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Summary 
 
Myeloid cells have a central role in homeostasis and tissue defence. Characterising the 
current in vitro protocols of myelopoiesis is imperative for their use in research and 
immunotherapy as well as for understanding the early stages of myeloid differentiation in 
humans. Here, we profiled the transcriptome of more than 400k cells and generated a robust 
molecular map of the differentiation of human induced pluripotent stem cells (iPSC) into 
macrophages. By integrating our in vitro datasets with in vivo single-cell developmental 
atlases, we found that in vitro macrophage differentiation recapitulates features of in vivo 
yolk sac hematopoiesis, which happens prior to the appearance of definitive hematopoietic 
stem cells (HSC). During in vitro myelopoiesis, a wide range of myeloid cells are generated, 
including erythrocytes, mast cells and monocytes, suggesting that, during early human 
development, the HSC-independent immune wave gives rise to multiple myeloid cell 
lineages. We leveraged this model to characterize the transition of hemogenic endothelium 
into myeloid cells, uncovering poorly described myeloid progenitors and regulatory 
programs. Taking advantage of the variety of myeloid cells produced, we developed a new 
protocol to produce type 2 conventional dendritic cells (cDC2) in vitro. We found that the 
underlying regulatory networks coding for myeloid identity are conserved in vivo and in vitro. 
Using genetic engineering techniques, we validated the effects of key transcription factors 
important for cDC2 and macrophage identity and ontogeny. This roadmap of early myeloid 
differentiation will serve as an important resource for investigating the initial stages of 
hematopoiesis, which are largely unexplored in humans, and will open up new therapeutic 
opportunities. 
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Macrophages perform a variety of functions, ranging from tissue homeostasis to immune 
surveillance and from the response to infection to the resolution of inflammation1–4. They 
originate during both development and adulthood and acquire specific functions when they 
seed tissues5. To what extent cellular ontogeny and tissue microenvironment influence 
macrophage identity is poorly understood in humans. Despite the commonalities within 
mammals, there are important differences from rodent models6. Establishing and 
characterising the current human in vitro models is essential in order to fully exploit their 
potential in answering key biological questions and using them as novel therapeutic tools7. 
 
During development, myeloid cells originate from at least two waves of progenitors: a first 
wave involving myeloid-biased progenitors from the yolk sac (YSMP) and a second wave 
through the definitive hematopoietic stem cells (HSC)5,8. YSMP are thought to appear during 
the first two weeks of development in humans and are responsible for producing primordial 
blood5. HSC are not generated until 3–4 post-conceptional weeks (PCW) in the gonad-aorta-
mesonephros. HSC and myeloid progenitors derived from YSMP colonise the liver, making 
this fetal organ the main site of hematopoiesis until mid-pregnancy9. During the second 
trimester of development, HSC migrate to the bone marrow, the only remaining site of 
hematopoiesis in adulthood10. In mice, myeloid progenitors derived from the yolk-sac (YS) 
generate a wide range of myeloid cells, including monocytes and neutrophils, and are 
thought to be the main contributors to this lineage during fetal development11. In humans, we 
have limited knowledge about how the YS myeloid progenitors expand, proliferate and 
differentiate, and a poor understanding of the regulatory mechanisms involved.   
 
In vitro models of macrophage differentiation hold promise to not only answer these 
biological questions but also to become therapeutic tools, particularly for immunotherapies. 
Macrophages derived from human induced pluripotent stem cells (iPSC) show tissue-
resident phenotypes12 and are an attractive alternative to adult monocyte-derived 
macrophage cultures13,14. A current protocol, developed by van Wilgenburg et al., is a 
straightforward, feeder-free process done in 3 steps using between 1 and 3 cytokines at 
constant concentrations15. It provides long-term, scalable production of macrophage 
precursors without fluorescence-activated cell sorting (FACS), since the cells of interest 
continuously expand and detach from the culture16. Despite this being an established in vitro 
macrophage model, the exact intermediate populations that arise during the protocol are 
unclear12. This restricts its applications for iPSC manipulation (i.e., genetic screens) and 
limits our true understanding of the final cells produced. Thus, a thorough analysis of the cell 
identities and dynamics emerging during in vitro differentiation is imperative to fully exploit 
this technology.   
 
Single-cell transcriptomics is a powerful tool for evaluating current in vitro models in relation 
to their in vivo counterparts17,18. Here, we profiled the single-cell transcriptome and open 
chromatin data of >400k and >70k cells, respectively, during iPSC–myeloid differentiation 
with the van Wilgenburg protocol15. We provide a roadmap of cell states emerging during 
iPSC–macrophage differentiation, along with their ontogeny and underlying transcription 
factor (TF) networks. We found that iPSC–macrophage differentiation accurately maps fetal 
myelopoiesis in the YS and generates a wide range of cell types, from endoderm to 
megakaryocytes and mast cells. We demonstrate the adaptability of the current in vitro 
protocol to produce alternative myeloid cells and induce distinct cell states by modifying the 
media used. Finally, we validate the effects of key TFs related to myeloid cell identity using 
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the CRISPR-Cas9 genome editing of relevant genes involved in inflammatory diseases. 
Altogether, our study demonstrates that macrophage differentiation from iPSC is a robust 
system to study the early stages of myelopoiesis in humans, which would not be accessible 
otherwise, and produces macrophages able to polarise and acquire definitive tissue-resident 
identities. 
 
 
In vitro myelopoiesis has features of human yolk sac myelopoiesis  
 
We profiled the full differentiation of iPSC into macrophages from 6 individuals using single-
cell RNA sequencing (scRNAseq) and single-cell ATAC sequencing (scATACseq) (Fig. 1A, 
Supplementary Table 1). The differentiation protocol consists of 3 steps: i) spin-embryoid 
body (EB) formation from day 1 to 4, ii) EB myeloid differentiation from day 5 onwards (the 
latest sample used in this study is from day 31), and iii) macrophage differentiation using 
non-adherent cells from day 31 (day 31 to day 31 + 7) (Fig. 1A). To characterise the 
robustness of our results, we generated two independent scRNAseq datasets. In the first 
dataset (referred to as our Discovery dataset), we multiplexed scRNAseq data from 3 donors 
at 20 timepoints (Fig. 1A-B). In the second dataset (hereafter, our Validation dataset), we 
multiplexed scRNAseq and scATACseq data from 6 donors at 7 and 6 time points, 
respectively (Fig 1A-B). The three donors from the Discovery dataset were also used in the 
Validation dataset, thus generating biological replicates of those three lines. 
 
After quality control, the Discovery dataset contained a total of 135,000 cells (Fig. 1C, Fig. 
S1). To annotate the cell types in an unbiased manner, we built logistic regression (LR) 
classifiers trained on publicly available single-cell transcriptomics datasets and projected the 
data into our iPSC–macrophage differentiation dataset (Fig. 1B). We used multiple human 
embryonic (including gastrulation) and fetal datasets to train our classifiers6,19–22. Those 
datasets included the main fetal hematopoietic organs: yolk sac, liver and thymus 
(Supplementary Table 2). Cell type labels were assigned based on the mean LR prediction 
probability of each cell cluster (Fig. 1C, Fig. S2, Supplementary Table 3). Standard marker 
gene expression analysis further supported the cell type annotation obtained with LR (Fig. 
1D). Cell type label transfer23 from the Discovery dataset into the Validation dataset 
confirmed the presence of the same cellular subsets in both datasets (Fig. 1E, Fig. S1, 
Supplementary Table 4). Most cell types were also recovered in the scATACseq dataset 
(Fig. 1F, Supplementary Table 4). 
 
The majority of cells at the initial EB formation stage (the first 4 days) correspond to cell 
states present during gastrulation (Fig. 1C). We found primitive streak-like cells, emergent 
and advanced mesoderm, and the initial appearance of hemogenic endothelium. Despite 
using cytokines that induce hematopoietic mesoderm (EB formation, Fig. 1A), we also 
observed two subsets of cells related to other germ layers (i.e., neural crest and endoderm, 
Fig. 1C).  
 
