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Abstract 

Estimating temporal regularities in incoming sensory inputs supports optimal decisions in noisy 

environments. In particular, inferred temporal structure can ease the detection of likely target 

events. Here we postulated that timely urgency signals can adapt subjects’ decision-making 

to the ongoing task temporal structure, possibly through neuromodulatory tone. To test this 

hypothesis, we used an auditory change detection task in which targets followed a block-

based temporal contingency, unbeknownst to participants. False alarm occurrences were 

driven by the distribution of target timings, indicating that participants adapted their behavior 

to the ongoing temporal structure. Task-evoked pupillary responses were larger for blocks with 

earliest target timings, and correlated with individual subjects’ behavioral adaptation. 

Individual pupil responses matched an urgency signal extracted from a decision model fitted 

to behavior. This work demonstrates that internal temporal expectation can be tracked through 

pupillary dynamics, suggesting a role of neuromodulatory systems in context-dependent 

modulation of decision variable dynamics. 

 

 

Introduction 

Perceptual decisions are often made under uncertainty. Sensory objects are intrinsically noisy, 

embedded in more complex scenes, and unfold over time. Identifying and reacting to the 

relevant information in a timely fashion is crucial for interacting successfully with the 

environment. Temporal expectation is the process of estimating underlying temporal 

regularities of target events and subsequently making use of those estimates for future 

behaviorally-advantageous responses. For an ambush predator knowing when to strike is 

critical (Wearmouth et al. 2014): attacking too early could alert the prey of one's presence, 

while waiting too long could lead to being outrun by the prey. In the case of regular events, 

one can specifically gate detection processes to the expected target timing (Lakatos et al. 

2008, 2013). For  non-regular events resulting from a stochastic process, decision-making can 

be biased towards timings when target events become more probable (Tsunoda and Kakei 

2008; Oswal, Ogden, and Carpenter 2007; Janssen and Shadlen 2005), indicating that 

temporal expectation can be factored in perceptual decision-making. Consistent with this idea, 

temporal dynamics of sensory evidence accumulation during decision-making can change 
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depending on the temporal contingencies of the ongoing task through  adaptation of the onset 

(Teichert, Ferrera, and Grinband 2014) or the duration of the integration process (Ossmy et 

al. 2013; Piet, Hady, and Brody 2017; Mcwalter and Mcdermott 2018). Understanding how 

decision-making taps into temporal expectation to optimize behavior is of high importance to 

complement this picture.  

Temporal expectation can be framed as a dynamic signal that biases decision-making at 

epochs when the relevant signal is likely. Works on speed-accuracy trade-off (SAT), although 

not studying temporal expectation per se, model decision bias under speed pressure with an 

urgency component (Murphy, Boonstra, and Nieuwenhuis 2016; Steinemann, O’Connell, and 

Kelly 2018). In this framework, the urgency component is often directly summed to sensory 

evidence (Cisek, Puskas, and El-Murr 2009), and then can take the form of either a static 

offset (van Veen, Krug, and Carter 2008; Hanks, Kiani, and Shadlen 2014) or a linearly 

growing signal (David Thura and Cisek 2014). Other models incorporate urgency via non-

linearly decaying decision boundary (Tajima, Drugowitsch, and Pouget 2016; Palestro et al. 

2018). Like the conceptual framework of SAT, temporal expectation has been implemented 

through an urgency signal which biases the decision variable towards earlier responses (Shinn 

et al. 2020; Murphy, Boonstra, and Nieuwenhuis 2016; Steinemann, O’Connell, and Kelly 

2018; Devine et al. 2019; D. Thura et al. 2012). Intriguingly, recent experimental evidence 

interprets urgency as a multiplicative factor which amplifies sensory evidence, leading to faster 

decisions (Yvonne Yau et al. 2021; Y. Yau et al. 2020), as well as impacting evidence-

independent motor preparation (Steinemann, O’Connell, and Kelly 2018). Overall, how 

experimental manipulations of subjects' temporal expectation impact internal urgency is still a 

matter of debate. 

Neuromodulatory systems play a large role in tuning sensory gain depending on the ongoing 

context  (Jacob and Nienborg 2018; Thiele and Bellgrove 2018; Aston-Jones and Cohen 

2005). In line with this idea, modeling works suggest that neuromodulatory signals could 

mediate a multiplicative urgency-related gain which would adaptively modulate sensory 

responses (Standage et al. 2011; Niyogi and Wong-Lin 2013). Hence, a compelling proposal 

would be that neuromodulation can increase sensory gain under speed pressure (Murphy, 

Boonstra, and Nieuwenhuis 2016), or through the influence of internal temporal expectation. 

Thus, neuromodulation could enhance detection during a certain time window, at the expense 

of detection precision. To test this intriguing hypothesis, tracking fluctuations of 

neuromodulatory tone under different conditions of temporal expectation is a necessary step 

to determine the role of neuromodulatory systems in adaptive decision-making. Pupil dilation 

is thought to be under control of the noradrenergic, cholinergic and serotonergic systems  

(Reimer et al. 2016; Joshi et al. 2016; Murphy et al. 2014; Cazettes et al. 2021) and to reflect 

a number of cognitive processes (Zhao et al. 2019; Preuschoff, ’t Hart, and Einhäuser 2011; 

Murphy, Vandekerckhove, and Nieuwenhuis 2014; Krishnamurthy et al. 2017; Knapen and 

Donner 2014; Keung, Hagen, and Wilson 2019), making pupil size a good candidate for 

capturing the effects of temporal expectation on neural processes. 

