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ABSTRACT

Understanding the many-to-many mapping between patterns of functional brain connectivity and discrete10

behavioral responses is critical for speech-language processing. We present a microstate-based analysis11

of EEG recordings to characterize spatio-temporal dynamics of neural activities that underly rapid speech12

categorization decisions. We implemented a data driven approach using Bayesian non-parametrics to13

capture the mapping between EEG and the speed of listeners’ phoneme identification [i.e., response time14

(RT)] during speech labeling tasks. Based on our empirical analyses, we show task-relevant events such15

as resting-state, stimulus coding, auditory-perceptual object (category) formation, and response selection16

can be explained using patterns of micro-state dwell-time and are decodable as unique time segments17

during speech perception. State-dependent activities localize to a fronto-temporo-parietal circuit18

(superior temporal, supramarginal, inferior frontal gyri) exposing a core decision brain network (DN)19

underlying rapid speech categorization. Furthermore, RTs were inversely proportional to the frequency of20

state transitions, such that the rate of change between brain microstates was higher for trials with slower21
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compared to faster RTs. Our findings imply that during rapid speech perception, higher uncertainty22

producing prolonged RTs (slower decision-making) is associated with staying in the DN longer23

compared lower RTs (faster decisions). We also show that listeners’ perceptual RTs are highly sensitive24

to individual differences. Our computational method opens a new avenue in segmentation and dynamic25

brain connectivity for modeling neuroimaging data and understanding task-related cognitive events.26

INTRODUCTION

The acoustic nature of speech is continuous; even identical utterances can be produced with stark27

differences in their physical acoustic dimensions (e.g., talker variability in pitch or timbre (Prather,28

Nowicki, Anderson, Peters, & Mooney, 2009). Yet, speech perception unfolds as a discrete process,29

invoking a “down-sampling” mechanism that enables listeners to group sounds into smaller sets of30

(phonetic) categories. This binning process is known as categorical perception (CP) (Harnad & Bureau,31

1987; Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; Pisoni, 1973; Pisoni & Luce, 1987)32

and is fundamental not only to maintaining perceptual constancy of the soundscape but also everyday33

speech listening.34

When identifying speech, listeners’ response times (RTs) provide a window into the speed of their35

decision process and reveal stark individual differences in perceptual labeling speeds (Bidelman, Moreno,36

& Alain, 2013; Pisoni & Tash, 1974). For example, listeners categorize prototypical speech sounds (e.g.,37

exemplars from their native language) much faster than ambiguous or less familiar ones (e.g., nonnative38

speech sounds) (Bidelman & Lee, 2015). RTs also slow near perceptual boundaries, where listeners shift39

from hearing one linguistic class to another (e.g., /u/ vs. /a/ vowel) and presumably require more time to40

access the “correct” speech template (Bidelman et al., 2013; Liebenthal et al., 2010; Pisoni & Tash, 1974;41

Reetzke, Xie, Llanos, & Chandrasekaran, 2018). Rapid speech identification is also highly sensitive to42

stimulus familiarity (Bidelman & Walker, 2017; Liebenthal et al., 2010; Lively, Logan, & Pisoni, 1993)43

an individual’s experience (Bidelman & Lee, 2015; Liberman et al., 1967), and certain disorders that44

affect receptive speech listening skills (Bidelman, Lowther, Tak, & Alain, 2017; Bidelman, Villafuerte,45

Moreno, & Alain, 2014; Calcus Axelle, Lorenzi Christian, Collet Gregory, Colin Cécile, & Kolinsky46

Régine, 2016; Hakvoort Britt et al., 2016). Consequently, understanding the neural mechanisms that47

drive individual differences in categorization might help elucidate not only how continuous sensory48
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information is mapped to discrete, perceptual representations in the brain (Bidelman et al., 2013; Phillips,49

2001; Pisoni & Luce, 1987) but also inform putative targets for speech rehabilitation.50

While the neural correlates of CP have been well documented in terms of the regional contributions to51

behavior, our recent study (Al-Fahad, Yeasin, & Bidelman, 2020) took a different approach, examining52

neural speech processing and CP from a full-brain (functional connectivity) perspective. Using neural53

decoding and graph mining techniques applied to single-trial EEG, we showed that unique patterns of54

functional connectivity among a circuit involving superior temporal gyrus (STG), parietal, motor, and55

prefrontal regions distinguished the speed of listeners’ speech labeling (i.e., RTs). Slow responders56

tended to utilize the same functional brain networks excessively (or inappropriately) whereas fast57

responders utilized the same neural pathways but with more restricted organization. While our findings58

demonstrate the strength of network-level descriptions of the brain map to different behavioral outcomes,59

they did not consider the time dynamics of brain activity. In fact, the assumption that functional60

connectivity is static in time (as in most studies) discards important temporal dynamics of EEG which are61

potentially behaviorally-relevant. As such, previous work cannot speak to the different and evolving62

brain states that might subserve various processes over the time course of speech identification tasks (e.g.,63

stimulus coding, acoustic-phonetic conversion, lexical interface, response selection, etc.).64