During EB myeloid differentiation (5–31 days), the myeloid and stromal cell compartments 
emerged (Fig. 1C). The myeloid populations produced in vitro include a wide range of cell 
types, such as erythrocytes, megakaryocytes, mast cells, neutrophil myeloid progenitors 
(NMP), monocyte-DC precursors (MDP), monocytes and macrophages (Fig. 1C). The in 
vivo counterparts for these cells are found in the fetal liver and thymus. We did not find any 
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cluster in our iPSC–macrophage dataset that corresponded to the HSC found in the human 
developing liver dataset (Fig. S2B). Instead, there is a distinct cluster of myeloid progenitors 
(MP) that express CD34 and SPINK2 but not the HOXA genes, which are required to 
generate definitive HSC24,25 (Fig. 1D, Fig. S3A). The MP have a high prediction probability 
for the YSMP-trained model generated with the droplet-based embryonic YS dataset  (Fig. 
1G-H, Fig. S2C), suggesting in vitro myelopoiesis recapitulates YS differentiation. Trained 
models with in vivo YSMP and macrophages captured more than one cell type within the in 
vitro dataset (Fig. 1G-H). To explore this further, we did the opposite exercise: we trained 
models on our cell types defined in vitro and projected them onto the in vivo YS dataset. As 
expected, the in vitro MP LR model had a high probability for the in vivo YSMP cells (Fig. 
S3B-C). In addition, we found a subset of cells within the original YSMP cluster that had a 
high prediction probability for the in vitro NMP-trained model. There was also a subset of in 
vivo macrophages that were identified by the MDP-trained model (Fig. S3B-C). Using the LR 
results, we annotated the NMP and MDP cell types within the droplet-based embryonic YS 
dataset (Fig. S3B). 
 
To quantitatively characterise the fetal-like signature of the macrophages obtained with this 
protocol, we projected data from both adult and fetal macrophages into our dataset. We 
trained an LR classifier using macrophages from the human decidual–placental interface, a 
unique tissue setting that includes both adult/maternal monocyte-derived macrophages and 
fetal/placental YS-derived macrophages19, which allows us to overcome any potential issue 
with integrating fetal and adult datasets. YS-derived fetal macrophages (Hofbauer cells) had 
a higher mean prediction probability for iPSC-derived macrophages than for any of the adult 
macrophage subtypes identified in the placenta (Fig. S3D-E). In line with this, LR models 
trained on fetal-like FOLR2+ and SPP1+ tumor-associated macrophages (TAM) from a 
hepatocellular carcinoma dataset26 show a high prediction probability for our iPSC-derived 
macrophages at distinct time points (Fig. S3F-G). This indicates that macrophages produced 
in the iPSC protocol have a strong fetal phenotype, and this could be relevant for their 
application as in vitro TAM models. 
 
Altogether, we show that in vitro iPSC differentiation to macrophages produces a plethora of 
myeloid cell types but lacks HSC, thus recapitulating yolk sac differentiation. Our map will be 
available at www.HiPImmuneatlas.org.  
 
 
Trajectory analysis and underlying regulatory programs 
  
The generation of myeloid populations, including myeloid precursors, is controlled by several 
regulatory elements that shape transcriptional programs, including TFs, epigenetic 
regulators and post-transcriptional mechanisms27. We set out to reconstruct the main 
developmental pathways underlying in vitro hematopoiesis and the regulatory networks 
mediating them. The high-throughput single-cell approach used, along with the high density 
of time points collected and using scVelo28 for trajectory analysis, allowed us to reconstruct 
all the differentiation paths giving rise to the wide range of cell types observed (Fig. 2A, Fig. 
S4A). In parallel, we set out to compare the underlying regulatory programs mediating such 
transitions in vivo and in vitro. To this end, we measured TF activities by looking at the 
expression of consensus TF targets29 (Fig. 2B). 
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In step 1 of in vitro differentiation, iPSC differentiate into the primitive streak, which 
subsequently gives rise to either endoderm or emergent and advanced mesoderm (Fig. 2C). 
Later, advanced mesoderm can differentiate into hemogenic endothelium, which is the 
precursor of myeloid cells (Fig. 2C). Primitive streak and mesoderm are transient 
populations that disappear by day 16, while endoderm and hemogenic endothelium remain 
stable until at least day 31 (Fig. 2A, Fig. S4A). The transition from mesoderm to hemogenic 
endothelium has also been reported during the gastrulation period30. TF activity analysis 
shows high conservation of the TF modules in these earlier stages of development (Fig. 2D, 
Supplementary Table 5). There is decreased activity of pluripotency TFs (POU5F1, 
NANOG and SOX2) when cells differentiate into mesoderm and endoderm. As expected, in 
both in vivo and in vitro settings, mesoderm activates SMAD3, HOXA9 or SRF while 
endoderm activates FOXA2 and HNF4A. Later, hemogenic endothelium activates TFs 
relevant for hematopoiesis including RUNX1, SPI1, RBPJ, MEF2A and MEF2C (Fig. 2D). 
GATA1 is also activated in this transition but it shows the highest levels in erythrocytes (Fig. 
2D). 
   
In vitro, myelopoiesis starts very early in the EB formation stage, but the wide range of 
myeloid cell types appear almost simultaneously starting at day 14, and they all endure at 
least until day 31, the latest time point of the EB myeloid differentiation phase collected (Fig. 
2A, Fig. S4A). At days 9–11, the first MP arise, followed by the appearance of erythrocytes 
on days 11–14, and full myelopoiesis is achieved on days 16–18. In addition to myeloid 
cells, advanced mesoderm also differentiates into an intermediate stage of early fibroblasts 
(day 7), giving rise to fibroblasts by day 9 (Fig. S4A). Trajectory analysis on the sample at 
day 21 using scVelo reconstructs all myelopoiesis differentiation steps. Hemogenic 
endothelial cells, derived from the mesoderm, can differentiate into MP, which in turn, give 
rise to both megakaryocytes and NMP (Fig. 2E, Fig. S4A). NMP give rise to MDP, which 
differentiate into either monocytes or macrophages (Fig. 2E). The differentiation pathway of 
macrophages through MP, thus bypassing the monocytes, is consistent with the first waves 
of myelopoiesis emerging in the YS5. 
 
Throughout all stages of myelopoiesis, we consistently found high similarity between the 
regulatory programs activated in vivo (embryonic YS and fetal liver) and in vitro (iPSC-
derived cells)  (Fig. 2F-G, Supplementary Table 5). The transition from hemogenic 
endothelium to MP is characterized by the activation of TFs such as RUNX1, SPI1 and 
GATA1 (Fig. 2F-G). The MP to NMP transition has further activation of SPI1 and CEBPA. 
On the contrary, a large number of endothelial TFs, such as SOX2 and the ETV family, 
pluripotency factors, such as POU5F1 and NANOG, or lymphoid lineage-promoting factors, 
such as MEF2C, are inactivated31. MEF2C is a TF characteristic of definitive HSC that drives 
lymphoid fate choice31, yet the in vitro MP have low MEF2C activity, which further supports 
the HSC-independent hematopoiesis profile of this system (Fig. 2F). 
 
Further differentiation towards monocytes and macrophages is also characterized by shared 
transcriptional programs between the iPSC-derived model and both its YS and fetal liver 
counterparts. Among the few TFs specifically activated in MDP from MP is RFX5, which 
regulates MHC-II transcription and is responsible for a rare hereditary immunodeficiency32. 
We also observed activation of TFs controlling inflammatory programs in monocytes and 
macrophages, such as JUN, RELA and NFKBI (Fig 2F-G). Notably, we found key similarities 
in iPSC-derived macrophages compared to their in vivo counterparts in the YS and fetal liver 
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datasets that account for the establishment of the myeloid identity through TFs such as 
MAF33 and  CEBPB34 (Fig 2F-G). There are also similarities that potentially underlie the 
basis for tissue-specific macrophage programs, such as the alveolar macrophage program 
represented by the activation of the tissue-specific TF PPARG35,36 (Fig 2F-G). 
 
