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Abstract 
The COVID-19 pandemic is ongoing because of the high transmission rate and the 

emergence of SARS-CoV-2 variants. The P272L mutation in SARS-Cov-2 S-protein is known 
to be highly relevant to the viral escape associated with the second pandemic wave in Europe. 
Epitope-specific T-cell receptor (TCR) recognition is a key factor in determining the T-cell 
immunogenicity of a SARS-CoV-2 epitope. Although several data-driven methods for 
predicting epitope-specific TCR recognition have been proposed, they remain challenging 
owing to the enormous diversity of TCRs and the lack of available training data. Self-
supervised transfer learning has recently been demonstrated to be powerful for extracting 
useful information from unlabeled protein sequences and increasing the predictive 
performance of the fine-tuned models in downstream tasks. 

Here, we present a predictive model based on Bidirectional Encoder Representations from 
Transformers (BERT), employing self-supervised transfer learning, to predict SARS-CoV-2 T-
cell epitope-specific TCR recognition. The fine-tuned model showed notably high predictive 
performance for independent evaluation using the SARS-CoV-2 epitope-specific TCR CDR3β 
sequence datasets. In particular, we found the proline at position 4 corresponding to the P272L 
mutation in the SARS-CoV-2 S-protein269-277 epitope (YLQPRTFLL) may contribute 
substantially to TCR recognition of the epitope through interpreting the output attention 
weights of our model.  

 We anticipate that our findings will provide new directions for constructing a reliable data-
driven model to predict the immunogenic T-cell epitopes using limited training data and help 
accelerate the development of an effective vaccine in response to SARS-CoV-2 variants. 

 
Introduction 

The global population is currently suffering from a pandemic of the coronavirus disease 
2019 (COVID-19) caused by the novel coronavirus known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). Since the World Health Organization (WHO) declared 
COVID-19 as a pandemic on March 11, 2020, there have been 237,251,035 confirmed cases 
worldwide, and 4,842,805 deaths (GISAID, https://www.gisaid.org/epiflu-
applications/global-cases-covid-19/) [1]. Despite the number of vaccinations exceeding 6.4 
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billion, the pandemic is ongoing because of the high transmission rate and the emergent 
SARS-CoV-2 variants associated with disease severity and viral escape of humoral immunity 
[2]. To end the pandemic, many countries and global scientific communities are developing 
effective vaccines and appropriate treatments in response to these variants. 

In addition to the virus-neutralizing antibodies produced by B-cells, cytotoxic CD8+ T-cells 
and the helper CD4+ T-cells are essential for viral clearance. T-cells circulating in the blood 
lead the first response to any virus in the adaptive immune system: they detect infected cells 
and mount an immune response or directly clear the infected cells, often before symptoms 
appear [3-6]. The development of effective COVID-19 vaccines, therefore, depends on the 
identification of T-cell epitopes that can induce T-cell immune responses. 

Peptide-major histocompatibility complexes (MHCs) on the cell surface are recognized by 
T-cells via a dimeric surface protein, the T-cell receptor (TCR), consequently leading to T-cell 
activation and proliferation by clonal expansion [7].  TCR recognition of a T- cell epitope is 
therefore crucial for determining the immunogenicity of the epitope. TCRs are generated by 
genomic rearrangement of the germline TCR loci from a large collection of variable (V), 
diversity (D), and joining (J) gene segments. During T cell development, most TCRs are 
formed by a pair of α- and β-chains (90-95% of T cells) via the V(D)J recombination in each 
locus independently. This rearrangement is estimated to generate 1018 different TCRs, 
providing an enormous diversity of epitope-specific T-cell repertoires [8, 9]. 

