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 2 

Abstract 24 

Feature-based attention modulates visual processing beyond the focus of spatial attention. 25 

Previous work has reported such spatially-global effects for low-level features such as color and 26 

orientation, as well as for faces. Here, using fMRI, we provide evidence for spatially-global 27 

attentional modulation for human bodies. Participants were cued to search for one of six object 28 

categories in two vertically-aligned images. Two additional, horizontally-aligned, images were 29 

simultaneously presented but were never task-relevant across three experimental sessions. 30 

Analyses time-locked to the objects presented in these task-irrelevant images revealed that 31 

responses evoked by body silhouettes were modulated by the participants’!top-down attentional 32 

set, becoming more body-selective when participants searched for bodies in the task-relevant 33 

images. These effects were observed both in univariate analyses of the body-selective cortex 34 

and in multivariate analyses of the object-selective visual cortex. Additional analyses showed 35 

that this modulation reflected response gain rather than a bias induced by the cues, and that it 36 

reflected enhancement of body responses rather than suppression of non-body responses. 37 

These findings provide evidence for a spatially-global attention mechanism for body shapes, 38 

supporting the rapid and parallel detection of conspecifics in our environment.   39 
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 3 

Introduction 40 

The capacity limits of the human visual system require selecting visual input for further 41 

processing and conscious access (Carrasco, 2011; Chun et al., 2011). One way to do this is to 42 

select specific locations of the visual field through spatial attention and eye movements. 43 

However, when searching for task-relevant objects in our environment, the location of these 44 

objects is typically not yet known. In this case, selection may operate at the level of visual 45 

features, using a selection mechanism termed feature-based attention (Maunsell and Treue, 46 

2006). To be an effective selection mechanism, feature-based attention would need to operate 47 

in parallel across the whole or part of the visual field, in order to then guide spatial attention to 48 

the location of the target object (Wolfe, 1994). While this could be a plausible mechanism of 49 

attentional selection, it raises a core question: what are the features of feature-based attention?  50 

At a neural level, it has been proposed that feature-based attention may be restricted to 51 

features to which sensory neurons are systematically tuned (Maunsell and Treue, 2006). 52 

Accordingly, the neural mechanisms of feature-based attention have been studied extensively 53 

with experiments involving low-level features for which such tuning has been established, such 54 

as the orientations of Gabor patches (Kamitani and Tong, 2005; Liu et al., 2007; Jehee et al., 55 

2011) and the movement direction of random dot patterns (Treue and Trujillo, 1999; Saenz et 56 

al., 2002; Serences and Boynton, 2007). These experiments assessed how making one feature 57 

task-relevant influenced the responses of neurons that were selective or non-selective to that 58 

feature. A common finding was that attending to a low-level feature increased the responses of 59 

neurons selective to that feature and decreased the responses of neurons non-selective to that 60 

feature (Maunsell and Treue, 2006). Crucially, such modulations were shown to occur for stimuli 61 

presented in spatially-unattended and task-irrelevant locations (Treue and Trujillo, 1999; Saenz 62 

et al., 2002; Serences and Boynton, 2007; Zhang and Luck, 2009), providing evidence for a 63 
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spatially-global mechanism of feature-based attention that can be distinguished from the effects 64 

of spatial attention. 65 

In the present study, we tested whether global attentional modulation can similarly be 66 

observed for the shape of the human body, a category of high social and biological significance 67 

that is selectively represented in high-level visual cortex (Downing et al., 2001; Peelen & 68 

Downing, 2005). Behavioral studies have shown that bodies, like faces, gain preferential access 69 

to awareness (Stein et al., 2012) and automatically attract attention (Downing et al., 2004; Ro et 70 

al., 2007). There is also behavioral evidence for spatially-global attention effects for bodies: in a 71 

series of studies, spatial attention was captured by body silhouettes when participants searched 72 

for people in scenes presented in different parts of the visual field (Reeder and Peelen, 2013; 73 

Reeder et al., 2015). Finally, an fMRI study reported spatially-global modulation of multivoxel 74 

activity patterns distinguishing natural scenes with people from natural scenes with cars (Peelen 75 

et al., 2009). However, in that study, the relative contributions of scene context and of body, 76 

face, and car features could not be distinguished, such that it remains unknown whether 77 

feature-based attention effects exist for human bodies. 78 

Here, we used fMRI to test for spatially-global attentional modulation of body processing 79 

in visual cortex. Participants detected the presence of bodies or one of five other categories 80 

(beds, bottles, cars, chairs, lamps) in task-relevant vertically-aligned images, thereby 81 

manipulating the top-down attentional set. To test for spatially-global attentional modulation, all 82 

analyses focused on responses evoked by objects that were concurrently presented at locations 83 

that were never relevant for the object detection task across three experimental sessions (Fig. 84 

1A). The inclusion of five non-body categories reduced the possibility that participants could use 85 

a low-level feature to detect the presence of bodies, for example by looking for vertical (bodies) 86 

vs horizontal (e.g., cars) stimuli: lamps and bottles shared the vertical orientation with bodies 87 

(Fig 1D). To further reduce this possibility, each category was represented by a large and 88 

diverse set of exemplars cropped out of scene photographs. Finally, the use of silhouettes 89 
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avoided possible low-level differences between categories in texture and color, and ensured 90 

that attention was guided by body shape rather than facial features (Störmer et al., 2019). 91 