Finally, we evaluated the chromatin accessibility dynamics of iPSC–macrophage 
differentiation. The number of accessible cell peaks decreased alongside the trajectories 
identified, suggesting a more restrictive chromatin landscape as cells differentiate (Fig. 2H). 
An exception to this is the hemogenic endothelium. These cells have a median of 11074 
accessible peaks per cell, which is higher than that of their mesoderm progenitors 
(‘Emergent Mesoderm’ n = 9759, ‘Advanced Mesoderm’ n = 8158), yet they share a similar 
number of expressed genes (‘Emergent Mesoderm’ n = 3463, ‘Advanced Mesoderm’ n = 
2725, ‘Hemogenic endothelium’ n = 2514). Another exception is the macrophages after the 
macrophage differentiation phase (‘Macrophages_Day31plus7’), which have more 
accessibility peaks than do the macrophages collected from the EB myeloid differentiation 
phase (‘Macrophages’ n = 6142 vs ‘Macrophages_Day31plus7’ n = 10801) despite also 
having a similar number of expressed genes (‘Macrophages’ n = 2312 vs 
‘Macrophages_Day31plus7’ n = 2219). Finally, NMP have a very low number of accessible 
peaks (n = 4071), in line with the low number of genes expressed in this cell state (n=1782) 
(Fig. S4B).  
 
 
Transient activation of myeloid cells during the last phase of differentiation directs 
chromatin accessibility  
 
For the macrophage differentiation phase, non-adherent cells at day 31 were collected and 
plated in fresh medium with cytokines for 7 days (Fig. 3A). We analyzed the evolution of the 
cells (time points: day 31, day 31+1, day 31+4, day 31+7; Fig. 3A top), compared the effect 
of multiple cytokines on macrophage polarisation (cytokines: M-CSF, GM-CSF, GM-CSF+IL-
34; Fig. 3A top in red) and tested the effect of using FBS vs. defined medium (media: 
RPMI+FBS, StemPro34; Fig. 3A bottom). We first performed an aggregated analysis of all 
experiments, annotating the cell types using LR from the fetal liver dataset21 (Fig. 3A-B). In 
all experiments, we observed diverse cell types in distinct clusters that overlap regardless of 
the stimulation (Fig. 3B). In addition, the distribution of the macrophages in the UMAP 
suggests that the major transcriptomic changes derive from differences in the time points 
and not the media composition (cytokine cocktails or base media used). 
 
For the time points experiment, we analysed samples at day 31, day 31+1, day 31+4 and 
day 31+7 using M-CSF standard stimulation (Fig. 3B). The non-adherent cells collected at 
day 31 from the EB myeloid differentiation phase were already mostly macrophages, 
alongside the main myeloid populations and a small subset of contaminating fibroblasts (Fig. 
3C). There was an enrichment in macrophages, representing a total of 94.1% of cells in the 
culture by day 31+7 (Fig. 3C). This proportion is consistent with the CD14/CD64 surface 
protein levels obtained by FACS (Fig. S5A). At the transcriptional level, there are broad 
differences between the macrophages of day 31 and day 31+1, as well as between day 
31+1 and day 31+4/7, while macrophages from day 31+4 and day 31+7 completely overlap.  
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We analysed the major changes in the transcriptome of macrophages cultured in M-CSF 
over time by looking at TF activities29,37 (Supplementary Table 6). From day 31 to day 
31+1, we observed a transient but clear immune activation, as shown by increased activity 
of TFs such as JUN, FOS and NFKB1 (Fig. 3D). This transcriptional activation returns to 
basal levels during day 31+4 and day 31+7. Despite being globally similar transcriptomically, 
, we observed few but relevant differences in TF activation between day 31 and day 31+7, 
including upregulation of MITF and downregulation of SRF, which regulate phagocytosis38,39, 
in addition to the downregulation of SREBF1 and SREBF2, involved in lipid metabolism and 
macrophage polarization40,41. 
 
To assess whether the transient immune activation on day 31+1 affected chromatin 
structure, we analysed chromatin accessibility. We found that 113 TF motifs are significantly 
enriched in day 31+7 ATAC peaks, compared to day 31, and we obtained TF activity scores 
for 55 of these (Fig. 3E, Supplementary Table 6). The top 11 enriched motifs (enrichment 
score >5) at day 31+7 correspond to TFs that were transcriptionally activated at day 31+1 
but were no longer activated at day 31+7 (Fig. 3E). Indeed, the global TF motif enrichment 
profile at day 31+7 is more correlated to TF activities at day 31+1 (Pearson correlation of TF 
activation at day 31+1: r = 0.45, p < 0.0003) than to activities at day 31+7 (Pearson 
correlation of TF activation at day 31+7: r = 0.11, p = 0.38) (Fig. 3E). In short, this means 
activity on day 31+1 makes lasting changes on the chromatin landscape that are maintained 
until at least day 7 and may have transcriptomic consequences on future activations. Thus, 
this suggests the earlier macrophages represent a more naïve cell state, amenable to further 
reprogramming in response to polarization cues, which could have distinct applications.  
 
Activated macrophages can be classified as M1 or M2 depending on whether they kickstart 
inflammation or resolve it, and the cytokines M-CSF and GM-CSF have been classically 
used to induce M2 and M1 primed phenotypes in macrophages, respectively42. We found 
that specific TFs, such as MAF, ERG and LYL1, had reduced activity scores in GM-CSF vs. 
M-CSF macrophages (Fig. 3F, Supplementary Table 7). In contrast, RFX5, which is 
involved in MHC-II promoter activation, had increased activation in GM-CSF vs. M-CSF 
macrophages32. Despite GM-CSF being largely known to promote PPARG activation35, we 
found such an effect is reversed by the presence of IL-34 (Fig. 3F). Of note, IL-34 is 
essential for the development of microglia from embryonic myeloid precursors43, and GM-
CSF + IL34 induces the microglial phenotype on monocytes in vitro44. Both the knockdown 
and pharmacological antagonism of PPARG promotes LPS�stimulated transition from the 
M1 to the M2 phenotype in primary microglia, with the concomitant upregulation of markers 
such as CD206, TGFb and IL-445.  
 
Finally, the current iPSC-to-macrophage protocol uses chemically defined media with the 
exception of the last phase. We hypothesized that the inflammatory stimulation observed at 
day 1 of this phase is caused by the presence of FBS. Therefore, we tested whether using a 
defined medium (StemPro34 serum-free media, SP-SFM) at this step would reduce the 
observed activation. TF activity analysis showed SP-SFM induced similar activation signals. 
However, one notable difference was the maintained activity of the SREBF1 and SREBF2 
TFs, which link lipid metabolism to the inflammatory response in macrophages (Fig. S5B, 
Supplementary Table 7). This indicates that the composition of the medium affects 
macrophage metabolism and function, which needs to be taken into consideration during 
data interpretation40,41. 
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iPSC-derived EB stimulation with GM-CSF and FLT3L produces type 2 conventional 
dendritic cells (cDC2) 
  
We have shown that myeloid differentiation from iPSC produces a wide range of myeloid 
cells during differentiation and that the differentiation medium affects the regulatory 
programs that regulate cell identity. Conventional dendritic cells (cDC) present antigens to T 
cells and act as messengers between innate and adaptive immunity46. Protocols to induce 
DC differentiation in vitro are based on supplementing factors, including GM-CSF and 
FLT3L, that act cooperatively on cell precursors to drive cDC generation47,48. Based on that, 
we used GM-CSF and FLT3L (instead of M-CSF + IL3) in the EB myeloid differentiation 
phase and GM-CSF + IL4 (instead of M-CSF) in the last phase of differentiation on non-
adherent cells from day 31 (Fig. 4A). We annotated cells using LR classifiers that were 
trained on gastrulation22, embryonic yolk sac6 as well as fetal liver and thymus20,21 datasets 
(Fig. 4A, Fig. S6, Supplementary Table 8).  
 