Moving toward a more dynamic view of functional brain connectivity (FC), microstate analysis is a65

recent advance that allows for a time-varying view of neural coupling via the identification of salient66

transitory states of brain responses (Calhoun, Miller, Pearlson, & Adalı, 2014; Koenig et al., 1999).67

Coupling refers to possible time-varying levels of correlated or mutually informed activity. Because this68

technique simultaneously considers signals recorded from all areas of cortex, it is capable of assessing69

the function of large-scale functional brain networks (Khanna, Pascual-Leone, Michel, & Farzan, 2015).70

Such networks often referred as microstate functional connectivity (µFC) networks. The µFC is a widely71

used tool for studying the temporal dynamics of whole-brain FC patterns (Michel & Koenig, 2018).72

State-of-the-art methods for investigating dynamic FC in EEG recordings mainly follows two common73

strategies: (i) a temporal sliding window approach (Hindriks et al., 2016; Hutchison et al., 2013;74

Karamzadeh, Medvedev, Azari, Gandjbakhche, & Najafizadeh, 2013; O’Neill et al., 2017; Preti, Bolton,75

& Van De Ville, 2017; Shakil, Lee, & Keilholz, 2016) or (ii) an adaptive segmentation via clustering76

approach (Allen et al., 2014; Damaraju et al., 2014; Hutchison et al., 2013; Mheich, Hassan, Khalil,77
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Berrou, & Wendling, 2015; Shakil et al., 2016). Both firmly rely on the window size, and the strategy for78

selecting a reasonable window extent remains unsolved. Microstate-based methods also usually follow79

K-means or Gaussian mixture modeling (GMM) based clustering (Allen et al., 2014; Damaraju et al.,80

2014; Hutchison et al., 2013; Mheich et al., 2015; Shakil et al., 2016). Despite the usefulness of these81

clustering-based methods, they have several drawbacks. Choosing a proper number of clusters can be82

challenging for dynamic data with no prior knowledge. Hard-clustering algorithms are also sensitive to83

noise and outliers and suffer poor generalization across studies. In addition, these approaches cannot84

handle an infinite number of clusters and representative microstates are often changed with new85

observations.86

Hierarchical Dirichlet Process HMM (HDP-HMM) (Beal, Ghahramani, & Rasmussen, 2002; Fox,87

Sudderth, Jordan, & Willsky, 2011; Teh, Jordan, Beal, & Blei, 2005) provides an elegant Bayesian88

Nonparametric framework for sequential data segmentation with different numbers of states.89

State-of-the-art inference algorithms for HMMs and HDP-HMMs cannot efficiently learn from large90

datasets, often getting trapped at local optima and not exploring segmentations with a varying finite91

number of states (M. C. Hughes, Stephenson, & Sudderth, 2015). In addition, stochastic optimization92

methods (Foti, Xu, Laird, & Fox, 2014; Johnson & Willsky, 2014) cannot change the number of states93

during execution, making them vulnerable to large datasets and convergence issues. To overcome these94

limitations, Monte Carlo procedures (Chang & Fisher III, 2014; Fox, Hughes, Sudderth, & Jordan, 2014;95

Wang & Blei, 2012) can use the entire dataset, but require all sequences to fit into memory.96

Consequently, they have the drawback of being computationally inefficient and non-scalable. To avoid97

these limitations, some studies (i) convert multivariate EEG data into a representative univariate time98

series [e.g., use Global Field Power (Michel & Koenig, 2018)] or (ii) use trial- or subject-wise averages99

to reduce dimensionality of the data (Duc & Lee, 2019).100

A promising solution to overcome these computational complexities is “Memoized Variational101

Inference (moVB)” (M. C. Hughes & Sudderth, 2013). Generalizing this algorithm for Dirichlet Process102

(DP) mixture (M. Hughes, Kim, & Sudderth, 2015) and HDP topic models (M. Hughes et al., 2015),103