Previous works have manipulated speed-accuracy trade-off to characterize how overall 

urgency affected pupil size (Murphy, Boonstra, and Nieuwenhuis 2016; Steinemann, 

O’Connell, and Kelly 2018), showing that pupil size increased under speed pressure, possibly 

due to global gain modulation. Other studies focused on the effect of temporal expectation 

onto reaction times (Tsunoda and Kakei 2008; Oswal, Ogden, and Carpenter 2007; Shinn et 

al. 2020) and neural correlates of sensory evidence accumulation (Janssen and Shadlen 

2005). However, to date, little is known about the effect of temporal expectation on pupil 

dynamics. Here we wanted to test how temporal expectation about upcoming target events 
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would be reflected in pupil dynamics throughout trials. For this, we adapted an auditory change 

detection behavioral task (Boubenec et al. 2017) in which temporal contingencies of target 

events changed in a block-wise fashion. Trials were divided into 3 blocks defined by their fixed 

pre-change period (early, intermediate and late change time blocks). We found that subjects 

updated their estimation of the change time distribution for each block and that they adapted 

their behavior accordingly. Pupil size varied in between blocks and correlated with behavioral 

adaptation of individual subjects. A model of pre-change response with growing urgency 

captured key behavioral post-change adaptive strategy and reflected block-based pupil 

dynamics.  

Results 

 

Auditory change detection task with block-based temporal contingency 

We sought to determine if human participants could adapt their perceptual decision strategy 

to the hidden ongoing temporal structure. For this we modified a previously described change 

detection task (Boubenec et al. 2017) and manipulated the temporal contingencies of the 

target events in blocks of trials. Eighteen human participants performed this auditory change 

detection task. Participants were instructed to report a change in a complex auditory stimulus 

with a button press without delay. On every trial, a wide-spectrum tone cloud governed by an 

initial marginal distribution was generated (Figure 1A: example trial). Changes consisted of an 

increase (of variable size, corresponding to ‘change size’) in tone occurrences in part of the 

spectrum (‘frequency bin’). Change timings were drawn from an exponential distribution 

(Figure 1B and Methods: Stimulus) to ensure that participants could not predict target timings 

on a trial basis. Overall change detection was consistent with previous results reported in 

(Boubenec et al. 2017) with performance increasing as a function time available to estimate 

the initial tone cloud statistics until saturation and a dependence on the change size (Figure 

S1A for detection rate as a function of difficulty and change time and Figure S1B for reaction 

time as a function of difficulty and change time). 

The temporal manipulation corresponded to off-setting the change time exponential 

distribution by a fixed pre-change period for a series of 120 trials (early block: 0s, intermediate 

block: 1.5s, late block: 3s). Specifically, a change could arise anytime in between 0 and 8s for 

the early block, from 1.5s to 9.5s in the intermediate block, and from 3s to 11s for the late 

block (Figure 1B and Methods: Stimulus, Block temporal structure). Pupil size was recorded 

for each participant with the Iscan ETL-200 over the course of a trial (Figure 1A: pupil size 

example raw trace).  

 

Temporal expectation modulates early responses 

We tested whether the hidden temporal structure of the task could generate differential 

temporal expectation across blocks. Specifically, we hypothesized that internal expectation 

about the occurrence of target events at certain times dynamically increases sensory gain, 

which would lead subjects to respond to stochastic fluctuations in the ongoing stimulus, hence 

a concomitant increase in false alarm rate. In reaction-time designs (Harun et al. 2020; 

Johnson et al. 2017; Boubenec et al. 2017), false alarms are defined by a button press prior 

to the ‘go’ signal. In physiology studies they are referred to as ‘early’ behavioral responses 

and have been used to link subjects’ strategy and subthreshold stimuli changes (Orsolic et al. 

2019). Here, false alarms were of particular interest because, unlike hits and misses, they 

were not bound by the post-change response window but instead could span the entire range 

of the pre-change period (up to 11s). Across subjects, false alarm timing distribution shifted 
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as a function of block identity (Figure 1C and D, false alarm timing normalized cumulative 

distribution [CDF] per subject and normalized CDF Area Under the Curve [AUC], respectively). 

As predicted, false alarm timings followed the underlying temporal structure of the block; they 

occurred earlier in the early block, than in the intermediate and the late block (Figure 1C). The 

mean area under the curve of the normalized cumulative distribution of false alarm timing was 

significantly larger for the early, than the intermediate and late block (Figure 1D, AUC CDF, 

Friedman test, p = 9.45×10-57).  

 
Figure 1: Example trial, experimental block design and false alarm temporal distribution 
A. Top panel: Example trial tone cloud as a function of time within the trial. The tone cloud is composed 
of chords of simultaneous pure tones (grey points, from 400-1840 kHz, duration: 30ms) selected based 
on a pseudo-random marginal distribution. The change (blue shade) consisted of an increase in tone 
occurrence probability in one of the frequency bins. In this example the change was presented in the 
low part of the spectrum. 
Bottom panel: Pupil size (A.U.) dynamics corresponding to the example trial. Typically, sound onset 
lead to a small constriction followed by a slow dilation over the course that culminated after the button 
press.  
B. Temporal block design: 3 blocks of 120 trials that differed in the start of their change time distribution. 
Early (light blue), intermediate (medium blue) and late (dark blue) change time distribution, respectively 
0 to 8s, 1.5 to 9s, and 3 to 11 s. 
C. Cumulative distribution (normalized) of false alarm per block as function of time within trial (i.e. from 
sound onset), individual participant per curve color coded according to temporal block identity. False 
alarm CDF steepness depends on block design. For the early block, false alarms tend to happen earlier 
than for the intermediate and late block, respectively.   
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D. Area under the curve for false alarm CDF curve as a function of block. Larger AUC indicates that 
false alarms distribution is shifted to the left, i.e. false alarms happened earlier (large dot: mean, smaller 
dot: individual participant). Early AUC is significantly higher than late AUC (Friedman, p-value = 

9.45×10-5), suggesting that block temporal identity impacted subjects’ behavior. 