GM-CSF/FLT3L and M-CSF/IL3 stimulation induced the same cell types in the myeloid and 
stromal cell compartments (Fig. 4B, Fig.1C), except that the modified protocol produced 
cells with a transcriptomic profile resembling cDC2 (Fig. 4B, Fig. S6). Marker gene 
expression analysis further supported the cell type annotations, and specifically, cDC2 
expressed bonafide cell-type markers (e.g., HLA-DR, CD1C, CLEC10A)46 (Fig. 4C). A small 
subset of cells were assigned as cDC1 using LR but they do not express canonical cDC1 
markers (e.g., CLEC9A, XCR1, Fig. 4B-C, Fig. S6). The cell population dynamics were also 
similar between macrophage and DC protocols, with primitive streak, mesoderm and early 
fibroblasts being transient and the rest still present at the latest time point (Fig. S7). As in the 
macrophage protocol, most myeloid populations arise simultaneously (Fig. S7).  
 
Cell types that arise during myelopoiesis using the DC protocol activate similar TFs in vitro 
and in vivo when compared to YS and fetal liver counterparts (Fig. 4D), similar to what was 
observed using the macrophage protocol (Fig, 2F-G). Specifically, the in vitro cDC2 activate 
TF networks relevant for in vivo cDC2 identity such as PU.1 (SPI1 gene)49 and KLF450 (Fig. 
4D). We also observed increased RFX5 activity, which regulates MHC II gene expression32. 
A recent study postulated a role for CEBPB in the control of DC maturation and later stages 
of DC commitment51. Our results show reduced CEBPB activity in cDC2 cells compared to 
monocytes (in vivo and in vitro), which indicates that the in vitro phenotype shares features 
with a functionally mature DC subset characterized by upregulation of costimulatory and 
MHC class II molecules (Fig. 4D).  
 
We then evaluated the last phase of differentiation, following the non-adherent cells 
produced during EB myeloid differentiation until after the DC differentiation phase. A mean of 
47.5% (standard deviation = 3.67) of the cells produced in the three time points analysed 
were cDC2 cells (Fig. 4E), thus this differentiation is less efficient than the macrophage 
protocol, where macrophages represent 94.1% of cells by day 31 + 7 (Fig. 3C). In contrast 
to what is observed with macrophages, the proportion of cDC2 remains stable (Fig. 3C, Fig. 
4E). The in vitro activation of cDC2 and macrophages induce shared regulatory programs, 
including activation of NFKB1 or JUN on day 1 of this phase (Fig. 3C, Fig. 4F, 
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Supplementary Table 9). Interestingly, the particular profile of TF networks induced in 
cDC2 on that day (including JUN, REL, SP1 and HIF1A) does not fully return to basal levels 
by day 31+7 (Fig. 4F, Supplementary Table 9). This is in contrast to what is observed in 
the macrophage differentiation phase (Fig. 3D, Supplementary Table 5).  
 
Finally, in order to confirm the cDC2 phenotype of the iPSC-derived cells, we checked the 
expression levels of cDC2 canonical surface proteins using FACS and functionally 
interrogated cDC2 using an antigen processing assay (DQ-OVA). We observed positive cells 
for cDC2 markers (CD1C, CD209, CD11c, HLA-DR, CD86) and markedly low levels of 
CD14, which is a marker for macrophages, thus validating the cDC2 phenotype52 (Fig. 4G). 
The cross-presentation capacity, as well as the kinetics of antigen uptake and proteolytic 
degradation, differ in human DC subtypes53. Functionally, adult monocyte-derived DC have 
higher antigen uptake and processing at earlier time points (15 to 30 min), whereas cDC 
processing capacity peaks at 60 min54. To look at the antigen processing activity in our 
iPSC-derived cDC2, we measured BODIPY-conjugated DQ-OVA processing at several time 
points (15 min, 45 min and 60 min). iPSC-derived cDC2 showed no DQ-OVA processing at 
shorter time points (15 min) but did process OVA at longer time points (45 min and 60 min) 
(Fig. 4H). These results reveal that our cDC2’s antigen processing behaviour resembles that 
of classical DC and reinforces the idea that a functionally mature cDC2-like cell can be 
recapitulated from iPSC under these conditions. 
 
 
Genes associated with immune phenotypes through GWAS shape the transcriptomic 
profile of iPSC-derived myeloid cells 
 
Dysfunctional myeloid differentiation and signaling downstream of myeloid receptors lead to 
immune-related disorders55. To dissect potential myeloid contributions involved in these 
pathologies, we selected four genes linked to immune-related GWAS hits (i.e., ICAM1, 
LSP1, PRKCB and ZEB2) based on the existing literature. The ICAM1 and LSP1 loci contain 
SNPs linked to autoimmune inflammatory diseases by GWAS 
(https://www.ebi.ac.uk/gwas/home) and interact with each other56. PRKCB is a protein 
kinase associated with inflammatory diseases and blood cell counts in GWAS data 
(https://www.ebi.ac.uk/gwas/home) and is involved in myeloid DC differentiation57. Finally, 
ZEB2 is found in GWAS for blood phenotypes and regulates hematopoiesis in mice58 and 
the cell fate decisions of DC59. To study their involvement in myeloid differentiation and 
identity, we generated knock-out (KO) iPSC lines using CRISPR/Cas9 in one of our cell lines 
(KOLF-iPSC). 
 
CRISPR/Cas9 KO iPSC lines were differentiated into macrophages and DC alongside 
isogenic WT lines. Single-cell transcriptomic analyses were performed at day 0 (iPSC stage) 
and day 31 (EB myeloid differentiation) (Fig. 5A-B). Though we observed all cell populations 
in all conditions (Fig. 5C-D), some of the KOs affected the cell type proportions. As 
expected, knocking out ZEB2 reduced the proportion of myeloid cells to 5.5%, versus 65.6% 
in WT lines, in the macrophage protocol (12-fold decrease) and 2.1%, versus 20.4% in WT 
lines, in the DC protocol (10-fold decrease) (Fig. S8A, Supplementary Table 10). On the 
contrary, PRKCB KO increased the proportion of myeloid cells but only during the DC 
differentiation protocol (20.4% of cells in WT vs 78% in PRKCB KO, 4-fold increase) (Fig. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.469005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469005
http://creativecommons.org/licenses/by-nc/4.0/


10 

S8A, Supplementary Table 10). The other KOs did not seem to influence the ratio of 
myeloid cells.  
 
At the transcriptomic level, the phenotypes were different between KO lines. Monocytes from 
the LSP1 and ICAM1 KOs had a transcriptomic profile that coincided with that of 
intermediate monocytes, characterised by the upregulation of the HLA genes and 
downregulation of the S100 gene family60 (Fig. 5E). Interestingly, this profile is not observed 
in the KO monocytes produced by the macrophage differentiation protocol (Fig. S8B). An 
increased population of intermediate monocytes has been described in many autoimmune 
diseases such as active Crohn's disease61 and rheumatoid arthritis62. Monocytes from the 
PRKCB KO cell line after the DC differentiation protocol had a myeloid-derived suppressor 
profile, including low expression of HLA-DR and CD74 with high levels of CCL2 and 
MMP963–66 (Fig. 5F). This is consistent with the observation that myeloid-derived suppressor 
cells have decreased levels of PRKCB, which dampens DC differentiation and function in 
vivo57.  
 
Macrophages generated from iPSC deficient in PRKCB, LSP1 or ICAM1 exhibited a mixed 
anti-inflammatory and anti-fibrotic phenotype. PRKCB, LSP1 or ICAM1 KO macrophages 
upregulated the suppressors of the NFkB-dependent inflammatory pathway KLF367 and 
ATF368 (Fig. 5G). They also decreased the expression of genes linked to an M2 profibrotic 
macrophage phenotype (e.g., FN1, GRN and SPP1, Supplementary Table 11), as well as 
decreased activity of M2-promoting transcription factors (e.g., MAF33 and PPARG69,  Fig. 
5G). PRKCB, LSP1 and ICAM1 are connected to each other, as ICAM1 is downregulated in 
PRKCB and LSP1 KOs (Supplementary Table 11). These results suggest that PRKCB, 
LSP1 and ICAM1 are part of a regulatory network that fine tunes macrophage phenotype 
and represses tissue healing both by promoting REL/p65-mediated inflammation and 
controlling the expression of profibrotic M2 genes. Notably, silencing PRKCB, LSP1 and 
ICAM1 generates a macrophage population with a mixed phenotype characterized by the 
inhibition of M2 tissue remodelling programs (Fig. 5G) and the suppression of the NFKB 
pathway. In this respect, such broad defects in macrophage polarization could impair proper 
resolution of inflammation, leading to in vivo autoimmune inflammatory disorders70.  
 