Michael et al. proposed an inference algorithm for the sticky HDP-HMM that scales to big datasets by104

processing a few sequences at a time (M. C. Hughes et al., 2015). Hence, this algorithm is scalable,105

reliable, and is fast to converge. The sticky HDP-HMM with moVB enables one to (i) dynamically106
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segment task-related or resting state multivariate EEG, (ii) discover an appropriate number of107

micro-states, and (iii) use birth, merge, and delete operations (M. C. Hughes et al., 2015) to avoid an108

infinite number of clusters in the solution. Furthermore, it allows one to update a pretrained model with a109

new observation, thus allowing for prediction of future data.110

Here, we aimed to characterize the temporal dynamics of the brain underlying a core skill for speech111

perception (i.e., categorization) by discovering patterned states of spatiotemporal neural activity that112

describe different microstates underlying this critical perceptual-cognitive process. We adopted sticky113

HDP-HMM with moVB-based dynamic EEG data segmentation analyses to: (i) identify the different114

brain microstates which unfold as listeners label sounds, (ii) characterize possible differences in the rate115

of change and/or number (entropy) of state transitions that might distinguish fast from slow perceivers,116

and (iii) determine the brain areas which describe the decision network (DN) engaged during CP of117

speech. Our data-driven approach reveals that the duration which listeners stay in the DN is directly118

related to their perceptual speed, and thus skill level, in rapid speech identification.119

METHODS

Participants:120

N=35 adults (12 males, 23 females) were recruited from the University of Memphis student body and121

Greater Memphis Area to participate in the experiment. All but one was between the age of 18 and 35122

years (M = 24.5, SD = 6.9 years). All exhibited normal hearing sensitivity confirmed via audiometric123

screening (i.e., ¡ 20 dB HL, octave frequencies 250 - 8000 Hz), were strongly right-handed (77.1± 36.4124

laterality index [46]), and had obtained at least a collegiate level of education (17.2 ± 2.9 years). None125

had any history of neuropsychiatric illness. On average, participants had a median of 1.0 year (SD=7.5126

years) of formal music training. All were paid for their time and gave informed consent in compliance127

with a protocol approved by the Institutional Review Board at the University of Memphis.128

Speech stimulus continuum and behavioral task:129

We used a synthetic five-step vowel continuum previously used to investigate the neural correlates of CP130

(Oldfield, 1971) (Figure 1a). Each token of the continuum was separated by equidistant steps acoustically131

based on first formant frequency (F1) yet was perceived categorically from /u/ to /a/. Tokens were 100132
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ms, including 10 ms of rise/fall time to reduce spectral splatter in the stimuli. Each contained an identical133

voice fundamental (F0), second (F2), and third formant (F3) frequencies (F0: 150 Hz, F2: 1090 Hz, and134

F3: 2350 Hz). The F1 was parameterized over five equal steps between 430 and 730 Hz such that the135

resultant stimulus set spanned a perceptual phonetic continuum from /u/ to /a/ (Bidelman et al., 2013).136

Speech stimuli were delivered binaurally at 83 dB SPL through shielded insert earphones (ER-2;137

Etymotic Research) coupled to a TDT RP2 processor (Tucker Davis Technologies). Listeners heard138

150-200 trials of each individual speech token during EEG recording. On each trial, they were asked to139

label the sound with a binary response (“u” or “a”) as quickly and accurately as possible (speeded140

classification task). Reaction times (RTs) were logged, calculated as the timing difference between141

stimulus onset and listeners’ behavioral response. Following their keypress, the inter-stimulus interval142

(ISI) was jittered randomly between 800 and 1000 ms (20 ms steps, uniform distribution) and the next143

trial was commenced.144

Our speech categorization task required listeners make a binary judgement on what they hear. As such,145

it is a subjective task that does not have true accuracy, per se. Consequently, we chose to decode RTs146

since they are a continuous, more objective measure that provides a much richer decoding of listeners’147

behavior regarding the sound-to-label process.148

Behavioral data analysis:149

We adopted a Gaussian mixture model (GMM) with expectation-maximization (EM) to identify an150

optimal number of clusters/components (i.e., subgroups of listeners’ RTs) from the aggregate distribution151

of their RT speeds. Finding an optimal number of components with GMM is challenging. Here, we used152

brute-force and Bayesian Information Criterion (BIC) based approaches. In this exhaustive parameter153

search, the hyperparameters were: (1) Number of components (clusters), (ranges from 1 to 14), and (2)154

Type of covariance parameters. This process identified an optimal combination of four components with155

the unique covariance matrix. It was observed that 17% - 47% of the total trials in the speech156

identification task fell into three components. The 4th component had the fewest number of trials (1.6%).157