 

Response rates increase as a function of temporal expectation 

Our task required subjects to do online detection from the continuous acoustic stream with 

varying distributions of target timings across blocks. Temporal expectation could then vary 

differentially in time and across blocks. We therefore tracked temporal dynamics of 

participants’ response rate. To capture those within the Standard Detection Theory framework 

we used an instantaneous measure of rates (described in Boubenec et al. 2017 and Methods: 

Instantaneous rates, criterion and d’ computation). Within each trial, subsegments that did not 

contain a button press or a change were labeled as correct rejections, leading to an 

instantaneous false alarm rate. Hit rate was still described as the ratio of hits for trials in which 

a change was presented to subjects and binned as a function of change time. Both rates were 

computed with a 1s sliding window and as a function of time within trial (Figure S1C and D, 

for hit and false alarm rates, respectively). To compare how performance evolved between 

blocks we restricted our analysis to trials with change timings common to all blocks (from 3 to 

8s). Neither block identity, nor time within trial impacted mean instantaneous hit rate  over the 

3-8s window (Figure S1C, Friedman test, pblock = 0.3442, ptime = 0.6005). However 

instantaneous hit rate did vary significantly between 3 and 5.5s as a function of block (Figure 

S1C, Friedman test, pblock = 0.0224, ptime = 0.2548). Instantaneous false alarm rate increased 

with time within trial (Figure S1D Friedman test, ptime = 8.37×10-7) but was also clearly 

modulated by the block identity. Instantaneous false alarm rate was significantly higher for the 

early, than the intermediate and late block (Figure S1D, Friedman test, pblock = 0.0023) over 

the 3-8s change time window.  

 

Temporal expectation decreases decision criterion 

Increased response rates can have mixed effects on signal detection. Here we postulated that 

temporal expectation could decrease decision thresholds. Decision criterion captured the 

subjects’ adaptive strategy. Criterion was lower for the early block then the intermediate and 

late block (Figure 2A, ANOVA, F(2,26) = 10.98, pblock=3.4×10-4) and also lowered as a function 

of time within the trial (Figure 2A, ANOVA, F(8,104) = 4.17, ptime=2.3×10-4). d’ decreased as a 

function of time as instantaneous false alarm rate increased but was not compensated by 

increase in instantaneous hit rate (Figure 2B, ANOVA, F(8,104) = 3.57, ptime = 1.1×10-3 and 

Figure S1C & D for instantaneous hit and fa rate as function of time, respectively). However, 

there was no significant difference for d’ in between blocks (Figure 2B, ANOVA, F(2,26) = 

2.1503, pblock = 0.14).  

 

Temporal expectation impacts detection rate and reaction times 

Consistent with a lower criterion for the early block, the detection rate was highest for that 

block (Figure 2C, Friedman test average across difficulty, pblock = 0.0224), and decreased for 

the intermediate and late block. This effect was maximal for smaller change size, with a mean 

decrease between early and late close to 15%, compared to a decrease of about 5% for 

medium and 3% for large changes. Therefore, for equivalent change times, participants were 

better at detecting smaller changes, suggesting that the amount of evidence necessary to elicit 

change detection was lower for the early block.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.469021doi: bioRxiv preprint 

https://paperpile.com/c/3Vlh3v/gdu9
https://doi.org/10.1101/2021.11.17.469021


 

Reaction time mirrored detection rate across block and difficulty. Median reaction time, as 

expected, decreased with change size (Figure 2D, ANOVA, F(2,28) = 59.79, psize=7.8e-11). 

As a function of block identity, median reaction time decreased significantly for medium and 

large changes (Figure 2D, ANOVA, F(2,28) = 9.33, pblock = 7.8×10-4).  

 
Figure 2: Temporal expectation impacts decision criterion but not sensitivity 
A. Mean instantaneous criterion per block varied with time and as a function of block (ANOVA, F(8,104) 
= 4.16, ptime = 0.00023 and ANOVA, F(2,26) = 10.98, pblock = 0.00034, respectively). 
B. Mean instantaneous d’ per block decreased with time but did not vary significantly with blocks 
(ANOVA, F(8,104) = 3.57, ptime = 0.0010 and ANOVA, F(2,26) = 2.15, pblock = 0.13, respectively). 
C. Detection rate (hit rate) per difficulty level (orange color scale), block (x-position) for comparable 
trials (change time 3 to 8s). Small dots correspond to individual subjects and large dots correspond to 
the mean performance per condition across subjects. Performance significantly increased with change 
size for all blocks and decreased with longer pre-change periods (ANOVA, F(2,28) = 117.07, pdiff = 
3.07×10-16 and ANOVA, F(2,28) = 3.93, pblock = 0.019, respectively). 
D. Median reaction time per subject, color convention and dot size are identical to E. Median reaction 
mirrored performance with larger change sizes, and faster responses for the early block (ANOVA, 
F(2,28) = 59.79, pdiff = 7.83×10-11 and ANOVA, F(2,28) = 9.33, pblock = 7.85×10-4, respectively). 
 

Task-evoked pupil response scales with temporal expectation 

Here we tested if pupil size reflected participants' behavioral adaptation to the hidden temporal 

structure of the task. We restricted our analysis to evoked-pupil responses, e.g. pupil size 

response after sound onset minus its baseline and normalized per subject (Methods: Pupil 

diameter traces preprocessing). Task-evoked pupil responses increased as a function of time 

after sound onset across conditions for most subjects (Figure 3A & C). As predicted, average 
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pupil size for all trials was higher for the early block, followed by the intermediate and the late 

block (Figure 3A) prior to change detection. This effect is quantified in Figure 3B as the area 

under the curve for 1.3-2.3s for trials that either contained later changes or button presses 

(Figure 3B, ANOVA, F(2,28) = 5.54 pblock = 9.4×10-3). An inverted U-shape relationship has 

been reported between pupil size, arousal and behavior (McGinley, David, and McCormick 

2015; Aston-Jones and Cohen 2005). We expected high arousal states characterized by larger 

pupil size to have higher false alarm rates. Figure 3C depicts the relationship between trial 

outcome and pre-change pupil size. Although pupil size for false alarms seemed higher than 

hits and misses, this effect was not significant (Figure 3C, ANOVA, F(2,28)=0.91, poutcome = 

0.41). To ascertain that the reported temporal effect on pupil size is not caused by a larger 

number of false alarms, we quantified pupil size within block per outcome type in Figure 3D. 