Altogether, we have shown that iPSC-differentiation protocols are powerful tools to 
interrogate specific genes mediating early hematopoiesis (e.g., ZEB2) as well as monocyte 
and macrophage function (e.g., ICAM1, LSP1 and PRKCB). We found changes in the 
inflammatory potential of the myeloid cells lacking expression of genes associated with 
autoimmunity, coinciding with the expected phenotype. 
 
 
 
Discussion  
 
The full characterisation and assessment of the robustness, accuracy and efficiency of in 
vitro protocols is essential to utilising them as models for disease as well as leveraging them 
in the search for novel therapeutic targets. Myeloid cells have a central role in immunity and 
are involved in major inflammatory and autoimmune disorders. The establishment of robust 
experimental protocols to generate macrophages that are easy-to-replicate and amenable to 
scaling up is paramount to studying human macrophage ontogeny, genetics and function in 
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health and disease. Here, we profiled more than 400k single cells across a commonly used, 
straightforward differentiation process from human iPSC to myelopoiesis to terminally 
differentiated macrophages. We reconstructed, using cell trajectories, the in vitro sequence 
of events, which parallel fetal hematopoiesis prior to the establishment of HSC. Moreover, 
this protocol is a valuable resource in studying multiple myeloid populations, including 
erythrocytes, megakaryocytes and mast cells that spontaneously arise, as well as DC, that 
can be induced by adjusting the composition of the media. Finally, we used this model to 
interrogate the functional effect of genes associated with inflammatory and autoimmune 
disorders and interpreted the results in relation to their in vivo counterparts. 
 
To quantitatively assess the accuracy of our in vitro models, we used machine learning tools. 
We built logistic regression models trained on scRNAseq data from developmental atlases 
mapping the formation of the immune system and projected it onto the in vitro datasets. The 
computational framework we have established in the work could be adapted to annotate 
cells arising from multiple iPSC differentiation protocols. Following this strategy, we found 
that the initial phases of iPSC–macrophage differentiation faithfully recapitulate YS fetal 
hematopoiesis and generate fetal-like FOLR2+ macrophages. The lack of an HSC cluster in 
our data, the activation of master regulator RUNX1 in the endothelial-to-hematopoietic 
transition (EHT)71, and the lack of expression of HOXA genes in the myeloid progenitors24 all 
suggest our protocols recapitulate YS differentiation prior to the establishment of definitive 
hematopoiesis. Thus, we propose this model as a unique system for interrogating the early 
stages of hematopoietic differentiation in humans, which are largely unexplored.  
 
Our study shows that iPSC–macrophage differentiation generates a wide range of myeloid 
cells and presents a detailed list of TFs that mediate the generation of distinct myeloid 
progenitors in vitro. We also observed that supplementation of the culture media with factors, 
particularly GM-CSF and FLT3L, drives iPSC-derived myeloid progenitors into cell types that 
express markers of cDC246. This result uncovers the potential of these cytokines to promote 
DC-like cell identity, either directly or through monocytes. The protocol for DC generation 
had a lower efficiency than the MAC-producing protocol, which is consistent with the main 
differentiation of YS myeloid progenitors towards macrophages6,19–22. Interestingly, we found 
erythrocytes in our data following a decline in RUNX1 and SPI1 TF activity72 and a rise in 
GATA1 activation73. The in vitro differentiation of erythroid-lineage cells from iPSC has 
relevant biomedical implications for their use as disease models in the study and treatment 
of anemias74. Monocytes are also generated during differentiation but our trajectory analysis 
indicates that macrophages are derived from a myeloid intermediate and bypass the 
monocyte stage. It is tempting to speculate that isolated monocytes from this protocol can 
also be differentiated into macrophages and polarised to specific functions in the presence of 
tissue-specific environmental signals75,76. Future work should evaluate if the origin of 
macrophages imprints on their function.  
 
iPSC-derived macrophages stimulated with M-CSF compared to unstimulated cells show 
greater global chromatin accessibility that is not a reflection of an increased number of 
genes expressed, indicating epigenetic rewiring. Epigenetic states in macrophages are 
instrumental in the generation of functional and phenotypic diversity76–78. Here, we 
demonstrated that exposure to M-CSF generates macrophages with a transcriptomic profile 
similar to their unstimulated counterparts, but an increase of the chromatin accessibility 
points to a reprogramming of the epigenetic landscape. We also identified multiple features 
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resembling YS myelopoiesis in our iPSC system. Nonetheless, despite the YS origin of 
Kupffer cells (KC)76,79 the LR classifier trained specifically on fetal liver KC does not capture 
any cell from the in vitro dataset, indicating that the strong tissue-resident signature of these 
cells is not recapitulated using this protocol. In particular, we did not observe activation of 
KC-determining TF LXRa, RBPJ or SMAD4 probably due to a lack of liver-derived signals 
such as Notch ligand DLL4 essential for their induction80. All considered, the iPSCs protocol 
to derive certain macrophage subtypes, combined with high resolution single cell analysis 

provides the unprecedented possibility to directly interrogate the extent of macrophage's 
intrinsic plasticity, which remains a matter of debate81. A marked enrichment of the 
macrophage population was observed during the macrophage differentiation phase, pointing 
to the appropriateness of using single-cell approaches to unravel cell heterogeneity in the 
initial phases (day 31 and day 31+1) and bulk technologies at later time points (day 31+4 
and onwards). Our combined transcriptome/ATAC analysis shows the potential of 
macrophages, among non-adherent cells in the EB myeloid differentiation phase, to be truly 
naïve cells early on, whereas 24h into the macrophage differentiation phase, there are M-
CSF-induced and reversibly activated macrophages. 
 
Finally, we leveraged this model to experimentally evaluate genes linked to immune-related 
disorders by GWAS. Interestingly, CRISPR-Cas9-mediated knockout of GWAS hits 
(PRKCB, LSP1 and ICAM1) in iPSC-derived macrophages revealed their role in the 
regulation of both inflammatory signaling and extracellular matrix (ECM) deposition. Fibrosis 
constitutes a pathological feature of most chronic inflammatory diseases including the ones 
featured in our study82,83, and our results open an avenue of therapeutic intervention in these 
disorders. In line with this, we show that macrophages obtained through this protocol 
recapitulate TAM states in the liver tumour microenvironment. While fetal-like FOLR2+ TAMs 
are more similar to stimulated macrophages after day 4 and 7, SPP1+ TAMs resemble the 
macrophage state at day 1. This suggests these cells could also be a faithful model to 
recapitulate macrophage subtypes in the tumour microenvironment. 
 
In conclusion, we have defined a comprehensive map of cells and molecular programs that 
underlie iPSC–macrophage differentiation in a dish. Macrophages play an important role for 
immunity in health and disease, and represent key cellular targets for immunotherapy. Our 
study shows the potential of deeply characterizing differentiation protocols at the single-cell 
level and demonstrates that it is a valuable model for interrogating the very early stages of 
hematopoietic formation that have been largely unexplored so far.  
 
 
 
Material and Methods 
 
Human induced pluripotent stem cell lines 
All iPSC lines used in the study were generated by the HIPSCI project. Details on their 
generation are available at http://www.hipsci.org. Briefly, we used kolf_2, yemz_1 and 
vass_1 in the Discovery and DC datasets, and we added ceik_1, eesb_1 and wegi_1 for the 
Validation datasets. All cells in the knockout dataset are derived from kolf_2 as a parental 
line. All HIPSCI samples were collected from consenting research volunteers recruited from 
the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.uk), initially under 
existing ethics rules for iPSC derivation (Regional Ethics Committee (REC) reference 
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09/H0304/77, v.2, 4 January 2013), with later samples collected under a revised consent 
(REC reference 09/H0304/77, v.3, 15 March 2013). 
 