 92 

Figure 1: Experimental design. (A) The main experiment was designed to reveal the modulatory 93 

influence of feature-based attention on object responses evoked by stimuli presented at task-irrelevant 94 

locations (horizontal boxes). In each block (49 trials), participants had to search for the cued object 95 

category (e.g., car) in the vertical boxes, while objects were simultaneously presented in the horizontal 96 

boxes. (B) The spatial layout of the search display. (C) The baseline experiment was included to localize 97 

body-selective regions of interest (for the univariate analyses) and to obtain prototypical object category 98 

response patterns (for the multivariate analyses). Responses evoked by task-irrelevant objects in the 99 

main experiment were compared to these responses. Participants had to indicate if one of the edges of 100 

the two boxes thickened. The object category and location (horizontal or vertical boxes) varied across the 101 

mini-blocks. Unlike in the main experiment, the stimuli were not backward masked in order to increase 102 

visibility. (D) Exemplars of the six object categories: chairs, lamps, beds, cars, human bodies, bottles. 103 

Fifty exemplars were used for each category. 104 

  105 
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Materials and Methods 106 

Participants 107 

Twenty-three healthy adult volunteers with normal or corrected-to-normal vision gave written 108 

informed consent and participated in the experiment. All participants took part in three 109 

experimental sessions, on different days. One participant was excluded because of low 110 

performance on the visual search task (the difference between the proportion of false alarms 111 

and hits was lower than two standard deviations from the average difference). Twenty-two 112 

participants (mean age: 25.36 years; age range: 20-32 years; 11 female) were included in the 113 

reported analyses. The study was approved by the local ethics committee (CMO Arnhem-114 

Nijmegen). 115 

Experimental Paradigm 116 

In the main experiment, on each trial, the display contained two boxes in the horizontal and 117 

vertical locations (Fig. 1). The vertical boxes had a white bounding frame, signifying their 118 

relevance. Each of the four boxes contained a random image containing the average power 119 

spectrum of the objects from the six categories with random phases. Objects were mixed with 120 

these random images. On each trial, an exemplar from one of the six categories could be 121 

presented in one of the two vertical boxes (1/7 probability each) or no object would be 122 

presented (1/7 probability). Simultaneously, an exemplar from one of the six categories could be 123 

presented in both the horizontal boxes (1/7 probability each) or no object would be presented 124 

(1/7 probability). Each block consisted of 49 trials to fill the co-occurrence matrix of the 125 

horizontal and vertical object conditions, such that the conditions presented in the horizontal and 126 

vertical boxes were orthogonal to each other.  127 

In each block of the main experiment, participants would either search for one of the six 128 

categories in the vertical boxes or would detect a thickening of the frames of the bounding 129 
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boxes in the vertical location (for trial layout, see Fig. 1). Participants pressed the response 130 

button when the cued object category was shown in one of the vertical locations, which 131 

occurred on 7/49 trials. Participants had to respond within 1.2s. The brief presentation duration 132 

(67 ms) required participants to maintain fixation to be able to detect the target in one of the two 133 

vertical locations. Participants were instructed that they could ignore the objects presented at 134 

the horizontal locations. In the thickening condition, participants had to indicate, by pressing the 135 

response button, when one of the sides of the two bounding boxes became thicker than the 136 

others (thickening occurred on 7/49 trials in all blocks). Data from these thickening task blocks 137 

in the main experiment were not further analyzed because the within-block comparisons 138 

provided a more stringent test of our hypotheses, controlling for block-based effects (e.g., 139 

related to the processing of the category cue itself). The simultaneously presented objects in the 140 

horizontal boxes were always task-irrelevant. Each run contained four blocks, all containing a 141 

different search condition, such that across the seven search runs in each fMRI session each 142 

search block occurred four times. Feedback about search performance was provided at the end 143 

of each block. 144 

In addition to the main experiment, participants completed a “baseline” experiment. This 145 

experiment was included to localize body-selective regions of interest (for the univariate 146 

analyses) and to obtain prototypical object category response patterns (for the multivariate 147 

analyses). In the baseline experiment, in different blocks, exemplars of one of the six categories 148 

or scrambled exemplars of one of the six categories were presented in both the boxes in either 149 

the horizontal or vertical locations (the other location left empty). These objects were mixed with 150 

a random image containing the average power spectrum of the objects from the six categories 151 

with random phases. The seven object conditions (six object categories and a scrambled 152 

objects condition containing a mix of scrambled objects from the six categories) and two 153 

presentation locations were blocked into mini-blocks containing 18 trials each. In each mini-154 

block, participants had to search for thickening of the frames of the boxes where objects were 155 
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being presented (1/7 probability of presence; each pair of thickening events had at least two 156 

non-thickening trials between them). Each block contained seven mini-blocks, with distinct 157 

object-location pairing, such that across the four blocks in each baseline experiment run, each 158 

type of block occurred twice. At the end of each block performance feedback was provided. 159 

Each participant attended three experimental sessions. The first behavioral session 160 

required each participant to get exposed to the entire set of objects followed by the completion 161 

of one run of the baseline experiment and two runs of the main experiment. The second and the 162 

third sessions involved fMRI. In each of those sessions, the participant first browsed through the 163 

entire set of objects at their own pace, and then performed one run of the main experiment 164 

during the anatomical scan. This was followed by the functional recordings as the participants 165 

performed one run of the baseline experiment followed by four runs of the main experiment 166 

followed by one run of the baseline experiment followed by three runs of the main experiment.  167 

Stimuli 168 

The stimulus presentation dimensions are shown in Fig. 1B. We acquired 50 exemplar 169 

silhouettes in real-world poses for each of the six categories of interest (beds, bottles, cars, 170 

chairs, lamps, and human bodies; shown in Fig. 1D). We obtained scenes containing the 171 

relevant objects from the SUN2012 database (Xiao et al., 2010) and Google images which were 172 

