 298 for 10 min at 70°C followed by 3 min on ice. Samples were loaded onto either 6% or 10% TBE-299 Urea Gel (Thermo Fischer Scientific) along with a biotinylated sRNA ladder (Kerafast). Gels 300 were run in 1x TBE buffer at 180V for 60 min (6% gels) or 180V for 80 min (10% gels). RNA 301 was transferred to a Biodyne B Nylon Membrane (Thermo Fischer Scientific) using the BioRad 302 Mini-Trans Blot at 12V overnight, 4°C in 0.5x TBE buffer. Membranes were UV-crosslinked 303 using a Staralinker 2400 UV Crosslinker (1200 mJ) and were moved to glass hybridization

304	chambers and prehybridized using 10 ml of ULTRAhyb-Oligo Buffer (Thermo Fischer
305	Scientific) at 45°C for 2 h with rotation. RNA probes produced from <i>in vitro</i> transcription as
306	described above were heated at 95°C for 5 min and cooled on ice for 3 min, then added to fresh
307	hybridization buffer. Membranes were incubated overnight at 45°C with rotation. After washing,
308	membranes were incubated for 2 h with shaking in Licor Intercept Blocking Buffer with 1% SDS
309	at room temperature. Blocking buffer was removed and membranes were incubated in
310	Streptavidin-IRDye 800 CW diluted 1:20,000 in Licor Intercept Blocking Buffer with 1% SDS
311	for 30 min. Blots were washed and viewed on a Licor Odyssey scanner.
312	
313	EMSA and mutagenesis
314	Electromobility shift assay (EMSA) was performed as described previously (59). Briefly, a DNA
315	template was amplified from <i>S. mutans</i> UA159 gDNA using primers with a T7 tag (Table S2).
316	RNA was transcribed from this template using the MAXI T7 Transcription Kit that incorporated
317	biotinylated uracil into the sRNA transcript. RNA was purified with a Monarch RNA Cleanup
318	Kit and resuspended in TE buffer. SmsR4 and SMU_313 transcripts were combined at ratios
319	shown in Figure 7 and heated for 5 min at 85°C, then immersed in ice for 30 sec. The reaction
320	volume was adjusted to 10 μl with 5x TMN buffer and incubated at 37°C for 30 min. Samples
321	were run on an 8% TBE gel (Thermo Fischer Scientific) for 90 min at 100 V in 1x TBE buffer.
322	The gel was transferred to a Biodyne B Membrane overnight at 12V, 4°C in 0.5x TBE.
323	Membranes were crosslinked, blocked, and probed with Strepatvidin-IRDye 800CW as
324	described above for Northern blot assays, and images were examined on a Licor Odyssey
325	scanner. SMU_313 with mutated SmsR4-binding site was constructed using the Q5 Mutagenesis

326 Kit (New England Biolabs) and mutations were confirmed through Sanger sequencing.

327

328 Gene deletion and complementation

- 329 SmsR4- and SMU_313-deletion strains were constructed using the markerless-mutagenic system
- and an IDFC2 selection and counter-selection cassette, as described previously (60).
- 331 Complementation was preformed using the pDL278 plasmid designed for expression in both *E*.
- 332 *coli* and *S. mutans* (31, 32). The plasmid was purified from *E. coli* using a Plasmid MiniPrep kit
- 333 (Thermo Fischer Scientific). pDL278 was linearized using BamHI and EcoRI, and PCR products
- 334 (Table S2) were ligated into the linearized plasmid using T4 ligase (Thermo Fischer Scientific).
- 335 Plasmids were then transformed into competent *E. coli* DH5-alpha cells following
- 336 manufacturer's protocol (New England Biolabs). Sanger sequencing was used to confirm
- 337 plasmid construction. Purified plasmids were transformed into S. mutans using competence

338 stimulating peptide as described previously (60).

339

340 **RACE** assay

341 Rapid Amplification of cDNA Ends (RACE) was performed using a RACE kit (Thermo Fisher 342 Scientific) per the manufacturer's recommendations. 5' RACE assay was conducted using a gene 343 specific primer (GSP) complementary to the 3' end of SmsR4 (Table S2). RNA degradation, 344 cDNA synthesis, and TdT tailing were accomplished using kit components and manufacturer 345 protocols. A second nested GSP was used to amplify the tailed cDNA, and the PCR product from 346 this reaction was cloned into pGEM T-Easy vector (Promega), transformed into competent DH5-347 alpha E. coli and the 5' end of SmsR4 was determined using Sanger sequencing. For the 3' 348 RACE assay, Poly-A polymerase (New England Biolabs) was used to add poly-A tails to all 349 transcripts. Precipitated poly-A tailed RNA was reverse transcribed using an oligo-dT adapter

primer and SuperScript II reverse transcriptase. RNA was subsequently degraded using RNase
H. A GSP designed to bind to the 5' end of SmsR4 and an Abridged Universal Amplification
Primer (Table S2) were used to amplify the cDNA, and PCR products were cloned into pGEM
T-Easy vector, transformed into competent *E. coli* DH5-alpha cells and the 3' end of SmsR4 was
identified using Sanger sequencing.

