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Abstract

Intracellular forces shape cellular organization and function. One example is the mi-
totic spindle, a cellular machine consisting of multiple chromosomes and centrosomes which
interact via dynamic microtubule filaments and motor proteins, resulting in complicated
spatially dependent forces. For a cell to divide properly, is important for the spindle to be
bipolar, with chromosomes at the center and multiple centrosomes clustered into two ‘poles’
at opposite sides of the chromosomes. Experimental observations show that in unhealthy
cells, the spindle can take on a variety of patterns. What forces drive each of these pat-
terns? It is known that attraction between centrosomes is key to bipolarity, but what the
prevents the centrosomes from collapsing into a monopolar configuration? Here, we explore
the hypothesis that torque rotating chromosome arms into orientations perpendicular to the
centrosome-centromere vector promotes spindle bipolarity. To test this hypothesis, we con-
struct a pairwise-interaction model of the spindle. On a continuum version of the model, an
integro-PDE system, we perform linear stability analysis and construct numerical solutions
which display a variety of spatial patterns. We also simulate a discrete particle model re-
sulting in a phase diagram that confirms that the spindle bipolarity emerges most robustly
with torque. Altogether, our results suggest that rotational forces may play an important
role in dictating spindle patterning.

1 Introduction

Spatial organization in the interior of cells is intimately linked with cellular function. Conse-
quently, understanding the underlying mechanisms of this organization is a fundamental pursuit
in cell biology. One such example is the mitotic spindle, a cellular machine that spatially orga-
nizes copied genetic material during cell division. The mitotic spindle has several distinct phases,
but here we focus on so-called metaphase, where in healthy cells, centrosomes (CSs) are at two
opposite ‘poles’ and chromosomes (CHs) aggregated in the middle, on the ‘equator’, into the
so called metaphase plate [DM09], as seen in Fig. 1. This architecture is crucial for proper
segregation of CHs when the cell divides.

The spindle is not always bipolar. Various abnormalities in cancer cells (but also some healthy
cells) result in the appearance of more than two CSs per cell [RG17]. In these cells, the resulting
spindle pattern varies, and can be monopolar, bipolar, or multipolar. [FVM11]. If the resulting
pattern is multipolar, consisting of CSs aggregating in more than two groups, proper mitosis
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fails [Bas+08] and these cells often die or display developmental defects [ORA12]. However,
cancer cells with multiple CSs can ‘cluster’ these extra components into an apparent bipolar
spindle and these cells divide normally [Kwo+08]. Because this clustering allows many cancer
cells to proliferate, understanding of the underlying mechanics of spindle patterns is important
for development of anti-cancer therapies [ORA12].

CS-chrom

CS-CS chrom-chrom

a c

fc fc

fs

fs

fa

fr

fr

>0

<0

+

centrosome (CS) molecular motors 

chromosome (CH)

b
yi xj(t) j 

CS-chrom
CS-CSchrom-chrom

pairwise 
interaction 
model

fs

fs(kinesin-14)

(kinesin-5)

(chromokinesins) 

(dynein)

(crowding repulsion + alignment) 

(rotation from MT pushing) 

(repulsion or attraction) 

long-range 
attraction

short-range 
repulsion( )

(t)(t)

and

Figure 1: a: The bipolar, mitotic spindle. Centrosomes (CSs) are positioned on opposite sides of a
group of chromosomes (CHs). Their interaction is through microtubule filaments and molecular motors
associated with them. b: Individual interactions in the model. CS-chrom interactions consist of short-
range repulsion from poleward ejection forces of strength fr and long-range attraction from motors of
strength fa. A resulting torque from these forces which promotes CH being orthogonal to their interaction
with the CS (θ = 0). CSs attract or repulse each other depending on model parameter fs. CHs repulse
each other with strength fc and align via a local torque.