In vitro differentiation to macrophages and dendritic cells     
We used an adaptation of the van Wilgenbrug et al. protocol15. Feeder-free human iPSC 
were cultured in E8. For the embryoid body (EB) formation, step1, a single-cell suspension 
of hiPSC was plated in 100 µl of EB medium – E8 + SCF (20 ng/ml) + VEGF (50 ng/ml) + 
BMP-4 (50 ng/ml) + ROCK inhibitor (10 µM) – at a density of 10,000 cells per well in round 
bottom low-attachment 96 well plates. After 2 days, we changed half the media (50 µl) and 
replaced it with fresh EB media. At day 4, EB myeloid differentiation started, step 2, when 
EBs were plated in gelatin-coated 6-well plates at a density of 8–10 EBs per well in EB-Mac 
medium – StemPro-34 + M-CSF (100 ng/ml) and + IL-3 (25 ng/ml). The EB-Mac medium 
was changed every 4 to 5 days. At day 31, step 3, non-adherent cells were collected by 
centrifugation with the medium change and cultured in 10 cm tissue culture plates for 7 days 
in macrophage differentiation medium – RPMI + 10% heat-inactivated FBS + M-CSF (100 
ng/ml). 

Alternative macrophage differentiation media were used in the macrophage differentiation 
phase, step 3. For the cytokines experiment (Fig. 3B-D), we used RPMI + 10% heat-
inactivated FBS + GM-CSF (50 ng/ml) and RPMI + 10% heat-inactivated FBS + GM-CSF 
(10 ng/ml) + IL-34 (100 ng/ml). For the media experiment (Fig. 3B, Fig. S5B), fully defined 
medium – StemPro-34 + M-CSF (100 ng/ml) - was used. 

Step 1 is shared between macrophages and DCs, while different cytokines are used in step 
2 and 3. For DC differentiation EBs at day 4 are plated with EB-DC media – StemPro-34 + 
GM-CSF (50 ng/ml) + FLT3L (100 ng/ml) in the same types of plates and density as the 
macrophage protocol. At day 31, step 3, non-adherent cells were collected and plated in 10 
cm tissue culture plates in DC differentiation medium – RPMI + 10% heat-inactivated FBS + 
GM-CSF (50 ng/ml) + IL-4 (100 ng/ml). 

 

10x Genomics Chromium GEMs sample preparation and sequencing 
Single-cell transcriptomic analysis on iPSC-to-macrophage differentiation was performed in 
3 iPSC lines for the Discovery dataset and 6 hiPSC lines for the Validation dataset. One 6-
well well per line was collected using TrypLE at 20 timepoints in the Discovery dataset, and 
2 6-well wells per line at 7 timepoints in the Validation dataset, between Day 0 and Day 38 
(Day 31 EBs plus 7 days of the macrophage differentiation phase). At every collection day, 
cells of each well were merged, counted, passed through 40 µM filters and resuspended in 
DPBS + 0.4% BSA. Cell suspensions were processed using the Chromium Single Cell 3’ kit 
(v2 for Discovery, v3 for Validation), aiming at recovering from 3000 to 10000 cells. Library 
preparation was carried out according to the manufacturer’s instructions. Libraries were 
sequenced, aiming at a minimum coverage of 50000 raw reads per cell, on the Illumina 
HiSeq 4000 (Discovery) or Novaseq 6000 (Validation) using the sequencing formats; read 1: 
26 cycles; i7 index: 8 cycles, i5 index: 0 cycles; read 2: 98 cycles (3’ kit v2) or read 1: 28 
cycles; i7 index: 8 cycles, i5 index: 0 cycles; read 2: 91 cycles (3’ kit v3). 
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Sample preparation and sequencing for the DC datasets was performed as described for the 
Discovery dataset. The Knockout dataset samples were processed as described for the 
validation dataset but only for 2 time points (i.e., Day 0 and Day 31).    

Single-cell ATAC analysis was performed in a subset of the single-cell suspensions for 6 of 
the time points of the Validation dataset described above. Single-nuclei suspensions were 
obtained and processed according to the manufacturer’s instructions using Chromium Single 
Cell ATAC v1.0, aiming for 10000 nuclei per sample. Library preparation was carried out 
according to the manufacturer’s protocol and sequenced on Illumina NovaSeq 6000, aiming 
for 20000 fragments per cell using the sequencing formats; read 1: 50 cycles; i7 index: 8 
cycles, i5 index:16 cycles; read 2: 50 cycles. 

 

Single-cell RNA seq computational analysis 
Cell Ranger (v3.1.0), mapping to GRCh38 (v3.0.0), was used to filter out empty droplets 
using default values. Cells were further filtered out for the number of genes (<200) and 
percentage of mitochondrial RNA (>8.5%) using Seurat (https://satijalab.org/seurat/ v3.2.2). 
All cells identified as doublets using SoupOrCell84, DoubletDetection 
(http://doi.org/10.5281/zenodo.2678041) and Scrublet85 were discarded. Cell genotype 
calling was performed using SoupOrCell84. All datasets were  normalized using sctransform 
in Seurat86, and UMI counts, mitochondrial RNA and cell cycle variables were regressed out 
by cell line. Multiple hiPSC lines were integrated using Seurat’s anchor-based method23. 
After PCA dimensionality reduction and louvain clustering87, datasets were further analysed 
as described below. 

 

Single-cell ATAC seq computational analysis  
Cell Ranger ATAC pipeline (v1.2.0), mapping to GRCh38 (v3.0.0), was used for read filtering 
and barcode cell calling. Peaks were re-called using cellatac, an in-house implementation of 
Cusanovich’s approach88 (https://github.com/cellgeni/cellatac)89. Peak and cell filtering were 
performed using cellatac and Signac (https://satijalab.org/signac/ version 1.1.1), as 
described in Fig. S1B. Normalization and dimensionality reduction were performed using 
term frequency - inverse document frequency (TF-IDF) and Singular Value Decomposition 
(SVD), respectively. SLM from Seurat was used for clustering. TF motif analysis was 
performed using Signac and JASPAR 202090 motifs database. 

 

Cell-type annotation of RNA and ATAC datasets 
Both the Discovery and DC datasets were annotated using logistic regression (LR) models 
built on publicly available single-cell transcriptomic datasets. The LR prediction models used 
at each step were built based on a general linear model function and a 10-fold cross-
validation. Briefly, public raw data (Cell Ranger output when available or processed matrices 
otherwise) was downloaded and re-processed as described for the Discovery and DC 
datasets. Then, public datasets were split in training (70%) and test (30%) sets, ensuring 
these proportions were accounted for each cell type. Then we generated LR models to 
classify each cell type for each gene in the training partition of the in vivo dataset using 
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normalised data. A ranked gene list based on the area under the curve (AUC) of each gene 
was produced for each cell type. The optimal number of genes to build the final LR classifier 
was chosen by building models on the training set and calculating the AUC of the prediction 
on the test set. This was repeated with an increasing number of genes down the ranked list 
described above. The number of genes that produced a model on the training set with the 
highest AUC when applied to the test set was then used to build the final model on the full in 
vivo dataset. This LR prediction model was then used to classify the cells in the in vitro 
dataset. Finally, the mean prediction probability per louvain cell cluster was calculated for all 
the LR models built, and each cluster was labeled based on the LR model with the highest 
mean prediction. As an estimate of the strength of the association between the annotation 
and the labeled clusters, we calculated the AUC of each annotated cell type based on the 
LR probabilities. 
 
For the validation dataset, cell type annotations from the Discovery dataset were projected 
on the transcriptomic and ATAC validation datasets using Seurat’s anchor-based label 
transfer approach23. 
 
 
Trajectories analysis 
Spliced/unspliced RNA expression matrices were generated using the command line tool 
from velocyto (http://velocyto.org/velocyto.py/tutorial). scVelo was used for trajectory 
analysis based on RNA velocity and PAGA graph abstraction as described 
(https://scvelo.readthedocs.io/DynamicalModeling/). All analyses were performed on a per 
sample basis. 
 