355

356 Covariance modeling

357 Covariance models of sRNAs were constructed as previously described (61, 62). Briefly, SmsR4 358 and 6S sequences from S. mutans UA159 were used as queries in BlastN searches against all 359 Streptococcus genomes available in RefSeq (63, 64). Hits with >65% identity and >70%360 coverage were retained and five and six sequences were randomly selected to serve as seed 361 sequences for constructing 6S and SmsR4 covariance models, respectively (Table S3). The 362 WAR webserver was used to align the seed sequences and the Infernal suite of tools (v1.1.2) was 363 used to construct (cmbuild) and calibrate (cmcalibrate) an initial covariance model for each 364 sRNA (65, 66). This model was used to search (cmsearch) a database constructed from 37 365 representative *Streptococcus* full genomes available on RefSeq (**Table S4**). Results from 366 cmsearch with an e-value <1e-5 were used to add unrepresented sequences to the query model, 367 which was then refined, recalibrated, and used for another round of cmsearch. This process was 368 repeated for each sRNA until cmsearch failed to yield new unrepresented sequences. The final 369 models were used to determine the prevalence of 6S and SmsR4 in 62 full and partial 370 Streptococcus genomes (Table S5). The presence or absence of each sRNAs was mapped on a 371 previously published phylogenetic tree (29) and nodes of sRNA origin and secondary loss were 372 determined through maximum parsimony.

373

374 In silico sRNA target prediction

- 375 For SmsR4 target prediction using IntaRNA (67), SmsR4 sequence as determined by RACE
- assay was used as input and searched against the S. mutans UA159 genome using default
- 377 parameters (75 nt upstream and downstream from the translation start site, one interaction per
- 378 pair, 7 nt hybridization seed). Target RNA2 (68) was run using the same query sequence and
- default parameters (80 nt upstream and 20 nt downstream from the translation start site, 7 nt
- 380 hybridization seed). IntaRNA was also used to predict targets for 11 other sRNAs using stricter
- 381 parameters to identify potential interactions adjacent to translation start sites of mRNA targets.
- For all *in silico* target predictions, only significant results (p < 0.05, as determined by IntaRNA
- 383 or Target RNA2) were retained.

384

385 ACKNOWLEDGEMENTS

386 We thank Zhengzhong Zou and Samantha Fancher for their assistance with experiments, and

387 Shaun Wachter for technical advice. This work was supported in part by National Institute of

388 Dental and Craniofacial Research grants DE028409 to RR and DE028252 to JM.

389

391 REFERENCES

- Forssten SD, Björklund M, Ouwehand AC. 2010. *Streptococcus mutans*, caries and
 simulation models. Nutrients 2:290–298.
- 2. Hamada S, Koga T, Ooshima T. 1984. Virulence factors of *Streptococcus mutans* and
- dental caries prevention. J Dent Res 63:407–411.
- 396 3. Loesche WJ. 1986. Role of *Streptococcus mutans* in human dental decay. Microbiol Rev
 397 50:353–380.
- 398 4. Bowen WH, Burne RA, Wu H, Koo H. 2018. Oral biofilms: pathogens, matrix, and
- 399 polymicrobial interactions in microenvironments. Trends Microbiol 26:229–242.
- 400 5. Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian
- 401 R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti
- 402 JJ. 2002. Genome sequence of *Streptococcus mutans* UA159, a cariogenic dental pathogen.
- 403 Proc Natl Acad Sci U S A 99:14434–14439.
- 404 6. Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ.
- 405 2019. The biology of *Streptococcus mutans*. Microbiol Spectr 7.
- 406 7. Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein
 407 phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev
 408 70:939–1031.

- 409 8. Takahashi-Abbe S, Abbe K, Takahashi N, Tamazawa Y, Yamada T. 2001. Inhibitory effect
- 410 of sorbitol on sugar metabolism of *Streptococcus mutans* in vitro and on acid production in
- 411 dental plaque in vivo. Oral Microbiol Immunol 16:94–99.
- 412 9. Mäkinen KK. 2010. Sugar alcohols, caries incidence, and remineralization of caries lesions:
- 413 a literature review. Int J Dent 2010:981072.
- 414 10. Lemos JA, Burne RA. 2008. A model of efficiency: stress tolerance by *Streptococcus*415 *mutans*. Microbiology (Reading) 154:3247–3255.
- 416 11. Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding
 417 frontiers. Mol Cell 43:880–891.
- 418 12. Holmqvist E, Wagner EGH. 2017. Impact of bacterial sRNAs in stress responses. Biochem
 419 Soc Trans 45:1203–1212.
- 420 13. Raghavan R, Groisman EA, Ochman H. 2011. Genome-wide detection of novel regulatory
 421 RNAs in *Escherichia coli*. Genome Res 21:1487–1497.
- 422 14. Warrier I, Hicks LD, Battisti JM, Raghavan R, Minnick MF. 2014. Identification of novel
 423 small RNAs and characterization of the 6S RNA of *Coxiella burnetii*. PLoS One
 424 9:e100147.
- 425 15. Wachter S, Hicks LD, Raghavan R, Minnick MF. 2020. Novel small RNAs expressed by
- 426 Bartonella bacilliformis under multiple conditions reveal potential mechanisms for
- 427 persistence in the sand fly vector and human host. PLoS Negl Trop Dis 14:e0008671.