Even within each outcome, evoked pupil responses increased from early to late (Figure 3D, 

ANOVA, F(2,28) = 9.44, p = 0.00073).  

 

Inter-individual differences sensitivity to the task temporal structure are reflected in 

pupillary dynamics 

Previous works reported that pupil size and subject’s overall bias are correlated (de Gee, 

Knapen, and Donner 2014). The design of our paradigm allowed us to test specifically if pupil 

size would correlate with subjects’ changes in bias (Figure 2A) that resulted from their 

adaptation to temporal contingency associated with each block. We regressed the difference 

in pupil between early and late blocks against the ratio of false alarms for the same blocks 

(Figure 3D). We chose the ratio for the false alarm rate to reflect how an individual subject 

adapted to the temporal manipulation, regardless of their initial bias. Participants’ pupil size 

and false alarm rate changes across blocks were positively correlated (Figure 3F, Linear Fit, 

F-statistics = 15.4, p = 0.0018), suggesting that the propension of individuals to make use of 

temporal regularities scaled the changes in task-evoked pupillary response. 
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Figure 3: Task-evoked pupil response scales with temporal expectation 
A. Mean pre-change task-evoked pupil size per block prior to change (or button press for false alarm) 
average of all trials over time. Pupil-evoked response was larger for the early block, than the 
intermediate and late block, as quantified in B.  
B. Area under the curve for evoked pupil response between 1.3 to 2.3s in trials with change or button 
press larger than 2.3s per block. Large dot corresponds to mean across subjects (individual: small dot). 
Task evoked pupil size was largest in the early block and scaled with hidden temporal structure 

(ANOVA, F(2,28) = 5.54 pblock = 9.4×10-3) 
C. Mean pre-change task-evoked pupil size per block prior to change per trial outcome. The inverted 

U-shaped relationship was not significant here (ANOVA, F(2,28)=0.91, poutcome = 0.41). 
D. Area under the curve for evoked pupil response between 1.3 to 2.3s per block and outcome for each 

subject (ANOVA, F(2,28) = 9.44, pblock =7.34×10-4) 
E.  False alarm rate AUC for block early and late per subject. For most subjects (12 out 15 subjects) 
false alarm rate decreased with longer change times (early higher than late) and so does pupil evoked 
response measured with AUC.  
F. Linear fit between the ratio of false alarm rate between early and late block and difference in AUC 
for the blocks. There was a significant positive relationship between false alarm rate variation and pupil 

size per subject (linear fit, F-statistic = 25, p-value = 2.43×10-4), larger differences in false alarm rate 
between blocks correlated with larger differences in pupil size.  
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Ballistic model of urgency captures time-dependent false alarm rates 

Psychophysics and modeling works have shown that the effects of speed pressure onto 

decision-making processes can be explained by an urgency signal. In particular, an additive 

urgency component can bias the decision variable and ultimately lead to faster reaction times, 

to the detriment of behavioral accuracy. Here we postulated that temporal expectation could 

be modeled through an internal urgency signal. Therefore, we predicted that a model of 

internal urgency could explain the dynamics of false alarms observed across blocks. We first 

aimed at extracting the characteristics of such an urgency signal and then sought to test that 

pupil dilations correlated with changes in internal urgency. 

For this, we modeled a linearly growing urgency component with a ballistic model (Brown and 

Heathcote 2008). We focused our modeling effort on reproducing the instantaneous false 

alarm rates measured in the experimental data. In this model, the urgency component was 

implemented by a Gaussian distribution of mean slope ν and standard deviation s (Figure 4A; 

Methods). Each trial was associated with a drift rate drawn from such a distribution 

parameterized by ν and s. Linear drift continued until the response threshold was reached. In 

this 2-parameter model, within-trial fluctuations were ignored. Randomness in the urgency 

came from the standard deviation s of the drift rate distribution, which resulted in a spread of 

false alarms over time. We allowed for a single parameter to vary between successive blocks 

(Methods: Linear Ballistic Urgency model), which implied that we used a total of 4 parameters 

for fitting the three blocks of different temporal expectation. The model captured the average 

time-dependent instantaneous false alarm rates across participants (Figure 4B; 

Supplementary Table 1 for comparison with other models), with a change in slope ν between 

early and late blocks, and a change in the spread of slopes s between early and intermediate 

blocks. Linearly growing urgency with a minimal set of parameters can therefore reproduce 

the temporal profile of false alarm rates under each condition of temporal expectation.   

 

Internal urgency correlates with task-evoked pupil responses 

Our goal was to correlate internal urgency estimated through the ballistic model with subject-

wise modulations of pupil responses by temporal expectation. Hence, we fitted the selected 

model to individual participants to obtain an individual proxy for internal urgency. We then 

tested if subject-level changes in task-evoked pupil responses correlated with the urgency 

signal recovered from the model. We indeed found that subjects with larger modulation of 

pupillary responses between early and intermediate blocks showed larger differences in the 

model between these same blocks (Figure 4C; p=0.04). This finding suggests that pupillary 

responses correlated with internal urgency. 