"Labelled for non-commercial reuse with modifications”, cropped out the objects, scaled them 173 

such than on one of the axes of the objects extended throughout the image, and converted 174 

them to silhouettes.  175 

On each trial, the chosen exemplars were shown in the boxes, embedded in noise as 176 

mentioned above. The location of the objects within the boxes was jittered to increase 177 

variability. Objects that extended throughout the image horizontally were presented in one of 178 

three places within the box: touching the upper side, centered, or touching the lower side of the 179 

box. Similarly, objects that extended throughout the image vertically could be placed touching 180 
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the left side, centered, or the right side of the box. The horizontally-placed boxes in the display 181 

contained the same stimulus (Fig. 1C). 182 

fMRI data acquisition and preprocessing 183 

Functional (echo-planar imaging (EPI) sequence; 66 transverse slices per volume; resolution: 184 

2x2x2mm; repetition time (TR): 1s; time to echo (TE): 35.2ms; flip angle: 60°; 6x multi-band 185 

acceleration factor) and anatomical (MPRAGE sequence; 192 sagittal slices; TR: 2.3s; TE: 186 

3.03ms; flip angle: 8°; 1x1x1mm resolution; FOV: 256mm) images were acquired with a 3T 187 

MAGNETOM Skyra MR scanner (Siemens AG, Healthcare Sector, Erlangen, Germany) using a 188 

32-channel head coil. 189 

The functional data were analyzed using MATLAB (2017a) and SPM12. During 190 

preprocessing, within each session, the functional volumes were realigned, co-registered to the 191 

structural image, re-sampled to a 2×2×2mm grid, and spatially normalized to the Montreal 192 

Neurological Institute 305 template included in SPM12. Data were high-pass filtered with a cut-193 

off of 128s. Temporal autocorrelations were accounted for using the AR(1) method in SPM. A 194 

gaussian filter (FWHM 3 mm) was applied to smooth the images.  195 

Statistical analysis 196 

For each participant, general linear models (GLMs) were created to model the conditions in the 197 

experiment. In the main experiment, the GLM included regressors for the 49 conditions of 198 

interest: 7 attention blocks x 7 stimulus conditions presented in the task-irrelevant (horizontal) 199 

locations. As this was an event-related design, the onsets of the stimuli were modelled as 200 

impulse functions (delta functions) and the time series was convolved with the canonical HRF.  201 

In the baseline experiment, the GLM included regressors for the 14 conditions of interest: 7 202 

stimulus conditions x 2 presentation locations. As this was a block-design, the mini-blocks 203 

corresponding to each stimulus condition were modelled as boxcars and the time series was 204 
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convolved with the canonical HRF. Separate GLMs were executed for each run of the main and 205 

baseline experiments. The acquired regression weights were averaged across repetitions of the 206 

corresponding conditions across the runs. Regressors of no interest were also included to 207 

account for differences in the mean MR signal across scans and for head motion within scans. 208 

  In the univariate analysis, the regression weights (betas) from the GLM were compared 209 

between conditions after averaging across the voxels of a region of interest (ROI). In the 210 

multivariate analysis, the pattern of betas from the GLM across the voxels of an ROI were 211 

compared between conditions using Kendall#s tau correlation coefficient (τ) as a metric for 212 

similarity. Before comparing the betas between the main and baseline experiments, the data 213 

were mean-centered: the mean across all main experiment condition betas was subtracted from 214 

those condition betas (separately for each voxel), and the mean across all baseline experiment 215 

condition betas were subtracted from those condition betas. 216 

Regions of interest 217 

All ROIs were defined across both hemispheres (except FBA, which was limited to the right 218 

hemisphere). In the multivariate analysis, we focused on two ROIs, the lateral-occipital cortex 219 

(LOC) and the early visual cortex (EVC). The LOC ROI was defined using a group-constrained 220 

subject-specific method (Fedorenko et al., 2010). The group-level ROI was defined by first 221 

contrasting the average response to the 6 object categories with the response to the scrambled 222 

objects in the baseline experiment. Threshold-free cluster enhancement (TFCE; Smith and 223 

Nichols, 2009) with a permutation test was used to correct for multiple comparisons (at p < 0.05) 224 

across the whole brain. The resulting voxels were intersected with the lateral occipital cortex 225 

ROI from Julian et al. (Julian et al., 2012) to obtain the group-level LOC ROI. Then, for each 226 

participant, the 1000 most object-selective voxels (average object response - scrambled 227 

stimulus response, in the baseline experiment horizontal conditions) within the group-level LOC 228 

ROI were selected for further analysis. The EVC ROI was defined at the individual participant 229 
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level as the 1000 most responsive voxels (average object response > 0, in the baseline 230 

experiment horizontal conditions) in Brodmann area 17 (corresponding to V1; Wohlschläger et 231 

al., 2005). Brodmann area 17 was taken from the Brodmann atlas available in SPM12. 232 

In the univariate analysis we focused on two body-selective ROIs, the extrastriate body 233 

area (EBA; Downing et al., 2001) and the fusiform body area (FBA; Peelen and Downing, 2005). 234 

The ROIs were defined using the method described above for LOC. The group-level ROI was 235 

defined by first contrasting the response to bodies with the average response to the other 5 236 

categories in the baseline experiment. TFCE was used to correct for multiple comparisons (at p 237 

< 0.05) across the whole brain. The resulting voxels were intersected with ROIs from Julian et 238 

al. (2012): the extrastriate body area ROI to obtain the group-level EBA ROI and the fusiform 239 

face area (FFA) ROI to obtain the group-level FBA ROI (FBA is not provided, but the FFA and 240 