 
Transcription factor activity analysis 
Transcriptomic changes across trajectories and time points were studied based on 
transcription factor activities using DoRothEA and VIPER analysis29. DoRothEA v1.2.1 
(https://saezlab.github.io/dorothea) required Seurat v4.0.2 (https://satijalab.org/seurat/). Both 
in vitro and in vivo datasets were subset based on connected cell types according to the 
trajectory analysis. Normalised data was scaled within each subset, and TF activity scores 
were computed for each cell for 271 TFs with high-confidence target-gene annotation (A, B 
and C confidence levels, https://saezlab.github.io/dorothea/). Heatmaps for in vitro vs in vivo 
comparison were produced by selecting the top 50 most variable TFs in each dataset, and 
results were merged and plotted using pheatmap 
(https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12).  
 
Marker protein and antigen processing DQ-OVA assay analysis by FACS 
Macrophages and dendritic cells were detached from 10 cm plates using Lidocaine + EDTA 
for 5 min at 37°C, collected in DPBS and spun down at 300g for 3 min. Samples were then 
fixed with BD Cytofix buffer for 20 min at room temperature and washed with DPBS + 1% 
FBS. Staining with fluorescent-labeled primary antibodies was performed in the dark at room 
temperature for 30 min. After 2 washes with DPBS +1% FBS, cells were analysed by FACS 
in a BD LSR Fortessa II. 
Dendritic cells were collected as described above and incubated with DQ-OVA in the dark at 
4°C or 37°C for 15 min, 45 min and 60 min, as indicated. Cells were then washed with ice-
cold DPBS +1% FBS and analysed by FACS as above. 
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CRISPR-Cas9 knockout of human induced pluripotent stem cell lines 
Knockout iPSC lines were generated by substituting an asymmetrical exon with a Puromycin 
cassette and expanding those clones with a frame-shift indel in the remaining allele. A 
hSpCas9 and two small guide RNA expression vectors along with a template vector were 
used. The template vector harboured an EF1a- Puromycin cassette with two flanking 1.5 kb 
homology arms designed around the asymmetric exon of interest. For each knockout line, 
2×106 iPSC single cells were transfected using the Amaxa Human Stem Cell Nucleofector® 
Kit 2 (Lonza) with 4 μg, 3 μg and 2 μg of each plasmid, respectively, and plated in 10 cm 
plates. After 72 h, cells were selected in 3 μg/mL Puromycin and colonies were expanded 
and genotyped. Lines confirmed to have the Puromycin cassette and the presence of a 
frame-shift indel by Sanger sequencing were selected for the experiments.   
  
 
Differential expression analysis of knockout iPSC-derived cell types 
Transcriptomic alterations between cell types arising in WT and KO lines were assessed 
using differential expression from Seurat. Genes present in 10% of the cells and with a 
minimal log fold-change of 0.25 were selected for differential expression analysis of each cell 
type in each KO line vs their WT counterpart. Only genes with an FDR < 0.05 were 
considered as significantly differentially expressed. 
 
 
Figure Legends 
 
Fig 1. iPSC macrophage differentiation produces a range of fetal myeloid and stromal 
cells. A, Schematic illustration of the in vitro differentiation protocol from iPSC to 
macrophages highlighting the time points where samples were collected for scRNAseq and 
scATACseq profiling. The protocol was repeated twice to generate the Discovery and 
Validation datasets.  B, Diagram summarising the computational workflow used for cell-type 
annotation of the single-cell datasets generated with the differentiation protocol. Briefly, LR 
models were used to annotate the Discovery scRNAseq dataset based on publicly available 
in vivo datasets of human gastrulation (Gas)22, yolk sac (YS)6, fetal liver (including skin and 
kidney) (FLi)21, fetal thymus (FTh)20 and placenta (Pla)19. Then, cell type annotations were 
transferred from the Discovery dataset to the scRNAseq and scATACseq Validation dataset. 
C,  UMAP projections of the Discovery scRNAseq data (n = 135,000) from 3 cell lines and 
20 time points labeled by cell type. For each cell type, we report the in vivo datasets 
supporting the annotation and the AUC on the Discovery dataset for the LR models trained 
on the in vivo dataset with a * mark. (right)  UMAP projections of the Discovery dataset 
labeled by time point. D, Dot plot showing canonical markers for each of the cell types 
identified in the Discovery dataset. Colors depict the mean gene expression and dot size the 
percentage of cells expressing each marker. E, UMAP projections of the scRNAseq 
Validation dataset (n = 62,000) from 6 cell lines and 7 time points labeled by cell type. F, 
UMAP projections of the scATACseq Validation dataset (n = 71,000) from 6 cell lines and 6 
timepoints labeled by cell type. G, Heatmap showing the mean logistic regression models’ 
predicted probabilities of the YS hematopoietic cell types6 for each of the cell types in the 
Discovery scRNAseq dataset. H, UMAP projections of the scRNAseq Discovery data 
coloured by the logistic regression models’ predicted probabilities of the YS hematopoietic 
cell types6. iPSC, induced pluripotent stem cell; EB, embryoid body; Mac, macrophage; LR, 
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logistic regression; UMAP, uniform manifold approximation and projection; AUC, area under 
the curve; ATAC, assay for transposase-accessible chromatin; YS, yolk sac; YSMP, yolk sac 
myeloid-biased progenitors. 
 
Fig 2. Cell population dynamics. A, Diagram illustrating the dynamic emergence of the 
different cell types over the course of the in vitro differentiation protocol (Discovery dataset). 
B, Schematic representation of the computational workflow used to compare transcription 
factor (TF) dynamics in vivo and in vitro. Briefly, TF activities were computed at branching 
points along the in vitro differentiation trajectory (Discovery dataset) and were compared to 
TF activities in matched cell types in the in vivo human yolk sac6, gastrulation22 and fetal 
liver21 datasets. C, RNA velocity and PAGA graph abstraction of the cells found at day 3 
(Embryoid Body (EB) formation) of the differentiation protocol (Discovery dataset) showing 
the developmental relationships between the cell types. D, Transcription factor activities 
computed with DoRothEA for the identified cell types present at day 3 of the in vitro 
differentiation protocol and matched cell types in the in vivo gastrulation dataset22, relevant 
TF discussed in the text are highlighted in grey. E, RNA velocity and PAGA graph 
abstraction of the cells present at day 21 (EB myeloid differentiation) of the differentiation 
protocol (Discovery dataset) showing the developmental relationships between the cell 
types. F, Transcription factor activities computed with DoRothEA for the identified cell types 
present at day 21 of the in vitro differentiation protocol and matched cell types in the in vivo 
yolk sac dataset6, relevant TF discussed in the text are highlighted in grey. G, Same analysis 
as F with matched cell types in the in vivo fetal liver, skin and kidney dataset21. H, Violin 
plots showing the number of accessible peaks per cell type in the scATACseq Validation 
dataset. Each panel considers the cell types present in a distinct lineage (macrophages, 
other myeloid, endoderm, fibroblasts). iPSC, induced pluripotent stem cells; ATAC, assay for 
transposase-accessible chromatin.  
 