The urgency signal pushes the decision variable faster towards response threshold, and 

should lead to faster reaction times. We reasoned that subjects with large differences in 

urgency slopes between blocks would show a greater reduction of reaction times in early 

blocks. We did find such a negative correlation between the gain in reaction times from the 

early to the late block and the difference in the mean urgency slope ν fitted in the early and 

late blocks (Figure 4D; p=0.04). This is remarkable as the model was fitted only on the false 

alarm rates, and not on the hit trials used for reaction times. This result indicates that subjects 

with maximal difference in urgency slopes were showing maximal gain in reaction times. 
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Figure 4: Ballistic model of growing urgency reproduced the effect of temporal expectation 
A. Schematic of the ballistic model with linearly growing urgency. Here we depict the Gaussian 
distribution of urgency slopes for the intermediate block. Ballistic trajectories for the mean (black), 1 
(dark grey) and 2 (grey) standard deviation slopes are plotted. Response threshold is shown with a 
dashed line. 
B. Fit of the ballistic urgency model to the actual instantaneous false alarm rates for each block. The 
parameters used here were the average over 200 cross-validated fits. 
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C. Change in urgency variance correlated with modulations of pupil size. Larger pupil evoked response 
in the early block correlated with larger variance of the urgency signal in early blocks (n = 13; p<0.04). 
Model parameters were fitted on individual subjects. 
D. Change in urgency slope correlated with faster reaction times. Gain in reaction times between early 
and late blocks negatively correlated with increased slope in early blocks (n = 13; p=0.04). Model 
parameters were fitted on individual subjects. 

 

Discussion 

 

Detection of behaviorally relevant events in ethological context is a noisy process as sensory 

signals evolve over time and are embedded in complex scenes. However, event detection can 

be facilitated by extracting co-varying features in the environment, such as reward 

contingencies and temporal regularities (Shinn et al. 2020; Ossmy et al. 2013). We aimed at 

determining if temporal expectation of target events built over multiple trials could inform the 

detection process and if subsequent changes in subjects’ strategy would be reflected in 

evoked pupillary dynamics as physiological indicator of neuromodulatory activity. We report 

that subjects adapted their behavioral strategy to the hidden temporal structure presented in 

blocks and defined by their change timing distribution. In line with previous reports using visual 

perceptual decision tasks (Orsolic et al. 2019; Shinn et al. 2020), we found that temporal 

expectation drove the rate of false alarms throughout trials. Further, we used task-evoked 

pupil diameter dynamics to determine if neuromodulatory activity could support temporal 

expectation impact on target detection. Since pupil size increase as a function of subject’s 

bias (de Gee, Knapen, and Donner 2014) and urgency-scaled pupil signal in SAT paradigms 

(Murphy, Boonstra, and Nieuwenhuis 2016; Steinemann, O’Connell, and Kelly 2018) have 

previously been reported, we expected pupil size to be highest in the early block.This 

hypothesis was supported by our data with a higher pupil trace for the early, than the 

intermediate and late block. More strikingly, subjects’ behavioral adaptation to the hidden 

temporal structure correlated with changes in subject’s pupillary dynamics across blocks. 

 

Impact of temporal expectation on decision strategy 

An internal urgency signal has been theorized to explain decision-making under speed 

pressure. Here, we show that a ballistic model with an urgency component fitted to pre-change 

behavioral responses correlated with subjects’ pupil changes and post-change reaction times. 

Our study shows that such an internal urgency signal can be generated without instructions 

from task-related contingencies over multiple trials and can improve detection of events. 

The physiological mechanisms that could underlie this time-varying signal are still under 

investigation. Behavioral effects of speed pressure could originate from 1) evidence-

independent motor-preparation (Steinemann, O’Connell, and Kelly 2018), 2) evidence-

independent lowering of criterion for action selection (Tajima 2016, Palestro 2018), and 3) 

neural gain enhancing evidence representation (Yau 2020, Yau 2021, Hawkins Brown 2015). 

Interestingly, a recent EEG study suggests a hierarchical intertwined implication of an 

evidence-independent motor component with evidence integration (Steinemann, O’Connell, 

and Kelly 2018). The dual effect on both the slope ν and standard deviation s that we reported 

in our ballistic urgency model could similarly originate from several of those mechanisms. Also, 

we note that previous models of SAT and temporal expectation did not include trial-to-trial 

variability (s parameter in our ballistic model) in the urgency signal, which was a key ingredient 

of our modeling approach.  

 

Neuromodulatory control of urgency reflected by pupillary dynamics 
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Modeled urgency is proposed to be under neuromodulatory control (Standage et al. 2011; 

Niyogi and Wong-Lin 2013); (Murphy, Boonstra, and Nieuwenhuis 2016). Pupil dilation reflects 

the activity of multiple neuromodulatory networks (Reimer et al. 2016; Joshi et al. 2016; 

Murphy et al. 2014; Cazettes et al. 2021), and those networks in turn support a wide variety 

of cognitive functions, from attention to learning (Guo, Robert, and Polley 2019; Aston-Jones, 

Rajkowski, and Cohen 1999; Aston-Jones and Cohen 2005; Janitzky et al. 2015). As such, 

pupil dynamics has been used as a physiological proxy to investigate the role of 

neuromodulation in cognitive control. Here, adaptive urgency under temporal contextual 

pressure correlated with pupil size confirming the implication of neuromodulatory networks in 

driving time-varying signals related to decision-making. However, how each of those systems 

impacts decision-making specifically and how their activity interact is still unknown. The source 

of this physiological effect remains poorly described, and further physiological studies into the 

neuromodulatory drive of decision-making are needed. 

Other subcortical targets activity correlated with time-varying urgency signals such as the 

globus pallidus in monkeys (Thura and Cisek 2017) and the caudate in humans (Y. Yau et al. 