Based on the interpretation of RTs, we categorized these components as four clusters: Fast RT (120 - 476158

ms), Medium RT (478 - 722 ms), Slow RT (724 -1430 ms), and Outliers (> 140 ms). Data from the159

outliers were discarded for further analysis given the low trial counts loading into this cluster. The160
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Figure 1: (a) Acoustic spectrograms of the speech stimuli: The stimulus continuum was created by para-

metrically changing vowel first formant frequency over five equal steps from 430 to 730 Hz, resulting

in a perceptual-phonetic continuum from /u/ to /a/. (b) Token wise response times for auditory classifi-

cation. Listeners are slower to label sounds near the categorical boundary (i.e., Token 3). Females had

significantly slower RTs than males.

boxplot in Figure 2 shows token wise RTs. Each speech token can be broken down into a combination of161

the three RT clusters, meaning that speech categorization speeds could be objectively clustered into fast,162

medium, slow (and outliers) responses via the GMM. These cluster divisions were then used in163

subsequent EEG analyses to determine if functional brain connectomics differentiated these perceptual164

subgroups.165
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Figure 2: Token-wise RTs broken down by GMM component. Based on behavioral RTs, four clusters are

evident that distinguish subgroups of listeners based on their speech identification speeds: Fast (120 - 476

ms), Medium (478 - 722 ms), Slow (724 - 1430 ms), and Outlier (> 1430 ms).

EEG recording and preprocessing:166

EEG recording procedures were identical to our previous neuroimaging studies on speech categorization167

(Bidelman & Alain, 2015; Bidelman et al., 2013; Bidelman & Walker, 2017). Briefly, neuroelectric168

activity was recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 locations around the scalp169

(Oostenveld & Praamstra, 2001). Continuous data were digitized using a sampling rate of 500 Hz170

(SynAmps RT amplifiers; Compumedics Neuroscan) and an online passband of DC-200 Hz. Electrodes171

placed on the outer canthi of the eyes and the superior and inferior orbit monitored ocular movements.172

Contact impedances were maintained < 10 kΩ during data collection. During acquisition, electrodes173

were referenced to an additional sensor placed 1 cm posterior to the Cz channel. Subsequent174

pre-processing was performed in BESA® Research (v7) (BESA, GmbH). Ocular artifacts (saccades and175

blinks) were first corrected in the continuous EEG using a principal component analysis (PCA) [48].176

Cleaned EEGs were then filtered (bandpass: 1-100 Hz; notch filter: 60 Hz), epoched (-200-800 ms) into177

single trials, baselined to the pre-stimulus interval, and re-referenced to the common average of the scalp.178

This resulted in between 750 and 1000 single trials of EEG data per subject (i.e., 150-200 trials per179

speech token). Trials of same class were ensemble averaged per subject. This resulted in 105 data180
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samples (=35 subjects x 3 RT classes) for further analysis. A schematic of the data pipeline is shown in181

Figure 3.182

Hierarchical Dirichlet Process Hidden Markov Models:183

We used the BNPY library (M. C. Hughes & Sudderth, 2014) in Python for spatiotemporal EEG data184

segmentation. This framework supports Bayesian nonparametric clustering and captures185

multidimensional, sequential, spatial, and hierarchical structures. To run inference on a dataset, BNPY186

requires an allocation model, a data-generation method, and the inference algorithm. The allocation187

model describes the generative process that allocates cluster assignments to individual data points. Here,188

we used HDP-HMM (Markov sequence models with an infinite number of states).189

Observation models define a likelihood for producing data from cluster-specific density. We used190

Diagonal-Covariance Gaussian as observation models. However, the inference algorithm optimizes a191

variational-bound objective function. To achieve scalability, we focused on modern optimization-based192

approaches that can process batched data, particularly memoized variational inference. The mathematical193

definition and interpretation of Sticky HDP-HMM with Memoized Variational Inference (MoVI) are194

described in the appendix.195

Figure 3: Schematic diagram of the processing pipeline. 64 channel EEG data was first preprocessed, and

trialwise averaged. Sticky HPD-HMM with Memoized Variational inferance (MoVI) was then applied for

data segenetation into functional brain microstates. Exploratory data analysis (e.g., dwell time pattern)

was then used for further analysis and interpretation.

Calculation of microstate and dwell time statistics:196

Dwell time quantifies the duration the EEG spends in a particular “functional microstate” before197

transitioning to another (Khanna et al., 2015; Miller et al., 2010). We quantified several widely used198

dwell time statistics including: (i) Duration: average duration a given microstate remains stable, (ii)199
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Occurrence: the frequency of each microstate independent of its individual duration which reflects the200

activation trend of a potential neural source, (iii) Time coverage: fraction of total recording time for201

which a given microstate is dominant, (iv) Global variance: the variance explained by each microstate,202

(v) Transition probabilities: the transition probabilities of a given microstate to any other microstate203