Fig 3. Evaluation of the macrophage phase. A, Schematic illustration of the in vitro 
differentiation protocol and cell-type annotation analysis with a focus on the time points of 
the macrophage phase (from day 31 to day 31 + 7). Alternative cytokine (top) and  
media (bottom) experiment highlighted in red. B, (top) UMAP projections of all the samples 
collected from the macrophage phase colored by cell type and time points. All experiments 
are pooled. (bottom) UMAP projections highlighting the samples included in each of the 
experiments colored by time point and condition. C, Stacked area plot of the cell-type 
percentages in each time point. Only samples from the time points experiment were 
included. D, (left) UMAP projection highlighting macrophages from the time points 
experiment (M-CSF only) and colored by time point. (right) Heatmap of the transcription 
factor activity scores calculated using DoRothEA across time points, relevant TF discussed 
in the text are highlighted in grey. E, TF motif enrichment values in macrophage ATAC open 
peaks at day 31+7 vs day 31 plotted against TF transcriptional activity score at day 31+1 
(left) or day 31+7 (right). Pearson correlation’s r and significance are shown in the plots. F, 
(left) UMAP projection highlighting macrophages from the cytokines experiment and colored 
by time point and cytokine cocktail used. (right) Heatmap of the transcription factor activity 
scores calculated using DoRothEA+VIPER across time points and cytokines. iPSC, induced 
pluripotent stem cells; TF, transcription factor; ATAC, assay for transposase-accessible 
chromatin. 
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Fig 4. Modification of differentiation cytokines produces dendritic cells. A, (left) 
Schematic illustration of the in vitro differentiation protocol from iPSC to dendritic cells 
highlighting the time points when samples were collected for scRNAseq profiling. The 
protocol is analogous to the one used for differentiating iPSC into macrophages but employs 
distinct cytokines (GM-CSF and FLT3L for the EB myeloid differentiation phase and GM-
CSF and IL-4 for the DC differentiation phase). (right) Diagram summarising the 
computational workflow used for cell-type annotation of the scRNAseq data generated with 
this protocol.  B, UMAP projections of the scRNAseq data (n = 121,000) from 3 donors 
labeled by cell type (top) and time point (bottom). For each cell-type annotation we report, 
the in vivo datasets supporting the annotation and the mean area under the curve (AUC) for 
the logistic regression models trained on such datasets. C, Dot plot showing the average 
expression of canonical marker genes for each of the identified cell populations. D, 
Transcription factor activities computed with DoRothEA for the identified cell types present at 
day 21 of the in vitro differentiation protocol and matched cell types in the in vivo yolk sac 
dataset6 and fetal liver, skin and kidney dataset21, relevant TF discussed in the text are 
highlighted in grey. E, Stacked area plot showing the proportions of the major cell types 
produced by the differentiation protocol over the course of the last 7 days (Day 31+1 to Day 
31+7). F, Transcription factor activities computed with DoRothEA for cDC2 identified at the 
last 4 time points of the differentiation protocol (step 3). G, Flow cytometry histograms 
showing the protein levels of cDC2 marker genes and CD14 as a negative marker in non-
adherent cells at the end of the DC differentiation phase (day 31 + 7), matched unstained 
controls are shown in grey. H, Flow cytometry histograms for BODIPY™ FL DQ-ovalbumin 
processing by non-adherent cells at the end of the DC differentiation phase (day 31+7) 
incubated for 15, 45 and 60 minutes at 37°C. Matched samples were kept at 4°C for the 
same incubation periods and are shown in grey in each plot. 
 
Fig 5. Effect on macrophage differentiation of ICAM1, LSP1, PRKCB and ZEB2 KO. A, 
(left) Schematic illustration of the in vitro differentiation protocols from iPSC to macrophages 
(top) or dendritic cells (DC, bottom) used to evaluate the effects of ICAM1, LSP1, PRKCB or 
ZEB2 knockouts (KO). Samples were collected at day 0 and day 31 of the protocols and 
profiled with scRNAseq. (right) Diagram summarising the computational workflow used for 
cell-type annotation of the scRNAseq data generated with these protocols. Briefly, cell-type 
annotations were transferred from scRNAseq data of the macrophages (Discovery dataset) 
and DC protocols described in the previous sections. B, UMAP projections of scRNAseq 
data (n = 108,000) from both KO protocols labeled by time point. C, UMAP projections of 
scRNAseq data generated from the iPSC-to-macrophages KO protocol (one UMAP per KO 
plus wild type) coloured by cell type. D, UMAP projections of scRNAseq data generated from 
the iPSC-to-DC KO protocol (one UMAP per KO plus wild type) coloured by cell type. E, Dot 
plot showing the average expression of intermediate monocyte–associated genes in the 
monocytes produced by each KO and the wild type in the iPSC-to-DC protocol. F, Dot plot 
showing the average expression of genes associated to myeloid-derived suppressor cells in 
the monocytes produced by each KO and the wild type in the iPSC-to-DC protocol. G, (left) 
Dot plot showing the average expression of M2-associated genes in the macrophages 
produced by each KO and the wild type in the iPSC-to-macrophages protocol. (right) 
Transcription factor activities computed with DoRothEA for macrophages produced by each 
KO and the wild type.  
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Supplementary figure legends 
 
Supplementary Figure 1. Computational workflow 
A, Computational processing and analysis of 10X Genomics Chromium single-cell GEMs 3’ 
RNA samples. B, Computational processing and analysis of 10X Genomics Chromium 
single-nuclei GEMs ATAC samples. 
 
Supplementary Figure 2. Logistic regression predictions from in vivo datasets for cell 
types in the Discovery dataset 
Discovery dataset UMAP projections showing the logistic regression prediction probabilities 
for models trained on each cell type present in publicly available single-cell transcriptomic 
datasets. Prediction probabilities built on: A, Human gastrulation embryo dataset, 2-3 post 
conceptional weeks (PCW)22, B, Human fetal liver, skin and kidney cells, 7-17 PCW21, C, 
Human fetal yolk sac 4-5 PCW6, D, Human fetal thymus and liver cells, 7-17 PCW20 and, E, 
Human fetal, 6-12 PCW, and decidual, adult, cells19. 
 
Supplementary Figure 3. Further characterisation of the Discovery dataset 
A, Discovery dataset UMAP projections showing scaled gene expression for the HOXA 
family of genes and the location of cells annotated as myeloid progenitors. B, UMAP 
projections of the yolk sac dataset6 coloured by the predicted probabilities by logistic 
regression of myelopoiesis cell types from the in vitro iPSC-derived Discovery dataset, 
(bottom) UMAP projections of the cell types described in the yolk sac study6 and cell types 
identified through logistic regression analysis. C. Heatmap showing the mean predicted 
probabilities by logistic regression of the cell types found in the yolk sac 6. In red are cell type 
clusters not described in the original yolk sac study6 and defined by the logistic regression 
results in B. D, Discovery dataset UMAP projections, first with the cell type annotations as 
reference and the rest are coloured by the predicted probabilities by logistic regression of 
each macrophage subtype found in the maternal–fetal interface19. E, Heatmap showing the 
mean predicted probabilities by logistic regression of the macrophage subtypes found in the 
maternal–fetal interface19 for each of the cell types in the Discovery scRNAseq dataset. 
 
 
Supplementary Figure 4. Additional supporting data for the trajectories analysis 
A, Heatmap of the percentage of cells distribution across all timepoints for each cell type in 
the Discovery dataset. B, Violin plots of the mean number of genes expressed per cell in 
each of the cell types across the main differentiation trajectories identified. Black dot = 
median number of expressed genes per cell type. 
 
Supplementary Figure 5. Additional supporting data for the macrophage phase 
A, FACS plots showing CD14 and CD64 surface protein expression levels for cells collected 
at the end of the differentiation, plus7, for the three donor iPSC lines used in the discovery 
dataset. B, (right) Macrophage phase UMAP projection highlighting macrophages from the 
media experiment and colored by time point and media composition. (left) Heatmap of the 
transcription factor activity scores calculated using DoRothEA across timepoints and media 
composition. 
 
Supplementary Figure 6. Logistic regression predictions from in vivo datasets for cell 
types in the DC dataset 
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Dendritic cell dataset UMAP projections showing the logistic regression prediction 
probabilities for models trained on each cell type present in publicly available single-cell 
transcriptomic datasets. Prediction probabilities built on: A, Human gastrulation embryo 
dataset, 2-3 post conceptional weeks (PCW)22, B, Human fetal liver, skin and kidney cells, 7-
17 PCW21, C, Human fetal yolk sac, 4-5 PCW6  and D, Human fetal thymus and liver cells, 7-
17 PCW20. 
 
Supplementary Figure 7. Dendritic cells protocol 
A, Heatmap of the percentage of cells distribution across all time points for each cell type in 
the DC dataset.  
 
Supplementary Figure 8. Knock-out cell types’ transcriptomic profiles 
A, Stacked bar plots of the proportions of each cell type for each KO gene and WT lines on 
day 31 cells for the macrophage (left) and dendritic cells (right) protocols. B, DotPlot with 
scaled gene expression levels in monocytes from WT and knock-out lines differentiated with 
the macrophage protocol. Genes shown are characteristic of intermediate monocytes and 
were significantly dysregulated in LSP1 and ICAM1 monocytes produced in the DC protocol.  
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