428	16.	Kalvari I, Argasinska J	I. C	Duinones-Olvera	N.	Nawrocki EP.	Rivas	E.]	Eddy	/ SR.	Bateman A

- 429 Finn RD, Petrov AI. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding
- 430 RNA families. Nucleic Acids Res 46:D335–D342.
- 431 17. Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA. 2013. Gene regulation by
 432 CcpA and catabolite repression explored by RNA-Seq in *Streptococcus mutans*. PLoS One
 433 8:e60465.
- 434 18. Jester BC, Romby P, Lioliou E. 2012. When ribonucleases come into play in pathogens: a
- 435 survey of gram-positive bacteria. International Journal of Microbiology 2012:e592196.
- 436 19. Mars RAT, Nicolas P, Denham EL, van Dijl JM. 2016. Regulatory RNAs in Bacillus
- 437 *subtilis*: a gram-positive perspective on bacterial RNA-mediated regulation of gene
- 438 expression. Microbiol Mol Biol Rev 80:1029–1057.
- 439 20. Menendez-Gil P, Toledo-Arana A. 2021. Bacterial 3' UTRs: a useful resource in post-
- transcriptional regulation. Front Mol Biosci 7:617633.
- 441 21. Merritt J, Chen Z, Liu N, Kreth J. 2014. Posttranscriptional regulation of oral bacterial
 442 adaptive responses. Curr Oral Health Rep 1:50–58.
- 443 22. Mohanty BK, Kushner SR. 2018. Enzymes involved in post-transcriptional RNA
- 444 metabolism in gram-negative bacteria. Microbiol Spectr 6:10.1128/microbiolspec.RWR-
- 445 0011–2017.

446	23.	Sinha D, Zimmer K, Cameron TA, Rusch DB, Winkler ME, De Lay NR. 2019. Redefining
447		the small regulatory RNA transcriptome in Streptococcus pneumoniae serotype 2 strain
448		D39. J Bacteriol 201:e00764-18.
449	24.	Barrick JE, Sudarsan N, Weinburg Z, Ruzzo WL, Breaker RR. 2005. 6S RNA is a
450		widespread regulator of eubacterial RNA polymerase that resembles an open promoter.
451		RNA 11:774–784.
452	25.	Cavanagh AT, Wassarman KM. 2014. 6S RNA, a global regulator of transcription in
453		Escherichia coli, Bacillus subtilis, and beyond. Annu Rev Microbiol 68:45-60.
454	26.	Trotochaud AE, Wassarman KM. 2005. A highly conserved 6S RNA structure is required
455		for regulation of transcription. Nat Struct Mol Biol 12:313–319.
456	27.	Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D,
457		Médigue C, Danchin A. 2013. An updated metabolic view of the Bacillus subtilis 168
458		genome. Microbiology (Reading) 159:757-770.
459	28.	Chae H, Han K, Kim K, Park H, Lee J, Lee Y. 2011. Rho-dependent termination of ssrS
460		(6S RNA) transcription in <i>Escherichia coli</i> . J Biol Chem 286:114–122.
461	29.	Patel S, Gupta RS. 2018. Robust demarcation of fourteen different species groups within
462		the genus Streptococcus based on genome-based phylogenies and molecular signatures.
463		Infection, Genetics and Evolution 66:130–151.
464	30.	Bochner BR, Gadzinski P, Panomitros E. 2001. Phenotype microarrays for high-throughput
465		phenotypic testing and assay of gene function. Genome Res 11:1246–1255.

466	31.	LeBlanc DJ, Lee LN, Abu-Al-Jaibat A. 1992. Molecular, genetic, and functional analysis of
467		the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28:130-
468		145.
469	32.	Zhou L, Manias DA, Dunny GM. 2000. Regulation of intron function: efficient splicing in
470		vivo of a bacterial group II intron requires a functional promoter within the intron. Mol
471		Microbiol 37:639–651.
472	33.	Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. 2012. An atlas of Hfq-bound
473		transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs. EMBO J
474		31:4005–4019.
475	34.	Hoyos M, Huber M, Förstner KU, Papenfort K. 2020. Gene autoregulation by 3' UTR-
476		derived bacterial small RNAs. Elife 9:e58836.
477	35.	Lalaouna D, Baude J, Wu Z, Tomasini A, Chicher J, Marzi S, Vandenesch F, Romby P,
478		Caldelari I, Moreau K. 2019. RsaC sRNA modulates the oxidative stress response of
479		Staphylococcus aureus during manganese starvation. Nucleic Acids Res 47:9871-9887.
480	36.	Miyakoshi M, Chao Y, Vogel J. 2015. Regulatory small RNAs from the 3' regions of
481		bacterial mRNAs. Curr Opin Microbiol 24:132-139.
482	37.	van der Meulen SB, Hesseling-Meinders A, de Jong A, Kok J. 2019. The protein regulator
483		ArgR and the sRNA derived from the 3'-UTR region of its gene, ArgX, both regulate the
484		arginine deiminase pathway in Lactococcus lactis. PLoS One 14:e0218508.

- 485 38. Adams PP, Baniulyte G, Esnault C, Chegireddy K, Singh N, Monge M, Dale RK, Storz G,
- 486 Wade JT. 2021. Regulatory roles of *Escherichia coli* 5' UTR and ORF-internal RNAs
- 487 detected by 3' end mapping. eLife 10:e62438.
- 488 39. Garst AD, Edwards AL, Batey RT. 2011. Riboswitches: structures and mechanisms. Cold
- 489 Spring Harb Perspect Biol 3:a003533.
- 40. Jose BR, Gardner PP, Barquist L. 2019. Transcriptional noise and exaptation as sources for
 bacterial sRNAs. Biochem Soc Trans 47:527–539.
- 492 41. Lybecker M, Bilusic I, Raghavan R. 2014. Pervasive transcription: detecting functional
- 493 RNAs in bacteria. Transcription 5:e944039.
- 494 42. Raina M, King A, Bianco C, Vanderpool CK. 2018. Dual-Function RNAs. Microbiology
 495 Spectrum 6:6.5.06.
- 496 43. Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T,
- 497 Mokhtari A, Milohanic E, Joyet P. 2014. The bacterial phosphoenolpyruvate:carbohydrate
- 498 phosphotransferase system: regulation by protein phosphorylation and phosphorylation-
- dependent protein-protein interactions. Microbiology and Molecular Biology Reviews
 78:231–256.
- 501 44. Richards GR, Patel MV, Lloyd CR, Vanderpool CK. 2013. Depletion of glycolytic
- intermediates plays a key role in glucose-phosphate stress in *Escherichia coli*. J Bacteriol
 195:4816–4825.