FBA closely overlap at the group-level; Peelen and Downing, 2005). Then, for each participant, 241 

the 20 most body-selective voxels (body response - average response to other objects, in the 242 

baseline experiment horizontal conditions) within the group-level ROIs were selected for further 243 

analysis.  244 

Multivariate analysis approach 245 

In the multivariate analyses, we correlated multivoxel activity patterns evoked by the task-246 

irrelevant objects in the main experiment with multivoxel activity patterns evoked by the clearly 247 

visible objects in the baseline experiment, using Kendall rank-ordered correlation; 𝜏. We expect 248 

to find stronger correlations between corresponding object categories (e.g., between bodies in 249 

the main experiment and bodies in the baseline experiment), than between non-corresponding 250 

categories (e.g. between bodies in the main experiment and beds in the baseline experiment). 251 

As such, the difference between corresponding and non-corresponding category correlations is 252 

a measure of category processing (Peelen et al., 2009), analogous to decoding accuracy. Here, 253 

we computed proximity to the categories in the baseline experiment as the correlation with that 254 
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category minus the correlation with the other categories in the baseline experiment. For 255 

example, for bodies, the proximity to bodies (in the baseline experiment) is the correlation 256 

between bodies in the main experiment and bodies in the baseline experiment minus the 257 

average correlation between bodies in the main experiment and the other five categories in the 258 

baseline experiment. 259 

Image-based discriminability approach 260 

To rule out that bodies differed systematically from the other objects in terms of low-level 261 

features, we used representations of the exemplars in the layers of a convolutional neural 262 

network (trained for object recognition in natural images; CNN; AlexNet: Krizhevsky et al., 2012) 263 

to test for image-based categorizability differences across the categories. Output activations at 264 

each layer corresponding to 50 exemplars of each of the six categories, embedded in noise as 265 

in the fMRI experiment, in the three possible locations defined by the shapes (see the 266 

subsection on Stimuli), were extracted. Balanced linear support vector machines (SVM) were 267 

trained to classify between the images of one category (150 images each) as opposed to the 268 

other categories. 10-fold cross-validated classification accuracies were reported for each 269 

category for each layer of the CNN.  270 
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Results 271 

In the main experiment, participants detected the presence of object silhouettes belonging to 272 

one of six categories (Fig. 1D), in different blocks. Throughout the experiment, only the 273 

vertically-aligned locations were relevant for the detection task (Fig. 1A). Each block started with 274 

a category cue (e.g. “Car”) indicating the target category for that block (Fig. 1A), followed by 49 275 

object detection trials. In 42 trials (6/7th), one of the two task-relevant locations contained a 276 

briefly-presented object (67 ms) within phase-scrambled noise (Fig. 1B), with each category 277 

presented equally often (7 trials each). In the remaining 7 trials (1/7th) no object was presented.  278 

  Crucially, in 6/7th of the trials, two objects were simultaneously presented in the 279 

horizontally-aligned locations (Fig. 1A). These objects were briefly presented (67 ms), 280 

embedded in noise, and backward masked. This was done to reduce the possibility of 281 

participants moving their eyes (and/or spatial attention) to the task-irrelevant objects. Objects at 282 

the horizontal locations were never relevant for the participants and participants were instructed 283 

that these could be completely ignored. The occurrence probabilities of the categories were the 284 

same as for the task-relevant locations. The 7 vertical and 7 horizontal conditions were fully 285 

crossed within each block, resulting in 49 trials, which were presented in random order. Trials 286 

were coded according to the categories presented in the horizontally aligned (task-irrelevant) 287 

locations, as these were the focus of our analyses. 288 

Task performance (task-relevant locations) 289 

Averaged across the two fMRI sessions and across object search blocks, participants had a hit 290 

rate of 78.3% (proportion of the target-present trials where participants responded) and a false 291 

alarm rate of 5.6% (proportion of the target-absent trials where participants responded), 292 

resulting in an average d’ (zscore(hit rate) - zscore(false alarm rate)) of 2.7 (beds: 2.0; cars: 2.4; 293 

bottles: 2.6; bodies: 2.9; chairs: 2.9; lamps: 3.3). Note that this was the performance for the 294 

task-relevant stimuli presented at the vertical locations. All fMRI analyses focused on the 295 
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objects presented at the task-irrelevant horizontal locations. For responses to objects at the 296 

task-irrelevant locations, we refer the reader to the section The relationship between attentional 297 

modulation and behavioral responses. 298 

Univariate results in EBA and FBA 299 

Previous research has shown that bodies evoke a selective univariate response in two focal 300 

regions of high-level visual cortex: the extrastriate body area (EBA; Downing et al., 2001) and 301 

the fusiform body area (FBA; Peelen & Downing, 2005). Here, EBA and FBA were defined 302 

based on responses in the baseline experiment (see Material and Methods). We tested for 303 

spatially-global attention effects for bodies in these ROIs by comparing body-selective 304 

responses in EBA and FBA evoked by task-irrelevant bodies across target detection blocks in 305 

the main experiment. Betas were averaged across the voxels of each ROI to acquire one beta 306 

per condition for each ROI. For each category, the beta corresponding to within-block trials in 307 

which no objects were presented was subtracted to account for block effects. Responses to 308 

non-body objects and non-body detection blocks were averaged, such that we had 4 values for 309 

each ROI: body and non-body stimuli, presented in the body and non-body detection blocks. 310 

The difference between body and non-body stimuli within each block is a measure of body 311 

selectivity.  312 

A 2 (ROI) x 2 (attention: body, other categories) repeated-measures ANOVA on body 313 

selectivity (response to bodies minus average response to other categories) revealed a main 314 

effect of attention (F1,21  = 7.2, p = 0.014, η2
p = 0.25), reflecting stronger body selectivity in body 315 

attention blocks than non-body attention blocks (Fig. 2A). This attention effect interacted with 316 