2020). In addition, microstimulation of Superior Colliculus (SC) and Inferior Colliculus (IC) also 

trigger pupil dilation (Joshi et al. 2016). Recent evidence supports the ‘common drive 

hypothesis’ where the SC coordinates both saccades and pupil dilation  (Wang and Munoz 

2021). The SC has also been implicated in the decision criterion generation (Crapse, Lau, and 

Basso 2018), leading to an intriguing hypothesis: the SC may play a role in mediating a 

‘temporal orientation’ response, akin to its traditional role in spatial selection of targets. 

 

 

Online tracking of subthreshold events 

Natural scenes complexity contrasts with the ease with which humans and animals detect and 

react to relevant events. The brain’s ability to integrate and monitor sensory inputs over long 

timescales is key for overcoming this challenge during the decision-making process. For 

example, natural sounds such as textures can be represented through summary statistics over 

seconds (McDermott and Simoncelli 2011; McDermott, Schemitsch, and Simoncelli 2013), 

and identifying relevant behavioral signals in such evolving sensory environments requires 

building faithful representation of signals over seconds, while still monitoring rapid changes 

and potential relevant deviations (Mcwalter and Mcdermott 2018; McDermott, Schemitsch, 

and Simoncelli 2013; Johnson et al. 2017; Boubenec et al. 2017; Devine et al. 2019; Skerritt-

Davis and Elhilali 2021). So far, urgency-generated temporal context has not been studied in 

such situations, and previous works instead used paradigms in which the foreperiod was not 

informative for the task at hand (Devine et al. 2019; Shinn et al. 2020; Thura et al. 2012). For 

this reason, we chose a time-varying complex and stochastic stimulus where each time step 

can be informative of either the pre-change or post-change sound statistics, aiming at 

mimicking a more ethologically relevant decision-making process in which participants 

integrated sensory information in both the pre-change and the post-change periods. 

Behavioral adaptation to the hidden temporal context led to earlier and increased numbers of 

false alarms. Interestingly, and because of the stochastic nature of our stimulus, false alarms 

are likely linked to local changes in the stimulus that resembled changes by chance (Harun et 

al. 2020). In fact, participants often reported after the task that they perceived changes before 

false alarms. The shift in subjects’ criterion in the early block suggests that participants were 

more susceptible to report small fluctuations of the pre-change stimulus that resembled the 

post-change statistics to detect. Unfortunately, our stimulus design did not allow us to 

specifically identify false alarms that are based on subthreshold fluctuations, and future 
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experiments will be required. Orsolic et al. in 2021 investigated the representation of such 

subthreshold events in a similar visual reaction time task in mice and used wide-field calcium 

imaging to describe target selection. They found that the smaller subthreshold events were 

enhanced in motor regions under increased speed pressure, leading the animals being more 

susceptible to reporting them. Altogether, this implies that temporal expectation built over 

multiple trials informs decision-making through urgency related signals that impacts the 

processing of sensory information.  

 

Methods 

Experimental set-up  

Participants 18 human subjects (6 females, 12 males, age range: 22-34 years old) reporting 

normal hearing and with corrected-to-normal vision participated in this psychophysics 

experiment. The experimental procedure was approved by the Ethics Committees for Health 

Sciences at Université Paris Descartes. All participants provided informed consent and were 

compensated at a rate of 15 euros per hour.  

Acoustic stimulation Participants were seated in an acoustically-sealed booth (Industrial 

Acoustics Company GmbH). Both sound presentation and behavioral responses were 

controlled using a custom-written software in MATLAB (BAPHY, from the Neural Systems 

Laboratory, University of Maryland, College Park) usually used for extracellular 

electrophysiology recordings in animals during behavior but adapted for human 

psychophysics. Acoustic stimuli were sampled at 100 kHz, converted to an analog signal using 

an IO board (National instruments, PCIe-6353) and delivered diotically through calibrated 

high-fidelity headphones (Seinnheiser i380). Acoustic stimuli were presented at 70dB.  

Behavioral response Participants were given a custom-built response box, composed of a 

single button. Button presses were sent to the IO board (National instruments, PCIe-6353) 

and are therefore recorded with a sub-millisecond precision.  

Pupil size recording Pupil diameter was recorded with the ISCAN reflection tracking system 

ETL-200 (sampling rate: 1000 Hz) while subjects performed the change detection task. 

Subjects placed their head on a chin-rest 90cm away from a gray screen (31.6 cd/m²) with a 

small central fixation cross. Luminance was kept constant inside the booth throughout the 

experiment, and black curtains occluded the window of the acoustic chamber. Before the start 

of each trial, an 800 ms period of silence was introduced, to estimate pupil diameter baseline 

before sound onset. 

Stimulus 

Tone cloud On every trial, the subjects were presented with a tone cloud ranging from 400 to 

1840 Hz, and governed by a pseudo-random marginal distribution. All tone clouds consisted 

of a train of 30ms chords composed of synchronously presented pure tones. Each chord 

contained a subset of 26 logarithmically spaced pure tones selected according to the 

probability of tone occurrence defined by the randomly drawn marginal distribution (Figure 1A: 

example trial).  

Change In this auditory change-detection task, participants were instructed to detect a change 

consisting of an increase in the tone occurrence probability of part of the spectrum. The 

stimulus is divided in 4 equally log-spaced frequency bands defined by their initial marginal 

distribution. At the change time, the initial marginal distribution is modified with an increase of 

probability of variable size (corresponding to the change size) for one of the frequency bands. 
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The increase in local power is compensated by an equivalent decrease in the other bands to 

maintain global loudness. Change sizes were limited to 3: 60%, 95% and 130%, 

corresponding to a small, medium and large change. Change time was drawn from an 

exponential distribution, bounded by blocks’ temporal structure from 0 to 11s.  

Participants had 2 seconds to detect and react to the change. A button press before the 

change occurrence was labelled a false alarm, after the change and within the 2s response 

window, a hit and if there was no button press 2s after the change, a miss. 