504	45.	Bobrovskyy M, Vanderpool CK. 2014. The small RNA SgrS: roles in metabolism and
505		pathogenesis of enteric bacteria. Front Cell Infect Microbiol 4:61.
506	46.	Rice JB, Vanderpool CK. 2011. The small RNA SgrS controls sugar-phosphate
507		accumulation by regulating multiple PTS genes. Nucleic Acids Res 39:3806–3819.
508	47.	Jeng W-Y, Panjaitan NSD, Horng Y-T, Chung W-T, Chien C-C, Soo P-C. 2017. The
509		negative effects of KPN00353 on glycerol kinase and microaerobic 1,3-propanediol
510		production in Klebsiella pneumoniae. Front Microbiol 8:2441.
511	48.	Choi J, Shin D, Yoon H, Kim J, Lee C-R, Kim M, Seok Y-J, Ryu S. 2010. Salmonella
512		pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is
513		required for Salmonella virulence. Proc Natl Acad Sci U S A 107:20506–20511.
514	49.	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
515		sequence data. Bioinformatics 30:2114–2120.
516	50.	Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B. 2000.
517		Artemis: sequence visualization and annotation. Bioinformatics 16:944–945.
518	51.	Hofacker IL. 2007. RNA consensus structure prediction with RNAalifold. Methods Mol
519		Biol 395:527–544.
520	52.	Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. 2011. ARNold: a web tool
521		for the prediction of Rho-independent transcription terminators. RNA Biol 8:11–13.
522	53.	Stothard P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and
523		formatting protein and DNA sequences. Biotechniques 28:1102, 1104.

524	54.	Decker E-M, Klein C, Schwindt D, von Ohle C. 2014. Metabolic activity of Streptococcus
525		mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci
526		6:195–204.
527	55.	Gong Y, Tian X-L, Sutherland T, Sisson G, Mai J, Ling J, Li Y-H. 2009. Global
528		transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-
529		component systems involved in acid adaptation. Microbiology (Reading) 155:3322-3332.
530	56.	Kajfasz JK, Ganguly T, Hardin EL, Abranches J, Lemos JA. 2017. Transcriptome
531		responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant
532		pathways regulated by Spx. Sci Rep 7:16018.
533	57.	Liu C, Niu Y, Zhou X, Zheng X, Wang S, Guo Q, Li Y, Li M, Li J, Yang Y, Ding Y,
534		Lamont RJ, Xu X. 2015. Streptococcus mutans copes with heat stress by multiple
535		transcriptional regulons modulating virulence and energy metabolism. Sci Rep 5:12929.
536	58.	Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
537		for RNA-seq data with DESeq2. Genome Biology 15:550.
538	59.	Wachter S, Bonazzi M, Shifflett K, Moses AS, Raghavan R, Minnick MF. A CsrA-binding,
539		trans-acting sRNA of Coxiella burnetii is necessary for optimal intracellular growth and
540		vacuole formation during early infection of host cells. Journal of Bacteriology 201:e00524-
541		19.
542	60.	Xie Z, Okinaga T, Qi F, Zhang Z, Merritt J. 2011. Cloning-independent and
543		counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ
544		Microbiol 77:8025–8033.

545	61.	Barquist L, Burge SW, Gardner PP. 2016. Studying RNA homology and conservation with
546		Infernal: from single sequences to RNA families. Curr Protoc Bioinformatics 54:12.13.1-
547		12 13 25

548 62. Krieger MC, Dutcher HA, Ashford AJ, Raghavan R. 2021. A peroxide-responding sRNA
549 evolved from a peroxidase mRNA. bioRxiv doi: https://doi.org/101101/20211018464853
550 2021.10.18.464853.

63. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search
tool. J Mol Biol 215:403–410.

553 64. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B,

Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O,

Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T,

556 Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P,

557 McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD,

558 Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR,

559 Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P,

560 Murphy TD, Pruitt KD. 2016. Reference sequence (RefSeq) database at NCBI: current

status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733-745.

66. Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches.

565 Bioinformatics 29:2933–2935.

^{562 65.} Torarinsson E, Lindgreen S. 2008. WAR: Webserver for aligning structural RNAs. Nucleic
563 Acids Res 36:W79–W84.