(Khanna et al., 2015; Koenig et al., 1999).204

RESULTS AND DISCUSSION

Micro-state-based analysis of the brain’s speech categorization:205

We adopted a data driven micro-state-based model for understanding the dynamics of speech206

categorization using HDP-HMM. The HDP-HMM starts with an infinite number of states. The Birth,207

Merge, and delete proposals are widely used to remove ineffective states [37]. To achieve an interpretable208

number of states, we varied the number of clusters from 5 to 30 (step 5) and observed the cluster209

probability. Figure 4 shows the number of clusters (K) vs. cluster probability. Each bar shows the number210

of data points that load in that specific cluster of a specific model (out of 5 models). The first cluster (0)211

contained most of the data points. First 10 clusters accounted for 93% of data points and cluster numbers212

above 10 had very fewer data points. Hence, we chose K=10 to perform our analysis.213

Figure 4: Probability of data points loading into each component.

Computation and interpretation of micro-states underlying speech categorization:214

Using HDP-HMM with 10 states, we then segmented the EEG time series data. The time series data of a215

sample trial (Slow-RT of Subject #1) and dwell time pattern (tile and time-series) are shown in Figure 5.216
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Figure 5: Top: Representative trial of 64 channel EEG data (Subject#1, slow RT). Middle: tile visual-

ization of dwell pattern. Colors/numbers denote unique microstates. Bottom: time series visualization of

dwell pattern illustrating the duration and transition between brain microstates.

Each color of the tile represents the amount of time a particular state remains stable. The dwell-time217

shows the duration and pattern of transitions between microstates during the the 1 sec interval218

encompassing the sound presentation and subsequent categorization of a speech phoneme.219

The computed micro-states are interpretable based on what is known about the time course of the220

canonical evoked response to speech (i.e., event-related potential, ERP). For example, State 6 emerges221

and persists though the pre-stimulus (-200 - 0 ms) period, suggesting it represents a resting brain state222

prior to stimulus presentation. States 0 and 1 develop in the first 150 ms after stimulus presentation,223

co-occurring with the early exogenous waves (P1-N1) of the auditory cortical ERP which reflect stimulus224

encoding. Following, State 9 (a unique state) develops between 150 - 200 ms suggesting this segment225

reflects neural activity associated with the conventional P2 deflection, a wave associated with the226

formation of auditory perceptual objects and abstract categories. The return to State 6 between 300-500227
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(a) Occurrence (b) Duration

(c) Time Coverage

Figure 6: Bar plot visualization of dwell time statistics. Red values denote metrics that should significant

(p < 0.05) differences between RT groups.

ms suggests a return of the EEG to rest prior to the behavioral response. Finally, emergence of States 3-4,228

microstates which heavily loaded toward the end of the trial, suggests these states reflect processes229

related the preparation and/or execution of listeners’ motor response which logs their category decision.230

These data confirm that unique and highly interpretable functional states of brain activity (e.g., baseline231

resting, stimulus encoding, decoding, response selection) are readily decoded from the temporal232

dynamics of EEG during active speech perception.233

We calculated trial-wise dwell time statistics to quantify different properties of microstates derived234

from HDP-HMM segmentation. Figure 6 shows the summary statistics of state-wise dwell time pattern.235

These analyses revealed different temporal extents in terms of the duration and frequency with which the236

EEG stayed in different states. Microstates 3, 4, and 6, for instance, occurred more often across the237

sample and persisted for longer durations. The duration of these states was also modulated by listeners’238

RTs such that faster decisions were related to longer durations of microstates 3, 4, and 6. Interpreted in239

the context of the task, these results imply that faster categorization of speech at the behavioral level is240
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associated with a longer and more dwell times within the putative resting state (microstate 6) and241

response selection (microstate 3 - 4). We found that slower RT decisions were associated with longer242

stays in microstate 0 compared to medium and fast RTs. Similarly, the early timing of microstates 0-1243

lead us to infer they reflect stimulus coding (see Fig. 5). This suggests that brain activity spends a244

preponderance of time encoding stimulus features in trials having slower perceptual decisions.245

Collectively, these results can be summarized as three key:246

1. Trials which yield faster RTs are associated with the listener spending significantly less time in247

stimulus encoding (microstate 3), response selection (microstate 4), and resting state (microstate 6)248

patterns.. The brevity of time spend in both stimulus and response periods suggests the most rapid249

RTs in the behavioral task reflect fast guesses (i.e., “trigger” happy response).250

2. RT wise, stimulus encoding, and response selection states occur with similar frequency overall.251

3. Combining observation 1 and 2 suggests it is not important how frequently a listener stays in252

stimulus encoding and response selection state, per se. Rather, it is, how long they maintain those253

patterns brain states that is important to determining how fast they are able to label incoming speech254

sounds.255

4. Trials with the faster RTs spend significantly more time in resting state, against suggesting an256

idling-like processing during the most rapid (likely guess) decisions.257

Relationship between speech RTs and transitional probabilities between brain microstates:258