ROI (F1,21  = 4.6, p = 0.043, η2
p = 0.18), being stronger for EBA than FBA. When analyzed 317 

separately, both EBA and FBA showed an attention effect, such that body selectivity was higher 318 

in body detection blocks than in other category detection blocks (EBA: F1,21 = 7.4, p = 0.013, η2
p 319 

= 0.26; FBA: F1,21 = 4.4, p = 0.049, η2
p = 0.17; Fig. 2A). The attention effect was consistent 320 
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across ROI sizes (Fig. 5). In EBA, bodies evoked a selective response in both the body 321 

detection blocks (t21 = 4.6, p < 0.001, d = 1.00) and the other category detection blocks (t21 = 322 

4.4, p < 0.001, d = 0.96), while in FBA body selectivity was only positive in the body detection 323 

blocks (t21 = 2.5, p = 0.02, d = 0.55; other category detection blocks: t21 = 0.8, p = 0.42, d = 324 

0.17). 325 

The attention effect for bodies in EBA and FBA could reflect enhanced responses to 326 

bodies presented in body detection blocks, but may also (or additionally) reflect reduced 327 

responses (suppression) to the other categories presented in body detection blocks. To test 328 

these alternatives, we compared body and object-evoked responses across the body and 329 

object-detection blocks (after subtracting the response to blanks within each block). Averaged 330 

across ROIs, there was a higher response to bodies in body detection blocks than in other 331 

category detection blocks, which was marginally significant (paired t-test, t21 = 2.1, p = 0.05, d = 332 

0.46; Fig. 2B). There was no evidence that the response to the other objects was suppressed, 333 

with equally strong responses in both blocks (paired t-test, t21 = 0.19, p = 0.85, d = 0.04). These 334 

effects were also observed, though weaker, in each ROI separately (statistics provided in Fig. 335 

2B). 336 

These results provide the first evidence for spatially-global attentional modulation for 337 

body silhouettes, show that these effects are strongest in EBA, and link these effects to 338 

enhancement of body responses rather than suppression of non-body responses. 339 

 340 
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 341 

 342 

 343 

Figure 2: Univariate attention effect in body-selective ROIs. (A) Body selectivity (response to body - 344 

average response to other objects) was higher when bodies were attended, in both ROIs. This provides 345 

evidence for spatially-global attentional modulation for body silhouettes. (B) Across ROIs, the response to 346 

bodies (corrected for block-wise differences by subtracting the corresponding blank responses) was 347 

enhanced while the responses to other categories remained unchanged. Error bars indicate 95% 348 

confidence intervals for the measures indicated on the y-axes. The asterisks indicate p-values for the t-349 

tests of the corresponding comparisons (*p< 0.05, **p<0.01, ***p< 0.001). EBA and FBA ROIs are 350 

displayed together with MNI z-coordinates. 351 

 352 

Multivariate results in LOC 353 

Previous studies have shown that multivoxel activity patterns in object-selective cortex 354 

distinguish between object shapes (Haushofer et al., 2008; Op de Beeck et al., 2008; Eger et 355 

al., 2008). This gave us another opportunity to test for spatially-global effects of attention, 356 
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including for non-body categories. Here, instead of body selectivity, we used proximity (Pr) as 357 

dependent measure. Proximity was based on correlations between response patterns in the 358 

main experiment and response patterns in the baseline experiment, following previous work 359 

(Peelen et al., 2009). Proximity reflects how similar a category’s response pattern in the main 360 

experiment is to a category’s response pattern in the baseline experiment, relative to the other 361 

categories in the baseline experiment (Materials and Methods). For example, for bodies, the 362 

proximity to bodies (in the baseline experiment) is the correlation between bodies in the main 363 

experiment and bodies in the baseline experiment minus the average correlation between 364 

bodies in the main experiment and the other five categories in the baseline experiment.  365 

Attentional modulation for bodies in LOC  366 

The proximity to bodies is shown in Fig. 3A. A 2 (attention: body, other categories) x 2 (stimulus 367 

presented: body, other categories) repeated-measures ANOVA revealed a significant interaction 368 

(F1,21  = 30.4, p < 0.001, η2
p = 0.59), reflecting a stronger difference between the proximities for 369 

body and non-body categories when participants attended to bodies (t21 = 9.9, p < 0.001, d = 370 

2.2) than when they attended to the other categories (t21 = 8.1, p < 0.001, d = 1.8). The 371 

multivariate attention effect in LOC was consistent across ROI sizes (Fig. 5). These results 372 

provide further evidence for spatially-global attentional modulation of body processing. 373 

The attention effect for bodies in LOC could reflect enhanced proximity to bodies for the 374 

bodies presented in body detection blocks, but may also (or additionally) reflect reduced 375 

proximity to bodies (suppression) for the other categories presented in body detection blocks. 376 

To test for body-selective enhancement, we compared the proximity (to bodies in the baseline 377 

experiment) for bodies in the body detection blocks with the corresponding proximity of other 378 

objects in the body detection blocks. To account for overall differences between blocks (e.g., 379 

related to the cue or to block-based attentional bias), we subtracted the proximity to bodies for 380 

the within-block trials in which no objects were presented. Results showed that proximity to 381 
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bodies was significantly enhanced for bodies presented in the body detection blocks as 382 

compared with bodies presented in the other detection blocks (t21 = 3.5, p = 0.002, d = 0.76; 383 

blue comparison in Fig. 3B). There was no evidence for suppression: proximity to bodies was 384 

not different for objects presented in the body detection blocks as compared with objects 385 

presented in the other detection blocks (t21 = 0.3, p = 0.78, d = 0.06; green comparison in Fig. 386 