- 566 67. Mann M, Wright PR, Backofen R. 2017. IntaRNA 2.0: enhanced and customizable
- 567 prediction of RNA-RNA interactions. Nucleic Acids Res 45:W435–W439.
- 568 68. Kery MB, Feldman M, Livny J, Tjaden B. 2014. TargetRNA2: identifying targets of small
- regulatory RNAs in bacteria. Nucleic Acids Res 42:W124–W129.
- 570
- 571

sRNAª	Rfam annot- ation ^b	Previous prediction [°]	Bordering gene (left)	sRNA left bound ^d	sRNA right bound ^d	Bordering gene (right)	Strand	Predicted size (nt)
SmsR1			SMU_61	62597	62953	SMU_63c	F	357
SmsR2		psRNA-31	SMU_97	99488	99909	SMU_t19	R	422
SmsR3		psRNA-54	SMU_219	211498	211709	SMU_220c	R	212
SmsR4		psRNA-62	SMU_318	303748	303857	SMU_320	R	110
SmsR5	RNase P	psRNA-73	SMU_471	439833	440221	SMU_472	F	389
SmsR6		psRNA-78	SMU_530c	497858	498119	SMU_531	F	262
SmsR7			SMU_1046c	995311	995586	SMU_1048	R	276
SmsR8	tmRNA		SMU_1196c	1139336	1139677	SMU_1197	R	342
SmsR12		psRNA-204 psRNA-205	SMU_1862	1757885	1758495	SMU_1865	R	611
SmsR14	6S	psRNA-235	SMU_2056	1929960	1930160	SMU_2057c	F	200
SmsR16			SMU_803c	749489	749732	SMU_804	R	244
SmsR18		psRNA- 132	SMU_1332c	1254431	1255035	SMU_1334	R	605
SmsR19			SMU_1398	1327742	1328337	SMU_1400c	R	596
SmsR20		psRNA-150	SMU_1512	1439375	1439585	SMU_1513	R	211
SmsR22			SMU_1703	1614938	1615314	SMU_1704	R	377

⁵⁷³ ^aSmall RNAs were named SmsR1-SmsR22 (Note: some of the original candidate sRNAs were

574 later excluded from analysis).

- ⁵⁷⁵ ^bExisting Rfam entries for the putative sRNAs.
- ⁵⁷⁶ ^cPreviously predicted sRNAs that overlap with our results (17).

⁵⁷⁷ ^dThe putative 5' ends of sRNAs were estimated using visual scans of RNA-seq coverage plots for

- 578 sites with sharp increases in reads mapped per nucleotide. 3' ends were estimated based on the
- 579 locations of predicted terminators (Table 2) or for sRNAs without predicted terminators visual
- scans of the RNA-seq coverage plots were used to identify sites with sharp drops in reads per
- 581 nucleotide. SmsR4 boundaries were confirmed using 5' and 3' RACE assays.

sRNA	-10 Promoter ^a	Terminator ^b	
SmsR1	TGTCCTGTTCTTTTTTGAAGGATCAT	CTAACTAAAACAGAGACTCACATTACAATCAC	
	T TATAAT GAATGATATCAAAAAG A AA	ACGTGAATCTCTgTTTTTCTTAGCTG	
SmsR2	AC TAAACT ATACGTGTATTCGTTTTGT	CAAAAAAGAAACACCTTCTTAAATCTAGTAA	
	TGGCAGCCAATTTCTTTAACTAT A AC	ATGAGATTTAAGAAGGTGTTTCTTTATAAGCA	
See aD 2	ACAGTTGTTTTATCGTTTGTGGAGAAT	GTGTAAAAAAAGCCTTAGCTCTGCCAAGCTA	
SmsR3	ATGA TATAAT ACTAACGGCACAA A CT	GGCTTTTCCGTTGCC	
Sun aD 4	ACTTTAAGGTTTCTTTAAGGTTTCTCA	TTCTTAAAAAACCTTGCAGACTTAAATCTGC	
SmsR4	TA TATACT TTAATCATCCTAAAA C AA	AGGTTTTTTAATTCG	
C	TGGTAAACAAATTACCGAATAGATTAA	ATAATAGGTGAGCTAGCTTTGGCTAGCTTTT	
SmsR5	GAAAACGATGCAATTTTTG GATAAT C	TTGTCTT	
C	GCAAATATGCTTGCAATTCTTTTTAG	AGATTTAACGCCCTCACACAGATTTTCTGTG	
SmsR6	AAAGTG TATAAT CGTAAGAAATA A AT	GAGGTTTTTTGTTATC	
SmaD 7	CTTTGTTAAGCTTATTTATTATGA TAT	TCTTCCAAGTAGCAGAAGCATTGATGTTTCT	
SmsR7	AAT GAAGTATTCAATTGAAGAAAAAG	CcaTTTTTAACACAG	
Crea a D O	TTTTTCCTTTATTTTGC TATACT ATTT	No tominatore form d	
SmsR8	TCACACAATATGTACTGGGGTCG T TA	No terminators found	
SmaD12	TCTTGACAAATGTAAGCGGTTACGA TA	AAATAATAAGAGACCCCCAACGATGAGCGTG	
SmsR12	AAAT AAATTTAGAAAAAAGATAA G AA	AGATTGTTGGGGGGTCTTAATTGTATTGA	
SmcD14	TTAACTTGAATTTTTT TAACAT TATGG	No terminators found	
SmsR14	TATCATATTTAAAGAAGAATTGC T GT		
SmsR16	TGAAAGCGTTTTGT TAAACT GACTTTA	No terminators found	
SIISKIO	GCAAATTATTTGGA <mark>GGTAAG</mark> GTG C AT		
CmaD 10	GATAGATAATTTTCATAGTTATTTGTT	No terminators found	
SmsR18	AAAAGTGA TATAAT AAGAATTAT C CG		
SmcD10	GCTAGAAAGATTGATTTCTAGCGATTT	AATAAGCAAAAGACACTTGAAGCAATAATTC	
SmsR19	TTTAGG TATAAT ATAAGCAATCA A AA	AGTGTCTTTTATGGGACTT	
SmsR20	CAAGGAAACAAGGCGGGAACGACAAAA	No terminators found	
	TCATTTCTG TAAATT GCAATGGA A TC	No terminators found	
SmsR22	AAGAAAACTTGTTATTAACTT TATTTT	TCTTTAGGCCTTCTTTCGATTTGTAAAAATTC	
	TTGATATGCTATAAGTGTCTTCA G GG	GAGGAaTTTTTTTTTTATGAA	