Next, we examined the transition probabilities between different microstates in relation to the behavioral259

RTs. Figure 7 shows a heat map visualization of the transition matrix, which represents the likelihood260

that listeners’ changed from one state to another state. Diagonal elements represent the probabilities that261

a specific state remained stable (self-loop), whereas off-diagonal cells represent the likelihood of jumping262

from one state to another state. In general, states were highly stable and the transition probability263

between states was relatively low.264

We next asked whether the different behavioral groups (RT speeds) were associated with different265

frequencies of transitional probabilities. Figure 8 shows the frequency of state variations for the three RT266

groups computed from listeners’ transition matrices, along with the associated entropy for state variation.267

Results show a graded pattern from slow to fast RTs in both the frequency of state variation change and268
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entropy. That this, when listeners were slow to label the speech stimuli, EEG entropy was high,269

suggesting more rapid progression through multiple functional states. In contrast, fast behavioral270

decisions were associated with lower entropy (i.e., less state variation), implying more stable functional271

states over time. These data corroborate the generally longer duration and time coverage of state dwell272

times for fast responders reported in Fig. 6.273

Figure 7: Transition matrix between brain microstates during the time course cateogrical speech process-

ing. Probabilities are normalized to a range 0-100%.

Collectively, these findings suggest that perceptual speed in speech categorization is proportional to274

transition frequency. In states of slow speech perception decisions, the brain is more likely to change275

states rapidly, whereas faster decisions are accompanied by more stable patterns of brain activity.276

Moreover, entropy is higher for slower compared to faster RTs implying that the decision making process277

is more uncertain for slower behavioral responses, perhaps due to the more rapidly changing microstates278

we observe at the neural level.279
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Figure 8: Frequency of EEG state change per RT group. State entropy is higher for slower compared

to faster RTs suggesting poorer behavioral responses are associated with more rapid progression through

multiple functional states.

Differential networks underlying different RT groups:280

It is possible to compute the transition matrix from the Sticky HDP-HMM analysis from the transition281

matrix (see Figure 7). Figure 9 show a directed graph of the transition matrix for slow, medium, and fast282

responses in the speech CP task.283

These graph visualizations reveal the dynamic changes in brain states during rapid speech284

categorization and how different skill levels in the task (i.e., fast vs. slow responses) alter state dynamics.285

In general, we find that slower behavioral responses are associated with more pervasive exploration of286

different brain states. In contrast, faster perceptual RTs seem to be associated with a relatively compact287

oscillation among a more restricted set of states (e.g., microstate 1, 6, and 9). These findings support the288

notion that during rapid speech perception, slower perceivers utilize functional brain networks289

excessively (or inappropriately) whereas fast perceivers utilized the same neural pathways but with more290

restricted organization (Al-Fahad et al., 2020).291
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(a) Slow RT

(b) Medium RT

(c) Fast RT

Figure 9: Graph visualization of transition matrix meta-analysis. Graphs relfect transition matrices (see

Fig. 97) for differnet RTs in the speech categoriztion task. Each node represents one state. Self-loop nodes

represent the average time a state remains stable in condition-specific (RTs) trials. Edges represent state

transition probabilities with direction inicated by arrows. Probabilities < 0.03 are discarded for better

visualization with a smaller number of nodes.
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From the network structures presented in the Fig. 9, there appears to be a common delta (triangular)292

pattern in medium and fast RTs and slow RT seems to form a random graph. Graphs consisting of293

resting-state (microstate 6), stimulus encoding (microstate 3), response selection (microstate 4) which we294

argue represents a core decision-making default network (DN) underlying speech categorization. We295

observe that the primary cause of slower RTs during the fundamental process of sound identification is a296

longer time span in the DN. On the contrary, a more direct and rapid transition in the DN occurs during297

faster perceptual responses. In summary, our data suggest that the speed of speech categorization298

decisions is inversely proportional to the time listeners stay in the putative DN network.299

Intracranial sources underlying CP micro-states:300

Figure 10 shows topographic scalp map projections of the 10 microstates. We applied Classical Low301

Resolution Electromagnetic Tomography Analysis Recursively Applied (CLARA) [BESA Research (v7);302