3B). The difference between these effects (red comparison in Fig. 3B) corresponds to the same 387 

multivariate attention effect as shown in Fig. 3A. These results show that the multivariate 388 

attention effect was primarily driven by the enhancement of body-selective response patterns, in 389 

line with the univariate results (Fig. 2). 390 

 391 

 392 

Figure 3: Probing the multivariate attention effect for bodies in LOC. (A) The selective proximity for 393 

bodies (proximity to bodies for Body vs Other) is higher when bodies are attended, which is evidence for 394 

a multivariate attention effect in LOC (comparison highlighted in red), reflecting response gain. (B) 395 

Proximity (to bodies) of bodies and other categories were compared between the body attention blocks 396 

and the other category attention blocks, corrected for block-wise differences by subtracting the proximity 397 

(to bodies) to blank responses within blocks. When bodies were attended, the proximity of bodies was 398 

enhanced, whereas the proximity of the other categories was not affected (inset: gray objects correspond 399 
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to attention-dependent representations and black to benchmark representations). This indicated that the 400 

multivariate attention effect for bodies in LOC (the comparison corresponding to the red bar) was driven 401 

primarily by enhancement of body-selective response patterns when bodies were attended. 95% 402 

confidence intervals for the measures indicated on the y-axes are shown. The asterisks indicate the p-403 

values for the t-tests of the corresponding comparisons (*p< 0.05, **p<0.01, ***p< 0.001). Blue: 404 

attentional modulation for bodies; green: attentional modulation for other categories. 405 

 406 

The relationship between attentional modulation and univariate body selectivity of LOC voxels  407 

Next, we tested whether the multivariate attention effect observed for bodies in LOC depended 408 

on the (univariate) body-selectivity of voxels included in LOC. To this end, we computed the 409 

multivariate attention effect for bodies in an ROI that consisted of LOC voxels that responded 410 

less strongly to bodies than to other categories in the baseline experiment (on average 330.8 411 

out of the original 1000 voxels satisfied this criterion). Results were compared with a size-412 

matched ROI consisting of randomly-sampled LOC voxels (size-matching done within each 413 

participant; sampled 100 times). Attentional modulation was computed in the same way as for 414 

the whole LOC in the original analysis (red comparison in Fig. 3). Attentional modulation was 415 

stronger for the size-matched ROI than the non-selective ROI (t21 = 3.1, p = 0.006, d = 0.68). 416 

However, attentional modulation was significant even in the non-selective ROI (t21 = 2.1, p = 417 

0.047, d = 0.46). These results suggest that the attentional modulation in LOC was partly but 418 

not exclusively driven by body-selective voxels. 419 

 420 

Attentional modulation for non-body categories in LOC 421 

Using the multivariate analysis framework outlined above for bodies, we can similarly test for 422 

spatially-global attentional modulation for the other categories. For each non-body category, we 423 

computed the multivariate attention effect as was done for bodies, now using the proximity to 424 
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that category in the baseline experiment. To reduce the complexity of the ANOVA and the 425 

corresponding visualization of the data, we used selective proximity as the dependent measure. 426 

Selective proximity is the proximity difference between the corresponding and non-427 

corresponding categories (e.g., the difference between the two left-most data points in Fig. 3A). 428 

As an intuition for what this new measure represents, note that in the case of bodies, selective 429 

proximity is analogous to the body selectivity measure in the univariate analysis.  430 

In LOC, a 6 (category of interest) x 2 (category attended/unattended) repeated-431 

measures ANOVA on these selective proximities revealed a significant interaction (F5,105  = 3.9, 432 

p = 0.003, η2
p = 0.16; Fig. 3A), indicating that attention differentially affected the selective 433 

proximity of the six categories. Six paired-sample t-tests showed that attentional modulation was 434 

significant for bodies (t21 = 5.5, pbonf < 0.001, d = 1.2; red comparison in Fig. 4A), as already 435 

shown in the previous analyses (Fig. 3). No significant multivariate attention effect was 436 

observed for the other categories (t21 < 2.4, pbonf > 0.1, d < 0.5; for all tests; Fig. 4A). 437 

Attentional modulation in EVC  438 

The same analysis was conducted in early visual cortex (EVC; see Materials and Methods). A 6 439 

(category of interest) x 2 (category attended/unattended) repeated-measures ANOVA on 440 

selective proximities revealed a marginally significant interaction (F5,105 = 2.2, p = 0.06, η2
p = 441 

0.095; Fig. 4B), no significant main effect of attention (F1,21 = 0.6, p = 0.4, η2
p = 0.028), and a 442 

marginally significant main effect of category (F5,105 = 2.2, p = 0.06, η2
p = 0.096). Paired-sample 443 

t-tests showed no significant attentional modulation for any of the categories (|t21| < 2.2, pbonf > 444 

0.1, d < 0.48; for all tests). Finally, attentional modulation for bodies was significantly stronger in 445 

LOC than in EVC (t21 = 2.9, p = 0.01, d = 0.63). 446 
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 447 

Figure 4: Multivariate attention effect. The selective proximities, for the attended and unattended 448 

conditions, are shown for the six categories in the two ROIs. The multivariate attention effect is the 449 

difference between attended and unattended selective proximity (comparison highlighted in red). A) In 450 

LOC, we find evidence for attentional modulation of the selective proximities of bodies. B) No attentional 451 

modulation was found in EVC. Error bars indicate 95% confidence intervals for the selective proximities. 452 