583 Table 2. Predicted promoter and terminator elements of novel sRNAs.

^a -10 promoter elements were determined from a manual scan of sites upstream of transcription

586 TATAAT consensus promoter sequence, including an A at position two and a T at position six

587 were identified and are in bold.

⁵⁸⁸ ^bIntrinsic terminators were predicted by ARNold (52). The predicted stem-loop structure is

shown in blue (stem) and red (loop).

start sites (in green) estimated from RNA-seq data. Sites that contained at least 4/6 of the

Table 3. Stress conditions tested in this study.

Stress Type	Condition	Exposure Time
Sugar- phosphate	6% xylitol	30 minutes
Oxidative	1mM H ₂ O ₂	15 minutes
Heat	45°C	15 minutes
Acid	pH 5	30 minutes

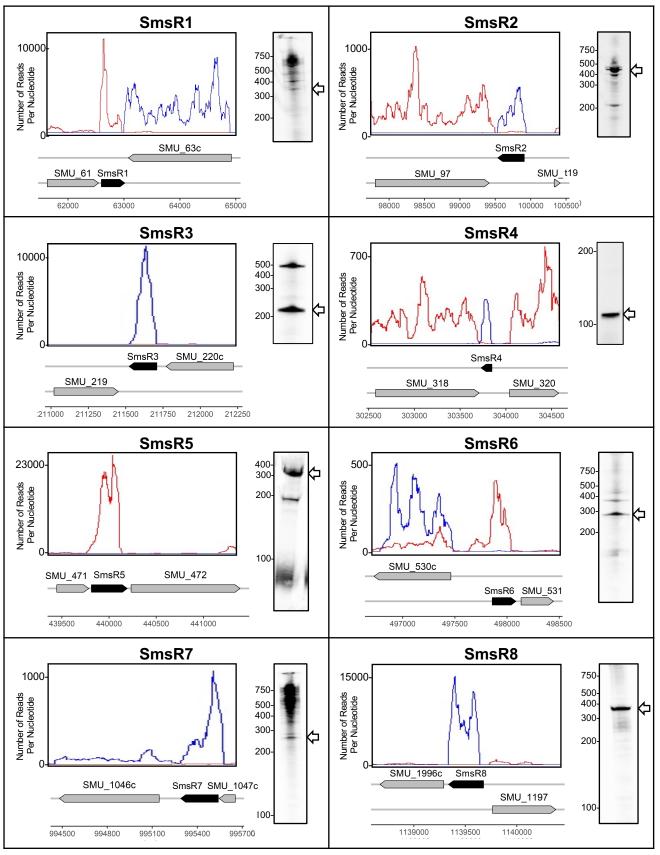
594 FIGURE LEGENDS

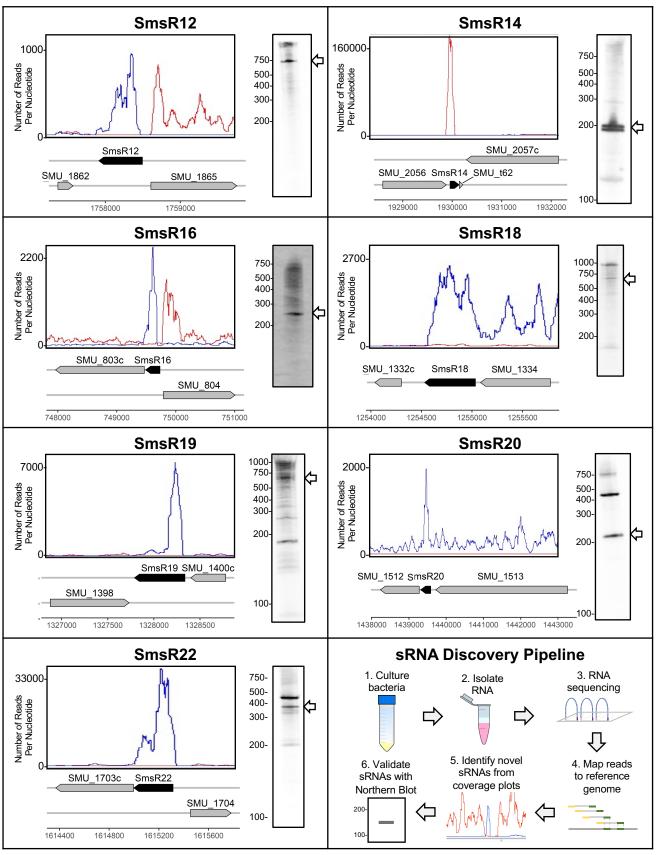
595 Figures 1A and 1B. Expression profiles of novel sRNAs in S. mutans. RNA-seq reads mapped