Both chemical and mechanical interactions are known to be involved in the formation of the
spindle [DM09], but we will focus on purely mechanical in this work. The mechanical forces
between the CSs and CHs are primarily generated by microtubules (MTs) and molecular motors,
as seen in Fig. 1. MTs are anchored in the CSs with their minus ends, while the plus ends
grow outward, in random directions and with complex, stochastic dynamics [DM09]. Some of
antiparallel MT pairs from two CSs overlap, and a host of motors at the overlaps exert forces
on the MTs. Some of these motors (i.e. kinesin-14 [DM09]) generate forces by attaching to
one MT with their cargo domains and using the motor head to walk toward the minus end of
the other MT, effectively sliding the other MT inward (Fig. 1C) and generating the attraction
between the respective pair of the CSs. Other motors (i.e. kinesin-5 [Kwo+08]) are bipolar with
motor heads on both ends; on the antiparallel MT overlaps these motors walk to the plus ends
of both MTs effectively sliding the MTs apart and giving rise to the repulsion between the two
CSs (Fig. 1C). Yet other motors, dyneins, ‘reel in’ MTs that connect at their plus ends with
kinetochores: large protein complexes in the middle of the CHs, resulting in effective attraction
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between any pair of CS and CH [HS90] (Fig. 1A,C). Dynein motors play many roles in mitosis
depending on differential localization and regulation. Henceforth, when referencing dynein, we
will specify their localization and respective action. However, other MTs run with their plus
ends into the chromosome arms, and motors on the arms (chromokinesins), by walking to the
MT plus ends, tend to push the MT tips away generating an effective repulsion between a pair
of CS and CH, called the polar ejection force [KCH09]. In addition to the motor-generated
forces, MT dynamics lead to both pushing (growing MTs pressing on the CH arms) and pulling
(shortening MTs effectively pulling the kinetochores hanging on to the disassembling MT ends)
forces; mathematically, these forces can be lumped together with the motor-generated forces.
(Fig. 1A,C) Although this list neglects several important factors (e.g. interaction with the cell
boundary/cortex), previous studies have shown these to be sufficient in explaining the origin of
of the spindle architecture [Fer+09; Néd02].

However, what happens when the CS number is greater than 2? In this work, we explore this
setup through mathematical modeling. Inhibition of the kinesin-14 motor, likely responsible for
the CS-CS attraction promotes the frequency of multipolarity [Kwo+08; Bas+08], suggesting that
the mutual inter-CS attraction key to the bipolarity [Kwo+08]. However, the simple question
arises: why does this CS-CS attraction not just aggregate all CSs into just one cluster making
the spindle monopolar? Such monopolar spindles were observed in the situations when motors
responsible for inter-CS repulsion were inhibited [Kap+00; Fer+09]. One theoretical solution to
this problem was proposed in [Cha+20]: attraction of the CSs to the cell cortex at the opposite
cell ends can keep two groups of mutually attractive CSs apart. In this study, we wish to find
whether such spindle interactions with the cell cortex are necessary, or the multi-CS spindle
could remain bipolar autonomously, even without interacting with the cell boundary.

with 
torque

without 
torque

Figure 2: Cartoon explaining intuition behind torque promoting a bipolar spindle. Without torque,
centrosomes (CSs) attract each other and aggregate into a monopolar configuration. With torque, CS
aggregates still form but are offset by the rotational motion that promoting a bipolar configuration.

To this end, we explore the idea that a torque between the CSs and CHs could complement
the forces to ensure the bipolarity of the multi-CS spindle. The idea is as follows: in previous
models, CHs were usually considered as material points [Fer+09; Cha+20]. However, they are
more accurately represented as double rods ‘glued’ together at the centromere, in the middle,
with ‘rabbit ears’ of CH arms stretching from the centromeric region. Mathematically, therefore,
the CHs can be described as elongated, oriented objects characterized, besides the coordinates
of the center-of-mass, by their orientation angles. This raises the question: can interaction of
the CH-CS pair depend not only on their mutual distance, but also on the angle between the
CS-CH vector and CH axis? We posit that it can: if the angle deviates from 90 degrees, then one
of the CH arms is closer to the CS, and the polar ejection force from the CS onto this proximal
arm is greater than that between the CS and another, distal arm. This effect would create a
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torque that tends to pivot the CS and CH until the CS-CH vector and CH axis are normal to
each other (Fig. 1C). We hypothesize that such action assists spindle bipolarity, see Fig. 2: if
the CHs cluster together and align with each other (as is observed in the metaphase plate [HS90;
FCR02]), then multiple CSs would be pushed away from most of the space into two sectors that
are perpendicular to the CH orientation. This effect would prevent aggregation of the CS groups
from two different sides of the CH cluster and lead to eventual clustering of the CSs into just
two groups. In order to test this intuition and to determine what spindle states emerge from all
these complex interactions, we resort to mathematical modeling.