Block temporal structure Unbeknownst to the subjects, change time blocks were introduced. 

In each of these blocks, a change could arise only after a fixed pre-change period (early: 0s, 

intermediate: 1.5s and late: 3s from trial onset, Figure 1B). Blocks consisted of 120 successive 

trials and no indication of a block beginning or end was given to the participants. 

 

Procedure 

Instructions Each participant received the same set of instructions, mainly that they were going 

to perform a change detection task, and that each trial contained a change.  

Training Instructions were purposefully vague about the nature and or timing of the change. 

We ensured that participants could perform the task reliably with a training session of 

approximately 40 trials of the largest change size (130%). Only participants that reached a 

40% hit rate were allowed to start the main experiment.  

Trial structure Participants were asked to maintain fixation of a cross placed in the center of 

the screen during trials. Feedback was given at the end of every trial, in the form of a check 

(‘v’) for correct trials (hits) and a cross (‘x’) for incorrect trials (false alarms and misses). The 

fixation cross and the feedback objects were the same size and color (white over a grey 

background) ensuring a constant luminance over the entire experiment. Feedback was 

displayed after the button press, and subjects were instructed to preferentially blink during 

feedback presentation. After being displayed for 1s feedback was replaced by the fixation 

cross for another second before the start of the next trial. Each subject performed a total of 

360 trials, divided into 3 blocks of 120 trials each. Block presentation order was randomized 

across subjects. The experiment lasted about 1 hour and 30 minutes with two 5 min breaks 

that did not coincide with the beginning or end of a block. 

 

Pupil diameter traces preprocessing 

3 subjects were excluded from further analysis as their pupil diameter was not recorded 

properly (software thresholds were not respected, leading to only one value for pupil diameter), 

leaving a total of 15 subjects for the analysis. 

Blink removal Blinks defined as points outside 1.5 standard deviation of the mean pupil trace 

(over the entire session) were replaced by NaNs over an asymmetric window spanning 350ms 

(150ms prior, 200ms after identified blink event). 

Filtering The pupil time series were first low-pass filtered (third order Butterworth, cutoff, 10 

Hz, (de Gee, Knapen, and Donner 2014).  

Task-evoked pupil response To investigate the effect of temporal expectation on pupil size 

dynamics within trials, we focused on task-evoked pupil response by subtracting the mean 

pupil diameter estimated during the baseline period from the corresponding trial. In addition, 

to allow for across subjects comparison (Iscan output is in arbitrary units), pupil traces were 

divided by each subject's standard deviation leading to comparable pupil size distribution. 

Behavioral analysis 
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We quantified participants’ ability to detect changes in different conditions (block-based 

temporal and change size) using time-dependent hit, false alarm rates, and d’ and criterion 

estimation developed in (Boubenec et al. 2017). This allowed us to compare subjects’ 

responses at matching points in time bins without having to restrict our analysis to trials with 

matching change time. Block-based comparison of performance or reaction time is done for 

change timings that are common across all blocks [3-8s], and for which the estimation of 

baseline statistics has saturated. 

 

Instantaneous rates, criterion and d’ computation 

Instantaneous hit rate HR(t) was computed as the fraction of correct change detections, in 

relation to the number of trials with changes occurring over a 1s window centered around time 

t. For this specific paradigm, HR(t) was computed for 14 overlapping time bins from 0s to 7.5s 

in 0.5s increments. For each segment, the hit rate is: HR(t) = H(t) / (H(t)+M(t)), H(t) 

corresponds to the number of hits and M(t) to the number of misses for change timings 

occurring within this time bin.  

Instantaneous false alarm rate Similarly to the d’ time-dependent measure in (Boubenec et al. 

2017), trial segments before the change were used as correct rejections. FAR(t) was 

computed for 14 overlapping time bins from 0s to 7.5s in 0.5s increments. For each segment, 

the false alarm rate is: FAR(t) = FA(t) / (FA(t)+CR(t)), FA(t) corresponds to the number of false 

alarms occurring within this time bin (timing of the button press for a false alarm) and CR(t) is 

the number of trials where the change appears after the end of the time bin. 

Instantaneous d’ We used the classical approximation d’(t) = Z(HR(t)) - Z(FAR(t)) to compute 

participants’ sensitivity as a function of time per condition.  Z(p) is the inverse of the Gaussian 

cumulative distribution function (CDF). HR(t) is the hit rate as a function of time since stimulus 

onset, described above. FAR(t) is the false alarm rate as a function of time since stimulus 

onset, described above. 

Instantaneous criterion We used the classical approximation b(t) = (Z(HR(t))+Z(FAR(t)) / 2 to 

compute participants’ bias as a function of time per condition.  

 

Reaction times 

Reaction times were obtained by subtracting the change time from the response time hit trials. 

For each condition, the distribution of reaction times was assembled and the median reaction 

time computed per subject. Figures usually present the mean reaction time across subjects 

with individual medians displayed with a smaller dot (Figure 2F).  

 

Pupil dynamics analysis 

Pupil dynamics analysis was restricted to phasic response locked to stimulus onset and 

corrected by the silent pre-onset stimulus baseline (Steinemann, O’Connell, and Kelly 2018; 

de Gee et al. 2020; Zhao et al. 2019). To investigate the effect of temporal expectation on 

task-evoked pupil response we quantified the pupil dynamics as the area under the curve for 

comparable pre-change time points between 1.3 and 2.3s. We picked this specific window to 

1) maximize the number of trials per conditions, since trials containing change before 2s are 

removed for the analysis, and 2) let the pupil diameter recover from the initial onset-related 

constriction (Figure 3A and B).  