- to forward (red) and reverse (blue) strands of the S. mutans UA159 genome are shown. Y-axes
- 597 denote the number of RNA-seq reads mapped to each nucleotide. Genomic locations of novel
- 598 sRNA genes (black arrows) and flanking genes (grey arrows) along with their nucleotide
- 599 positions are shown below the coverage plots. Northern blot performed for each sRNA is shown
- 600 to the right. White arrows denote estimated sizes of sRNAs (Table 1). (Note: intensity between
- 601 each blot is not comparable as exposure times differed between experiments.)
- 602

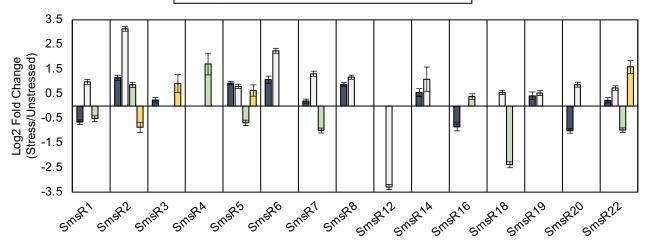
Figure 2. Differential expression of novel sRNAs in response to stress. Expression values for sRNAs were calculated from the total number of mapped RNA-seq reads. For each sRNA, Log2 fold change between treatment (stress) and control (no stress) samples (+/- standard error) from three replicate experiments are shown, except for acid stress, which used two replicates. Only expression values that were significantly different ($p \le 0.05$, Wald test) between stress and control conditions are displayed.

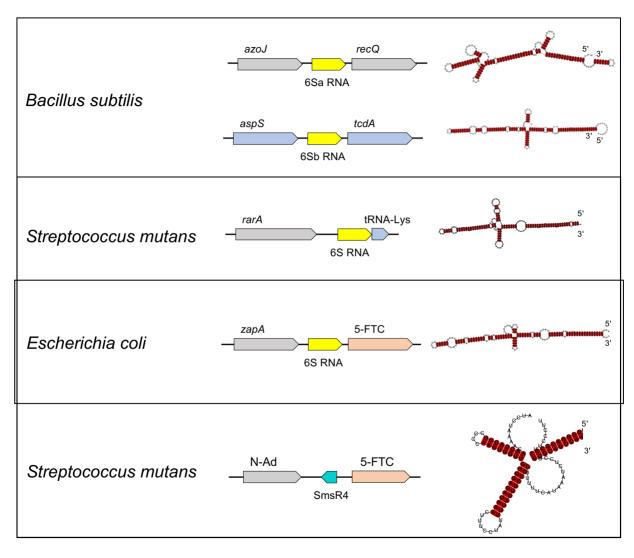
609

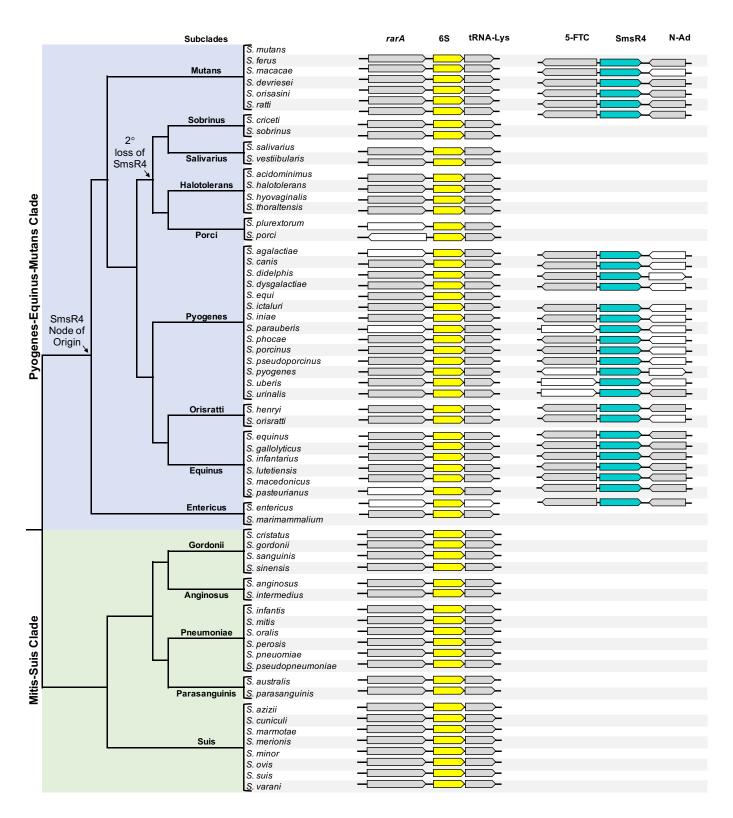

Figure 3. 6S RNA and SmsR4 are distinct sRNAs. The genome locations and predicted
secondary structures of 6S RNAs in *Bacillus subtilis, Streptococcus mutans,* and *Escherichia coli*are shown in the top three panels. The genome location and secondary structure of SmsR4 in *S. mutans* is displayed in the bottom panel. Genes that encode N-acetyldiaminopimelate deacetylase
and 5-formyltetrahydrofolate cyclo-ligase are abbreviated as N-Ad and 5-FTC, respectively.
(Note: genes are not drawn to scale.)