The asterisks denote Bonferroni corrected p-values for the t-tests of the twelve comparisons related to 453 

selective proximities, and Bonferroni corrected p-values for the t-tests of the six comparisons related to 454 

selective proximity modulations (*p< 0.05, **p<0.01, ***p< 0.001). 455 

 456 

The relationship between attentional modulation and behavioral responses 457 

In both multivariate and univariate analyses, we found that the body-selective response elicited 458 

by body silhouettes in task-irrelevant locations was enhanced in body detection blocks 459 

compared with other category detection blocks. This raises the question of whether this 460 

attentional modulation affected behavior in the detection task. Particularly, did participants 461 
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disproportionally false alarm to the bodies at task-irrelevant locations when detecting bodies at 462 

task-relevant locations? Because of the orthogonal design, each category (+blank stimulus) in 463 

the irrelevant location appeared equally often with each category (+blank stimulus) in the 464 

relevant location. Therefore, when the target category (e.g., bodies) appeared at the task-465 

irrelevant location no target was presented at the task-relevant locations in most trials (6/7th), 466 

and participants had to withhold their response. For these trials, we tested whether responses 467 

(i.e., false alarms) depended on the combination of the category presented and the category 468 

that was the target in that block. To this end, for each category, we computed the difference 469 

between the false alarm rate (FA) to that category and the average FA to the other categories, 470 

separately for each block. We then compared this ΔFA for trials in which the object matched the 471 

target category (e.g., bodies presented in body blocks) and trials in which the object 472 

mismatched the target category (e.g., bodies presented in bed blocks). 473 

A 2 (matching, non-matching) x 6 (target category) repeated-measures ANOVA on ΔFA 474 

revealed a significant interaction (F5,105 = 3.3, p = 0.008, η2
p = 0.14; Fig. 6). Six paired-sample t-475 

tests showed that ΔFA was stronger when the object matched the target category for all 476 

categories (t21 > 2.9, pbonf < 0.05, d > 0.63, for all non-body categories, biggest difference of 477 

6.5% for cars; bodies: t21 = 2.79, pbonf = 0.066, difference of 3.7%, d = 0.61). These results show 478 

that participants disproportionally false alarmed when the target category was shown at the 479 

task-irrelevant location. Contrary to the fMRI results, however, this effect was relatively weak for 480 

bodies. 481 

 482 
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 483 

 484 

Figure 5: The influence of voxel selection on body attention effects. The univariate attention effects, 485 

for EBA and FBA, and the multivariate attention effects, for LOC and EVC, for bodies, are shown as a 486 

function of the number of voxels selected within each ROI. The attention effects for bodies observed in 487 

EBA, FBA, and LOC, are observed regardless of the number of voxels selected. Error bars indicate 95% 488 

confidence intervals for the attention effects. 489 
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 490 

Figure 6: The relationship between attentional modulation and behavioral responses. Participants 491 

disproportionally false alarmed when the target category was shown at the task-irrelevant location 492 

(matching>non-matching) but this effect was relatively weak for bodies. Error bars indicate 95% 493 

confidence intervals for ΔFA. The asterisks denote instances where t-tests returned pbonf < 0.05 for the 494 

corresponding comparisons (*p< 0.05, **p<0.01, ***p< 0.001). 495 

Image-based discriminability 496 

In all fMRI analyses, we found that bodies were more strongly represented and more strongly 497 

modulated by attention than the other categories. This could reflect an interesting property of 498 

bodies, for example, related to the life-time relevance of detecting conspecifics or to the 499 

increased familiarity with body shapes. However, it could potentially also reflect uncontrolled 500 

image-based differences: perhaps the body silhouettes included in the study stood out from the 501 

other objects in terms of low-level features. To exclude this possibility, we decoded object 502 

categories from the object exemplar representations in the layers of a convolutional neural 503 

network trained for object recognition (Materials and Methods). For each of the 6 categories, in 504 

each layer of the CNN, one-vs-all linear discriminant classifiers were trained to discriminate 505 
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each category from the other categories using the 50 exemplars of each category presented in 506 

the fMRI experiment. 10-fold cross-validation accuracies were analyzed across the objects. 507 

As shown in Fig. 7, bodies were less discriminable than most other categories in the 508 

early layers of the CNN. It is only in the mid to final layers - where overall classification is almost 509 

at ceiling - that the classification accuracy for bodies is similar to the average accuracies for the 510 

other categories. This result shows that the image-based discriminability was, if anything, lower 511 

for bodies than for the other objects. 512 

 513 

 514 

Figure 7: Hierarchical image-based discriminability of the exemplars used in the fMRI experiment. 515 

One-vs-all classifiers were trained for each of the six categories, on the output activations of each layer of 516 

a convolutional neural network trained for object recognition (AlexNet). 10-fold crossvalidation accuracies 517 

are shown for all the objects in addition to the average accuracies for the non-body objects (termed 518 

‘Other’). Discriminability based on low-level features (corresponding to the early layers of the AlexNet) 519 

was, if anything, lower for the human bodies than for the other objects. Therefore, it is unlikely that the 520 

body-selective fMRI results reflect a distinct low-level property of bodies. ‘Conv’ refers to the convolutional 521 

layers of AlexNet and ‘FC’ refers to the fully-connected layers.  522 
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Discussion 523 

Across multiple analyses, we found convincing evidence that attention to human bodies 524 

enhanced visual cortex responses selective to bodies presented at task-irrelevant locations. 525 