Despite this TCR diversity, recent studies have found that TCRs recognizing a specific target 
epitope often share common sequence features. Glanville et al. [10] and Dash et al. [11] have 
shown a clear signature of the amino acid motif in the complementarity-determining region 
3(CDR3) of TCRβ and TCRα that interacts with specific peptides presented by specific MHC 
molecules. Furthermore, concerted data collection efforts [12-15] and advances in high-
throughput TCR sequencing technologies have demonstrated T-cell specificity [16, 17], 
allowing the development of a data-driven model for predicting epitope-specific TCR 
recognition [18]. Several methods using position-specific scoring matrices [10], Gaussian 
processes [19], random forests [20], convolutional neural networks [21], deep generative 
models [22, 23], and natural language process (NLP)-based deep learning models [24] have 
been proposed.  However, increasing the predictive power of a machine-learning (or deep 
learning) model remains challenging because of the scarcity of training data: as of October 
2019, the VDJdb [15] and McPAS-TCR [13] databases contained about 20,000 and 55,000 
epitope-specific TCR sequences, respectively.  

Recent advances in NLP have demonstrated that self-supervised learning can be a powerful 
tool for extracting useful information from unlabeled sequence data [25-27]. One successful 
approach, Bidirectional Encoder Representations from Transformers (BERT) [26], is a language 
model pre-trained using a huge amount of unlabeled text data via two self-supervised tasks, 
masked token prediction and next sentence prediction. BERT models, fine-tuned using a small 
number of datasets, have shown ground-breaking results in 11 NLP downstream tasks. The 
self-supervised transfer learning strategy constructs the final model by fine-tuning the self-
supervised pre-trained model on a large amount of unlabeled data, using a small amount of 
labeled data in a downstream task; this strategy can be useful for increasing the predictive 
power of a deep learning model when there is scarce training data. The self-supervised 
transfer learning has been demonstrated to help learn protein sequence patterns [28-30]. The 
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Tasks Assessing Protein Embeddings (TAPE) [28] model was pre-trained on 31 million 
unlabeled protein sequences derived from the Pfam database [31] via two protein-specific self-
supervised tasks, amino acid contact prediction and remote homology detection. The TAPE 
pre-trained model is helpful for improving the predictive performance in supervised 
downstream tasks such as secondary structure prediction, amino acid contact prediction, 
remote homology detection, fluorescence landscape prediction, and protein stability 
landscape prediction. BERTMHC [32], a deep learning model generated by fine-tuning the 
pre-trained TAPE model, has shown a reliable performance in predicting both peptide-MHC-
II binding and presentation, using relatively little training data. 

Many sequence-based methods for modeling epitope-specific TCR recognition have used a 
multiple sequence alignment (MSA) of TCR sequences to identify position-specific amino acid 
motifs. This makes it difficult to find the critical amino acid positions in both the epitope and 
the TCR sequence, which can be highly relevant in TCR recognition [10, 11, 22-24, 37]. A recent 
study [33] of protein language models has shown that the output attentions of BERT-based 
protein models can capture biologically relevant protein properties. An attention-based deep 
learning model for peptide-MHC-I binding predictions [34] has shown that the attentions 
learned by the predictive model can capture critical amino acid positions of the peptides, 
which help stabilize the peptide-MHC-I bindings. 

Here, we present a BERT-based model employing self-supervised transfer learning for 
predicting SARS-CoV-2 T-cell epitope-specific TCR recognition. The predictive model was 
generated by fine-tuning the pre-trained TAPE model using epitope-specific TCR CDR3β 
sequence datasets. The fine-tuned model showed markedly high predictive performance in 
the independent evaluation using SARS-CoV-2 epitope-specific CDR3β sequence datasets and 
outperformed the recent Gaussian process-based method. In particular, we found the critical 
amino acid positions of both epitope and CDR3β sequences, which potentially contribute 
greatly to the TCR recognition of an epitope, can be captured using the output attention 
weights of our model. We anticipate that our findings will provide new directions for 
constructing a reliable model for predicting the immunogenic T-cell epitopes using limited 
training data and help accelerate the development of an effective vaccine in response to SARS-
CoV-2 variants, by identifying potential amino acid motifs highly relevant to the epitope-
specific TCR recognition. 