617	Figure 4. Prevalence of 6S RNA and SmsR4 in Streptococcus. Presence or absence of 6S and
618	SmsR4 as determined by a covariance modeling-based search is shown. In most species, 6S is
619	present between genes for RarA and tRNA-Lys, whereas SmsR4 is located between genes that
620	encode 5-formyltetrahydrofolate cyclo-ligase (5-FTC) and N-acetyldiaminopimelate deacetylase
621	(N-Ad). Flanking genes other than rarA, tRNA-Lys, 5-FTC, and N-Ad are shown as white
622	arrows. The cladogram is from Patel and Gupta 2018 (29). (Note: genes are not drawn to scale.)
623	
624	Figure 5. SmsR4 promotes S. mutans growth in sorbitol-containing medium. Growth of
625	wild-type (WT), SmsR4-deletion (DEL), and SmsR4 complementation (COMP) strains in BTR
626	medium with glucose (BTR-G, left) or sorbitol (BTR-S, right).
627	
628	Figure 6. SmsR4 is predicted to bind to SMU_313. A) Two target prediction algorithms,
629	IntaRNA (67) (left) and TargetRNA2 (68) (right), identified SMU_313 as a potential target of
630	SmsR4. The predicted interaction sites on SmsR4 and 5' untranslated region of SMU_313 are
631	shown, and the start codon (AUG) of SMU_313 has been highlighted. The nucleotides
632	highlighted in red are required for efficient binding of SmsR4 to SMU_313 (see Figure 7). B)
633	Genomic locations of sorbitol phosphotransferase (PTS) system operon, including SMU_313
634	(blue), and SmsR4 (teal) in S. mutans.
635	
636	Figure 7. SmsR4 binds to SMU_313. A) An RNA-RNA electrophoretic mobility shift assay
637	(EMSA) shows that increasing concentrations of SMU_313 with native 5' untranslated sequence
638	binds well to SmsR4. A control lane with unbound SmsR4 is shown to the right. B) SMU_313
639	transcript with a mutated binding site does not interact with SmsR4. A control lane with native

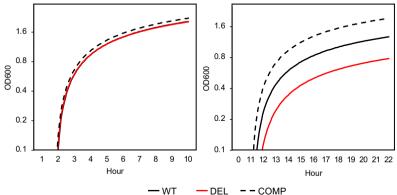
- 640 SMU_313 transcript ran on the same gel is shown on the right. The native and mutated SmsR4-
- 641 binding sites on SMU_313 are shown in red, and start codon is highlighted in yellow.

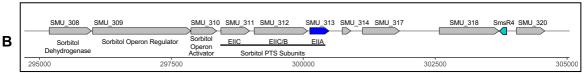

643 SUPPLEMENTAL FIGURE LEGENDS

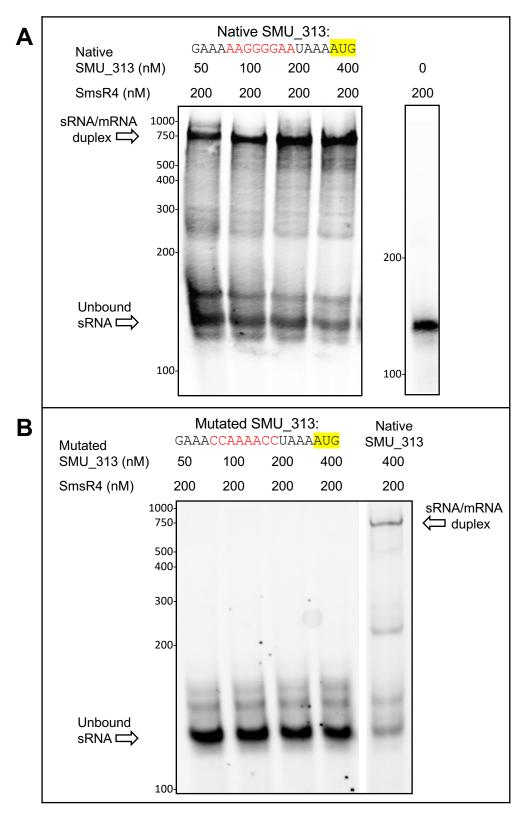

644	Figure S1. Phenotypic microarray. Growth of wild-type (WT) and SmsR4-deletion (DEL)
645	strains in Biolog medium with sorbitol as sole carbon source (30). Values represent the average
646	of two independent growth experiments.
647	
648	Figure S2. Effect of SMU_313 deletion on growth in sorbitol. Growth of SMU_313-deletion
649	(SMU_313 DEL) and wild-type (WT) strains of S. mutans in BTR medium with glucose (BTR-
650	G, left), or sorbitol (BTR-S, right).
651	
652	Figure S3. SmsR4 expression over time. Northern blot for SmsR4 in wild-type S. mutans
653	grown in BTR-S was performed at time-points shown. 5S RNA was used as a loading control.
654	
655	Figure S4. Confirmation of stress induction. Either upregulation or downregulation of genes
656	known to be associated with each stress condition were used to confirm stress induction (54–57).
657	Values represent means (+/- standard error) from three independent qPCR assays, except for
658	groES and SMU_1805, which were from two replicates.
659	
660	SUPPLEMENTAL TABLES
661	Table S1. Targets predicted by IntaRNA for novel sRNAs.
662	Table S2. Primers used in this study.
663	Table S3. Genomes used for initial SmsR4 and 6S covariance model construction.
664	Table S4. Genomes used for covariance model calibration.
665	Table S5. Genomes used to determine the prevalence of 6S and SmsR4 in <i>Streptococcus</i> .



Types of Stress ■Sugar-phosphate □Acid □Heat ■Oxidative







BTR-S