This modulation reflected response gain rather than a generic bias, and could not be explained 526 

by low-level feature similarity of bodies. These results indicate that spatially-global attentional 527 

modulation – a hallmark of feature-based attention – can be found for features diagnostic of the 528 

presence of the human body. 529 

The attentional effects observed here for body silhouettes are unlikely to reflect attention 530 

to low-level features such as orientation or color, for several reasons. First, we included a 531 

relatively large number of object categories in the experiment to ensure that participants could 532 

not detect objects based on low-level features, as these were shared with other categories (e.g., 533 

bottles were vertical, similar to bodies). Second, we presented object silhouettes instead of 534 

photographs to avoid possible low-level differences between categories in texture or color. 535 

Third, the image-based discriminability for each category, established using a convolutional 536 

neural network (CNN), indicated that bodies were difficult to discriminate from other categories 537 

based on low-level features encoded in the early layers of the CNN. Finally, the fMRI results 538 

showed attentional modulation in object-selective cortex (LOC) and body-selective EBA/FBA, 539 

but not early visual cortex (EVC), indicating an attentional modulation at a higher level of visual 540 

processing. 541 

Our results are in line with the feature similarity gain modulation model (FSGM; Maunsell 542 

& Treue, 2006) by showing that feature-based attention enhanced the response to the voxels ’ 543 

preferred stimuli. Specifically, attention to bodies made the response pattern evoked by task-544 

irrelevant bodies more similar to prototypical body response patterns established in a separate 545 

baseline experiment. Furthermore, these attention effects were strongest in body-selective 546 

voxels of LOC. Finally, reliable univariate attention effects were observed in independently-547 
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defined body-selective regions (EBA/FBA). It should be noted that we did not find evidence that 548 

responses to the other categories were suppressed, as proposed by FSGM. However, the 549 

response to other categories was low and any suppression (posited to be smaller in magnitude 550 

than enhancement by FSGM) might not be observable in this case. 551 

The finding of spatially-global modulation for human bodies adds to previous evidence 552 

for global modulation for faces. Specifically, in one study, peripherally presented and task-553 

irrelevant faces evoked a stronger face-selective N170 electro-encephalography (EEG) 554 

response when participants attended to faces than to houses (Störmer et al., 2019). 555 

Furthermore, in fMRI, responses to peripheral faces in the face-selective fusiform face area 556 

(FFA) were more strongly modulated by the task-set of the participants (i.e., whether or not they 557 

focused on faces) than by spatial attention (Reddy et al., 2007). Together with the current 558 

findings, these results provide evidence for spatially-global attentional modulation for bodies and 559 

faces, two socially relevant categories that are selectively represented in the visual cortex 560 

(Downing et al., 2006; Kanwisher, 2010). 561 

While these results suggest that bodies and faces may be special – reflecting their 562 

unique social and biological significance – we do not rule out that spatially-global attentional 563 

modulation may also exist for other highly-familiar object categories. For example, behavioral 564 

studies showed that animals and vehicles could be detected in the near-absence of spatial 565 

attention (Li et al., 2002; but see Cohen et al., 2011), with category-based attention facilitating 566 

object detection independently of spatial attention (Stein and Peelen, 2017). Indeed, based on 567 

the overlap in human and animal features in detection tasks (Evans and Treisman, 2005), it is 568 

plausible that our results would generalize to other animals, particularly those that activate 569 

body-selective regions (Downing et al., 2006). Similarly, extensive experience with particular 570 

objects may drive selective neural tuning (Gauthier and Logothetis, 2000; McGugin et al., 2012; 571 

Frank et al., 2014) and give rise to similar behavioral advantages as those observed for bodies 572 

(Hershler and Hochstein, 2009; Golan et al., 2014; Reeder et al., 2016; Stein et al., 2016). 573 
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Taking everything together, the evidence suggests that features that are diagnostic of 574 

bodies meet many of the previously proposed criteria for basic features: showing spatially-global 575 

attentional modulation (Maunsell and Treue, 2006), being processed “early, automatically, and 576 

in parallel across the visual field” (Treisman and Gelade, 1980), and being represented 577 

selectively in the visual system (Treisman, 2006). Indeed, Treisman (2006) proposed that the 578 

feature detectors of the feature integration theory are not necessarily limited to low-level 579 

features such as orientation and color. Raising the possibility that there may be animal feature 580 

detectors, Treisman (2006) noted that animal features may not necessarily be more complex for 581 

the visual system than colors, line orientations, or direction of motion. By providing evidence for 582 

spatially-global attentional modulation for human bodies, our results support this proposal. 583 

Our findings raise the question of what features are attended when attention is directed 584 

to bodies. Addressing this question for animals, Treisman (2006) suggested that: “participants 585 

may be set to sense, in parallel, a highly overlearned vocabulary of features that characterize a 586 

particular semantic category.” One possibility is thus that attention to bodies is mediated by 587 

attention to a set of mid-level features that are diagnostic of human bodies (Ullman et al., 2002; 588 

Reeder and Peelen, 2013). Alternatively, attention may be directed to holistic representations of 589 

body shape (Reed et al., 2003; Stein et al., 2012). Future studies could test these alternatives 590 

by measuring global attentional modulation for various body-related features, body parts, and 591 

inverted bodies at the task-irrelevant location while participants attend to bodies at the task-592 

relevant locations (Reeder and Peelen, 2013).  593 

To conclude, the current results provide evidence for spatially-global attentional 594 

modulation for human bodies in high-level visual cortex, linking this modulation to body-selective 595 

representations in univariate and multivariate analyses. Combining these results with previous 596 

behavioral and neuroimaging studies, we propose that bodies may be processed as basic 597 

features, supporting the rapid and parallel detection of conspecifics in our environment even 598 

outside the focus of spatial attention.  599 
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