 
Materials and Methods 

Training process and model architecture 

Figure 1 is a schematic representation of the training process of the proposed model. The 
initial model is cloned from the pre-trained BERT-based TAPE model, adding a classification 
layer at the end. First, the initial TAPE model is fine-tuned using general epitope-specific 
CDR3β sequence data, while freezing the embedding layer and top two encoding layers.  
Next, the final model is fine-tuned from using SARS-CoV-2 epitope-specific CDR3β sequence 
data derived from Immune Epitope Database (IEDB), while freezing the embedding layer and 
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top six encoding layers.  
Figure 2 shows the proposed model architecture. Input amino acid sequences concatenated 

by epitope and CDR3β sequences are first encoded into tokens using a tokenizer, where each 
token is an integer code for a single amino acid. Each token is then embedded into a 768-
dimensional vector in the pre-trained TAPE model based on the BERT model which has 12 
encoding layers with 12 self-attention heads in each layer.  The TAPE model was pre-trained 
using 31 million unlabeled protein sequences, via next-token prediction and bidirectional 
masked-token prediction tasks, with further supervised training via protein-specific tasks, 
contact prediction and remote homology detection. The output of the pre-trained TAPE model 
is the hidden states of the first token. The final classifier, a 2-layer feed-forward network, is 
then used to predict either binder or not from the output of the TAPE model.  
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Figure 1. Training process for the proposed model. The initial model is cloned from pre-trained Tasks 
Assessing Protein Embeddings (TAPE) model, adding a classification layer at the end. The pre-trained 
model is fine-tuned in two rounds in a progressively specialized manner while extending the frozen 
layers between rounds. 

Figure 2. The proposed model architecture. Input amino acid sequences concatenated by 
epitope and CDR3β sequences are first encoded into tokens using a tokenizer. Each token is 
then embedded into a 768-dimensional vector in the pre-trained Tasks Assessing Protein 
Embeddings (TAPE) model which has 12 encoding layers with 12 self-attention heads in each 
layer. The final classifier, a 2-layer feed forward network, is then used to predict either 
binder or not from the output of the TAPE model. 
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Datasets 

Fine-tuning datasets 

For the first fine-tuning round, the positive dataset containing epitope-specific TCR CDR3β 
sequences was compiled in May 2021 from three data sources: Dash et al.[Dash:2017go]11, 
providing epitope-specific paired TCRα and TCRβ chains for  three human epitopes and 
seven mouse epitopes, and two manually curated databases providing pathology-associated 
TCR sequences, VDJdb [15] (https://vdjdb.cdr3.net) and McPAS-TCR [13] 

(http://friedmanlab.weizmann.ac.il/McPAS-TCR/).  All VDJdb entries have confidence 
scores:  0, critical information missing; 1, medium confidence; 2, high confidence; 3, very high 
confidence. We selected all VDJdb entries with a confidence score of at least 1. For the second 
fine-tuning round, SARS-CoV-2 T-cell epitope-specific CDR3β sequence data were obtained 
from the Immune Epitope Database [35] (https://iedb.org) in June 2021. After selecting all 
epitopes with at least 20 CDR3β sequences and removing duplicates with the same 
combination of epitope and CDR3β sequences from each fine-tuning dataset, the datasets for 
the first and second fine-tuning rounds contained, respectively, 12,569 positive data points 
covering 78 epitopes, and 49,282 positive data points covering 145 epitopes.  

To increase the specificity of our model, it was necessary to add more epitope-specific TCR 
CDR3β sequence data to each fine-tuning dataset as negative examples that are not expected 
to interact with TCRs and epitopes. Background CDR3β sequences were obtained from Howie 
et al. [36], who collected blood from two healthy donors. A negative example was generated 
by combining an epitope from the positive dataset and a randomly selected background TCR 
CDR3β sequence. Table S1 summarizes the final epitope-specific CDR3β sequence data for 
each fine-tuning dataset. 
 
Evaluation datasets 

We evaluated the final model using two independent datasets. The first dataset contained 
305 COVID-19 S-protein269-277 T-cell epitope (YLQPRTFLL)-specific TCRβs from a recent study 
by Shomuradova et al. [37] (hereafter referred to as the Shomuradova dataset) and the same 
number of negative data points. The second dataset (hereafter referred to as the 
ImmuneCODE dataset) contained 390 YLQPRTFLL-specific TCRβs from the ImmuneRACE 
study launched on June 10, 2020, by Adaptive Biotechnologies and Microsoft 
(https://immunerace.adaptivebiotech.com), and 328 negative data points (Table S2). 