BESA, GmbH] [51]–[53] to provide a qualitative description of the underlying brain sources that303

generate each state-specific scalp topography. CLARA renders more focal source reconstructions by304

iteratively reducing the source space during repeated estimations of the inverse solution. On each step, a305

spatially smoothed LORETA solution was recomputed, and voxels below a 1% max amplitude threshold306

are removed. This provided a spatial weighting term for each voxel of the LORETA image on the307

subsequent step. Two iterations were used with a voxel size of 7 mm in Talairach space and308

regularization (parameter accounting for noise) set at 0.01% singular value decomposition. CLARA309

activation maps were overlaid onto the BESA adult MRI template for visualization with respect to the310

brain anatomy. Figure 11 shows the CLARA source activations of what might be considered 4 primary311

states we have loosely identified as resting state (microstate 6), stimulus coding (microstate 1),312

category/auditory object formation (microstate 9), and response selection/motor planning (microstate 4).313

These brain areas converge with both hypothesis and data-driven work which have shown a similar314

engagement of these regions in categorical decisions related to speech perception. For example, in our315

recent study (Mahmud, Yeasin, & Bidelman, 2021) applying machine learning techniques (e.g., neural316

classifiers, feature mining, stability selection) to full brain, source-reconstructed EEGs, we showed that317

13 (out of 68) brain regions of the Desikan-Killiany (DK) (Desikan et al., 2006) atlas were dominant in318

describing listeners’ category labels for speech sounds during early periods of stimulus encoding (0–260319
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Figure 10: Topographic maps of the the 10 microstates underlying speech categorization.

Figure 11: CLARA activation maps for selected brain microstates during categorial speech processing.

STG = superior temporal gyrus (auditory cortex; stimulus coding). IFG = inferior frontal gyrus (home of

important language regions like Broca’s area). SMG = supramarginal gyrus (implicated in lexical/semantic

decisions including making phonological word choices).

ms). Indeed, microstates 1 and 9 identified via Bayesian non-parametric analysis of response RTs, isolate320

these patterned activities to nearly identical brain areas (STG, IFG; see Fig.11) during the first 200 ms321

after the onset of the speech stimulus (see Fig. 5). Previous neuroimaging studies have shown that both322

STG (i.e., auditory cortex) and IFG (i.e., Broca’s area) are heavily involved in category decisions for323

speech (Bidelman & Walker, 2019). Similarly, we have shown that brain regions within the324

auditory-linguistic-motor loop including fronto-parietal, motor, and supramarginal (SMG) areas map to325
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later decision stages of the categorization process within a time window of 300-800 ms (Bidelman,326

Pearson, & Harrison, 2021). Notable among our dynamic state analysis is the engagement of SMG327

during microstate 4 (Fig. 11) which occurred during a similarly late stage of the trial time course328

(300-700 ms, Fig. 5) putatively reflecting listeners’ response selection. SMG is involved in category329

decisions particularly those involving some ambiguity and may serve as a top-down modulator of speech330

processing that biases listeners’ decisions of heard speech (Bidelman et al., 2021).331

We replicate and extend these prior findings by demonstrating a similar neural network describing332

listeners’ speed of categorical decision (i.e., RTs). It is worth noting that our microstate-based analysis333

here used an entirely different decoding approached applied to CP decision speeds (RTs) rather than334

listeners’ binary labels of speech sounds as in previous studies (Mahmud et al., 2021). Yet, the335

consistency of our findings across divergent studies, methods, and behavioral assays is striking. The336

similarity between regions and timing of their engagement across studies leads us to infer that the simple337

behavioral parameters of speech categorization—in terms both a listeners’ labeling accuracy and their338

speed are subserved by a relatively compact decision network (DN). Whether or not this neural circuit is339

entirely isomorphic in terms of processing both the accuracy and timing of the acoustic-phonetic340

mapping inherent to speech perception remains to be fully tested. However, in support of this341

proposition, recent neuroimaging studies have indeed shown that acoustic–phonetic conversion (cf. the342

label listeners place on speech sounds) and postperceptual decision (i.e., indexed by their RT) processes343

both localize to the same brain areas (Gow, Segawa, Ahlfors, & Lin, 2008). This raises the intriguing344

possibly that different aspects of behavior (at least with reard to perception) might be governed by the345

dynamics of a small, relatively compact brain network(s) rather than unique, domain-specific circuits, per346

se. This remains to be tested in future work. More broadly, certain developmental and neurocognitive347

disorders have been shown to impair the sound-to-meaning mapping process. Thus, tracking the temporal348

dynamics of functional brain microstates and how they might change over time with maturation or349

disease progression could provide new insight into receptive speech impairments in these clinical350

populations (Bidelman et al., 2017; Calcus Axelle et al., 2016; Werker & Tees, 1987).351
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TECHNICAL TERMS

Hierarchical Dirichlet Process Hidden Markov Models:355

Let EEG have n number of trials such that the data is represented as xn = [xn1, xn2, xn3 . . . xnT ].356