Statistical analysis 

We tested each measure for normality using the Shapiro-Wilk test. If data was reported as 

normal (such as pupil dynamics AUC) we conducted within subject repeated measures 
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ANOVAs, to determine significance of the temporal manipulation of our measures. For data 

that was not normally distributed (such as performance) we conducted significance testing 

using Friedman tests. Only reaction times distribution was modified to allow for parametric 

testing by using the log. All data analysis and statistical analysis was performed using custom-

built script in MATLAB. 

 

Linear Ballistic Urgency model 

We postulated that changes in responsiveness across blocks came from changes in subject 

internal urgency. For extracting a measure of internal urgency, we adapted a classical model 

of decision-making called Linear Ballistic Accumulator (LBA, Brown and Heathcote 2008). This 

model is classically used for fitting response time distributions under different conditions of 

speed-accuracy trade-off (Heitz and Schall 2012; Ho et al. 2012). LBA models assume a linear 

accumulation of evidence towards a decision, with an absence of randomness within trial. 

Variance in reaction times arises from the variance in the drift rate distribution. In the model 

used here, drift rates are drawn from a Gausian distribution of mean drift rate ν, and standard 

deviation s. Here we substituted the accumulator variable of the LBA with an urgency variable, 

with identical parameterization ν the mean urgency drift rate and s the standard deviation of 

the drift rate distribution (Figure 4A; (Adam, Bays, and Husain 2012). We chose to fit the 

instantaneous false alarm rates which is a metric independent of trial number, but instead 

reflects the propensity to respond at every point in time. Despite their conciseness, LBA 

models bring similar conclusions than accumulator models which include within-trial 

randomness (Usher and McClelland 2001; Donkin et al. 2011). This makes LBA-type models 

an appealing modeling choice for working with a reduced set of parameters. 

 

Close inspection of false alarm rates suggests that there are quantitative differences between 

the early block, and the other two blocks (Figure 2B and 4B). False alarms in the early block 

showed an early take-off (before 2s), which was absent in the intermediate and late blocks for 

which false alarms increased no earlier than 2s. On the contrary, the difference between 

intermediate and late blocks was in their average slope. We expected this quantitative 

difference to impact the ballistic model. We therefore plotted false alarm timing with reciprobit 

plots (Noorani and Carpenter 2016), so that distinct effects on the ν or s parameters would be 

isolated (Figure S2). Reciprobit plots for the intermediate and late false alarm timings showed 

an horizontal shift of the response times between intermediate and late blocks, which indicates 

a change in the mean drift rate ν. 

Based on these observations, we hypothesized that one single parameter (ν or s) varied 

between blocks of adjacent expectation (early to intermediate, intermediate to late). This led 

to 4 different alternative models. We fitted these 4 different models (supplementary table S1), 

and found that model (n°4) described the best our data. Model n°4 postulated a change of the 

standard deviation of the drift rate distribution for the early block, and a change of mean 

urgency drift rate between the intermediate and late blocks, which matches the observations 

of the reciprobit plots. 
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Block Early Intermediate Late 

MSE (10-3) Parameter

s ν s ν s ν s 

Model 1 a b a c a d 0.6943 +-0.39 

Model 2 a b c b d b 0.808 +-0.42 

Model 3 a b c b c d 0.77 +-0.42 

Model 4 a b a c d c 0.6469 +-0.40 

Supplementary Table 1: Summary table of the goodness-of-fit for the different tested models. 

Each model has 4 free parameters (a-d), with each condition described by two parameters ν 

and s, with one parameter changing between adjacent conditions. 

 

Procedure for fitting and evaluating models 

Procedure for testing the goodness-of-fit of the four alternative models was as follows: we 

performed 200 cross-validations in which we fitted the four free parameters on the average 

instantaneous false alarm rates obtained over 8 randomly drawn subjects. We then computed 

the MSE between the model predictions and the average over the 7 left-out subjects. This 

splitting procedure assumed that both groups would share the same inter-individual variability. 

We used the fminsearch algorithm from MATLAB which is based on the Nelder-Mead simplex 

methods. To prevent incorrect fit due to local minima, every cross-validation was averaged 

over 20 fits done with different randomly chosen starting seeds drawn between 0 and 1. 

For a drawn urgency drift ν0, false alarm timing will be 1/ν0. Following this logic, distribution of 

false alarm timing for a set of parameters ν and s can be computed as: 

𝐹𝐴(𝑡)  =  
𝑝(𝜈 = 1/𝑡)

1 − ∫
𝑡

0
𝑝(𝜈 = 1/𝑇)𝑑𝑇

 

For single subject fit, we initialized the fitting procedure with the average parameters recovered 

across the 200 cross-validations performed on the average data. 
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Supplementary Figure S1 

A. Detection rate (as hit rate) increased as a function of time within the trial and difficulty level (as 
change size), reproducing results described in Boubenec et al. 2017. 
B.Median reaction time decreased as function of time within the trial and difficulty level (as change size), 
mirrorring detection rate in A.   
C. Mean instantaneous hit rate (shaded area: SEM) as a function of time within trial for comparable 
change timings across blocks (3 to 8 s), color code corresponds to block identity. Mean instantaneous 
hit rate was not impacted over the 3-8s change time window by time within trial or block identity 
(Friedman test, pblock = 0.3442, ptime = 0.6005). However instantaneous hit rate did vary significantly 
between 3 and 5.5s as a function of block (Friedman test, pblock = 0.0224, ptime = 0.2548). 
D. Mean instantaneous false alarm rate (shaded area: SEM) as a function of time within trial for 
comparable trials across blocks (3 to 8 s), color code corresponds to block identity. False alarm rate 
was highest for the early block and decreased significantly for the intermediate and late block (ANOVA, 
F(2,26) = 8.07, pblock = 0.0017) and increases significantly as a function of time (ANOVA, F(8,104) = 
9.62, ptime = 4.5×10-10).  
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Supplementary Figure S2: Reciprobit plots of the false alarm response times 
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