 
Finetuning and evaluating the model 

We fine-tuned the pre-trained model in two rounds, changing the frozen layers between 
rounds in a progressively specialized manner. In the first fine-tuning round, the model was 
trained while freezing the embedding layer and top two encoding layers, so that the weights 
of the layers were not updated during the training process. In the second fine-tuning round, 
freezing was extended to the top six encoding layers. In each fine-tuning round, the training 
dataset was split into 80% training and 20% validation subsets, and training-validation was 
repeated for up to 200 epochs. The training and validation losses were measured for each 
epoch; the training process was stopped early at the epoch in which the validation loss had 
not been decreased for 15 consecutive epochs [38]. We used the Adam optimizer [39] with a 
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learning rate of 0.0001 and batch size of 128, in all epochs. The PyTorch deep learning 
library(https://pytorch.org) was used to implement the model. We evaluated the final fine-
tuned model using the Shomuradova and ImmuneCODE datasets and quantified its 
predictive performance using the area under a receiver operating characteristic (AUROC) 
score. 

 
Interpreting position-specific attention weights 

To identify the critical amino acid positions in both the SARS-CoV-2 epitope (YLQPRTFLL) 
and CDR3β sequences, which potentially contribute greatly to TCR recognition of the epitope, 
we investigated the output attention weights of our model for the YLQPRTFLL-CDR3β 
sequence pairs predicted as a binder in the Shomuradova and ImmuneCODE datasets. We 
selected CDR3β sequences with the most common lengths of 13(n=159), 16(n=62), and 
11(n=35) from the Shomuradova dataset, and 13(n=162), 14(n=60), and 16(n=58) from the 
ImmuneCODE dataset were selected. The output attention weights have the dimension (L, N, 
H, S, S), where L is the number of encoding layers, N is the number of YLQPRTFLL-CDR3β 
sequence pairs, H is the number of attention heads, and S is the fixed-length of the sequences. 
The attention weights were marginalized into a one-dimensional vector of length of S. A value 
of the vector at the position m, Am is given by the following equation: 

 

𝐴! =
∑ ∑ ∑ ∑ 𝑎(𝑖, 𝑗, 𝑘, 𝑙, 𝑚)"

#
$
%

&
'

(
)

L × N × H × S  

 
where, a(i, j, k, l, m)  is an attention weight. 
 

Results and Discussion 

Finetuning results 

The final validation accuracies were 0.793 and 0.934 in two fine-tuning rounds, respectively 
(Figure 3). In first fine-tuning round used a more general training dataset and more trainable 
encoding layers, the validation accuracy was lower and the difference between training and 
validation accuracies was higher. In contrast, in the second fine-tuning round used a more 
specific training dataset and fewer trainable encoding layers, the validation accuracy was 
markedly high and the difference between the training and validation accuracies was smaller. 
Fine-tuning the pre-trained model in this progressively specialized manner has the potential 
to generate a final model with high predictive performance for a specific task while avoiding 
model overfitting. 
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Evaluation results 

The final fine-tuned model was evaluated using two external test datasets containing the 
SARS-CoV-2 epitope (YLQPRTFLL)-specific CDR3β sequences. Figure 4 shows the ROC 
curves for the two datasets. The AUROC scores were significantly high, at 0.981 and 0.983 for 
Shomuradova and ImmuneCODE datasets, respectively. Our model outperformed the recent 
Gaussian process-based method, TCRGP  [19], which produced an AUROC score of 0.895 for 
the ImmuneCODE dataset. 

 
Position-wise attention weight analysis 

To identify critical amino acid positions in both YLQPRTFLL and CDR3β sequences, we 
investigated the output attention weights of our model for the YLQPRTFLL-CDR3β sequence 
pairs predicted as a binder from the Shomuradova and ImmuneCODE datasets (Figure 5). 

Figure 3. Fine-tuning of the pre-trained model in two rounds. The final validation accuracies 
were 0.781 and 0.924 in two fine-tuning rounds, respectively. Progressively, the validation 
accuracy was increased and the difference between the training and validation accuracies was 
reduced, in fine-tuning rounds. 