Observation xnt is a vector representing at time t and xnt ∈ RD. For 64 channel EEG data D = 64. The357

HDP-HMM explains this data by assigning each observation xnt to a single hidden state Znt. The chosen358

state comes from a countably infinite set of clusters K ∈ {1, 2, . . .}, generated via Markovian dynamics359

with initial state distributions π0 and transition distributions {πk}∞k=1.360

P (Zn1= k) = π0k

P (Znt = ` | Zn,t−1= k ) = πkl

Hierarchies of Dirichlet Processes:361

The number of states is unbounded under the HDP-HMM prior and posterior. The hierarchical Dirichlet362

process (HDP) shares states over time via a latent root probability vector β over the infinite set of states.363

The stick-breaking representation of the prior on β first draws independent variables µk = Beta (1, γ)364

for each state k and then set βk = µk

∏k−1
l=1 (1−µl). The µk can be interpreted as conditional probability365

of choosing k th state among states. The HDP-HMM generates transition distributions µk for each state k366

from a Dirichlet with mean equal to β and variance governed by concentration parameter α.367

[πk1, πk2, πk3 . . . πkk] = Dir(αβ1, αβ2, αβ2 . . . αβk)

The πk0 is the starting probability vector with πk0 ∼ Dir(αoβ1). Where αo � α.368
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Variational Inference:369

The inferential goal of HDP-HMM is to arrive at the posterior knowledge of top-level conditional370

probabilities.371

µk, HMM parameters: cluster probability π, cluster shape φ and cluster assignments z after observing372

data x. Parameter µ , π ,φ are considered as global parameter parameters because they generalize to new373

data sequences. The cluster assignments zn is a local parameter specific to data sequence xn.374

Variational methods frame posterior inference as an optimization problem [54]. Here, we seek a

distribution q(µ , π ,φ) over the unobserved variables that is close to the true posterior i.e. q(µ , π ,φ, z) ∼

p (µ , π ,φ, z |x ). We can re-present q(µ , π ,φ, z) as simpler factorized family q(µ , π ,φ, z) ∼= q(µ) q(π)

q(φ) q(z). Inference algorithms update these parameters to minimize the Kullback-Leibler (KL)

divergence. Equation for KL divergence is given by:

KL ( q (µ , π ,φ, z) ||p (µ , π ,φ, z | x )) = L (.) = Eq

[
log

q (µ , π ,φ, z)

p(µ , π ,φ, z |x )

]

To get the best q(*) distribution, we need to optimize this objective function L (.). This equation can

be simplified with four components.

L (.) = Ldata + Lentropy + Lhdp−local + Lhdp−global

Here

Ldata(x, r̂, τ̂) ∼= Eq

[
logp ( x | z, φ ) + log

p(φ)

q(φ)

]
Lentropy(ŝ) ∼= Eq [logq (z)]

Lhdp−local(ŝ, θ̂,ρ̂, ω̂) ∼= Eq

[
logp ( z | π ) + log

p(π)

q(π)

]
Lhdp−global ∼= Eq

[
log

p(u)

q(u)

]

Memoized and Stochastic Variational Inference:375

Common variational inference algorithms maximize L (.) using coordinate ascent optimization. Here the376

optimal value of each parameter is kept fixed while optimizing other parameters. For the sticky377

HDP-HMM variational objective, each sequence is randomly assigned to one of B batches initially. The378
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algorithm repeatedly and random visits batches one at a time. Each full pass through the complete set of379

B batches a is considered as a lap. At each visit to batch b, sticky HDP-HMM perform a local step for all380

sequences n in batch b and then a global step. The batch optimization of L (.) is possible by exploiting381

the additivity of statistics M,S. For each statistic, this algorithm track batch-specific quantity M b, and a382

summary of whole-dataset M =
∑B

b=1M
b.383

After a local step at batch b, yields ŝb, r̂b and update M b( ŝb) and Sb( r̂b), increment each384

whole-dataset statistic by adding the new batch summary and subtracting the summary stored in memory385

from the previous visit and store (or memoize) the new statistics for future iterations. It is possible to386

evaluate L (.) at any point during memoized execution except Lentropy(.) term. To compute it, a (K + 1) ×387

K dimensional matrix Hb is tracked at each batch b. Where:388

Hb
Ol = −

∑
n

r̂n1llogr̂n1l

Hb
kl = −

∑
n

Tn−1∑
t=1

ŝntkllog
ŝntkl
r̂ntk

For the whole dataset, the entropy matrix is defined as:

H =
B∑
b=1

Hb

Lentropy =
K∑
k=1

K∑
l=0

Hkl

389

390
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