Figure 4. Receiver operating characteristic (ROC) curves for evaluating the final fine-tuned 
model using two external datasets containing the SARS-CoV-2 epitope (YLQPRTFLL)-specific 
CDR3β sequences. The area under the ROC (AUROC) scores were significantly high at 0.980 and 
0.990 for the Shomuradova (A, left panel) and ImmuneCODE (B, right panel) datasets. 
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For the Shomuradova dataset, the proline at the position 4 (P4) in the epitope has a relatively 

high attention weight, indicating that P4 may have a critical contribution to TCR recognition 
of the epitope (Figure 5A). A recent experimental study [40] of SARS-CoV-2 variants found 
that CD8+ T-cells from a cohort of convalescent patients, comprising more than 120 different 
TCRs, failed to respond to the P272L variant corresponding to P4. Furthermore, sizable 
populations of CD8+ T cells from individuals immunized with the currently approved 
COVID-19 vaccines failed to bind to the P272L reagent. In the CDR3β sequences, the attention 
weights at the central positions 5-8 were higher than those at both ends, indicating that the 
TCR amino acids at the positions may interact relatively well with the proline at P4 of the 
epitope, thereby contributing substantially to TCR recognition of the epitope.  

Very similar attention weight patterns were observed for the ImmuneCODE dataset (Figure 
5B), for both the epitope and CDR3β sequences: there were relatively high attention weights 
at P4 in the epitope and the central positions 6-9 in the CDR3β sequences. Interestingly, our 
attention-based results differed from those of the MSA-based approaches, which consider 

Figure 5. Marginalized position-wise attention weights for the YLQPRTFLL- CDR3β sequence 
pairs predicted as a binder from the Shomuradova (A, left panels) and ImmuneCODE (B, right 
panels) datasets. The CDR3β sequence lengths differ from top to bottom. The amino acid 
positions corresponding to the top 10% weights of each the epitope and CDR3 sequences are 
highlighted in red dots below x-axis ticks. 
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conserved positions to be highly relevant to epitope-specific TCR recognition. In contrast, our 
findings suggest that the variable amino acid positions in the CDR3β sequences contribute 
substantially to TCR recognition of the epitope (Figure S1 provides the sequence logos [41] of 
MSAs of the CDR3β sequences). 

 
Conclusion 

We developed a BERT-based model employing self-supervised transfer learning to predict 
SARS-CoV-2 epitope-specific TCR recognition. The predictive model was generated by fine-
tuning the pre-trained TAPE model using epitope-specific TCR CDR3β sequence datasets in 
a progressively specialized manner. The fine-tuned model demonstrated a markedly high 
predictive performance for two evaluation datasets containing the SARS-CoV-2 S-protein269-

277 epitope (YLQPRTFLL)-specific CDR3β sequences, and outperformed the recent Gaussian 
process-based model, TCRGP, for the ImmuneCODE dataset. In particular, the output 
attention weights of our model suggest that the proline at P4 in the epitope may contribute 
critically to TCR recognition of the epitope. A recent experimental study of SARS-CoV-2 
variants demonstrated that CD8+ T-cells failed to respond to the P272L variant corresponding 
to P4. Further, CDR3β-sequence amino acids at the central positions, rather than at both ends, 
may contribute to the TCR recognition of the epitope. Our attention-based approach, which 
can capture all motifs in both the epitope and CDR3β sequences in epitope-specific TCR 
recognition, may be more useful for predicting immunogenic changes in T-cell epitopes 
derived from SARS-CoV-2 mutations than MSA-based approaches which depend entirely on 
TCR sequences.  

In further studies, sequence data related to interactions between TCRα chains and MHC 
molecules will be integrated into our framework to predict global interaction patterns in TCR 
recognition of peptide-MHC complexes. We anticipate that our findings will provide new 
frameworks for constructing a reliable data-driven model for predicting the immunogenic T 
cell epitopes using limited training data and help accelerate the development of an effective 
vaccine for the response to SARS-CoV-2 variants, by identifying critical amino acid positions 
that are important in epitope-specific TCR recognition. 
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