Modeling has a long history of helping experiment to elucidate the spindle dynamics ([Arm+15;
ZG15; PT16; ZG15; Red+19; Ede+20]). Specifically, force-balance models have been used to probe
the spindle structures in one-dimensional (1D) [Néd02; Fer+09], two-dimensional (2D) [ZG15],
and in realistic three-dimensional (3d) [Ede+20; Cha+20] geometry. Several types of mathemat-
ical models of the spindle have been proposed. There are the most detailed agent-based models
(discrete and stochastic) that explicitly simulate biochemical details of individual molecular mo-
tors and dynamic elastic MTs [Let+19]. The advantage of such detailed models is unambiguous
mapping onto experimentally observed architectures, but the drawback is difficulty of exploring
parameter space of the models. In principle, one can roughly average the action of multiple
motors and MTs; the resulting mean-field approximation leads to the second type of models:
pairwise-‘interacting particle’ models [Fer+09; Man+18], in which the CSs and CHs are modeled
as particles driven by interactions through distance-dependent forces. The forces in the particle
models often have corresponding potential energy, and so the third type of models - minimizing
the total mechanical energy of the spindle - can give us the spindle’s mechanical equilibrium
without simulating the transient dynamics [Cha+20]. Lastly, an additional approximation can
be made by representing the CSs and CHs as continuous density, rather than as discrete parti-
cles. In this study, we avoid the complexity of the most detailed agent-based models and explore
the role of the CS-CH torque in the bipolarity of the multi-CS spindles by using the interacting
particle and continuous models.

2 Continuous and discrete models

2.1 Discrete (interacting particles) model

In the model, we consider i = 1, . . . , NS CSs with positions yi(t) ∈ R2 and j = 1, . . . , NC CHs
with positions xj(t) ∈ R2 and orientations θj(t). Each CS (and each CH) interacts with all other
CSs and all CHs (respectively, all CSs) by pairwise, distance-dependent interactions, see Fig. 1.
The evolution of all positions and orientations is described by the equations

µcẋj =

NC∑
k=1

Fchrom−chrom(xj − xk) +

NS∑
k=1

FCS−chrom(xj − yk, θj), (1a)

µsẏi =

NC∑
k=1

Fchrom−CS(yi − xk, θk) +

NS∑
k=1

FCS−CS(yi − yk), (1b)

µrotθ̇j =

NC∑
k=1

τchrom−chrom(xj − xk, θj − θk) +

NS∑
k=1

τCS−chrom(xj − yk, θj). (1c)

Here, as is conventional in cellular system, we use the overdamped mechanical equations, in
which linear and angular velocities are proportional to forces and torques, respectively, and
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inertial terms are negligible due to the low Reynolds numbers. Parameters µc, µs, µrot are the
effective viscous drags for the CH, CS and CH arms rotation, respectively. We introduce the
distance dependence of the forces and torques and model parameters below. The CS and CH
coordinates are the 2D vectors; 0 < θj(t) < π. Numerical integration of the first order ODEs of
the discrete model is straightforward and standard.

2.2 Continuous model

As is common in pairwise interacting particle models, we seek qualitative insight of our model
by considering the limit of dense particles, or the so-called mean-field limit. Citing rigorous
arguments such as [BV05; CCH14] but omitting further detail here, we introduce densities of CSs
(S(x, t)) and CHs (C(x, θ, t)). These densities arise in the limit of dense particles, N−1S

∑
i δ(x−

yi(t))
NS→∞−→ S(x, t) and N−1C

∑
j δ(x − xj(t))δ(θ − θj)

NC→∞−→ C(x, θ, t). In this limit, integrals
become sums, and the resulting continuous system of integro-PDEs has the form

∂tS = DS∇x2S −∇x · {V SS} , (2a)

∂tC = DC∇x2C −∇x · {V CC} − ∇θ {ωC} . (2b)

In the continuous system we add diffusion terms to the linear motion of CSs and CHs that
represent random movements of the particles resulting from stochastic perturbations not present
in (1) but could be included. DS and DC are the respective diffusion coefficients. Note that we
do not add the rotational diffusion, and we also consider initial conditions such that C(x, θ, 0) =
C(x)δ(θ − ϑ(x)). Therefore, the hyperbolic character of the PDEs with respect to the angular
variable, ensures the angular distribution remains such that there is a deterministic orientation
angle at each spatial point. Although it is unclear a priori if the mean-field limit is appropriate for
our system of study with a finite number of interacting bodies, we will later compare qualitative
results of this analysis with explicit simulations of the particle system (1). The linear and angular
velocities in the transport equations are given by the convolution integrals:

V S = µ−1s
(
fCS−CS ∗ S + fCS−chrom ∗ C

)
, (3a)

V C = µ−1c
(
fCS−chrom ∗ S + f chrom−chrom ∗ C

)
, (3b)

ω = µ−1rot (τCS−chrom ∗ S + τchrom−chrom ∗ C) , (3c)

where the convolution operation is defined by

[K ∗ f ] (x, θ) :=

∫ π

0

∫
R2

K(x− y, θ, θ′)f(y, θ′) dx dθ′. (4)

We describe the distance dependence of the forces and torques and model parameters below.

3 Results

The continuous integro-PDE model of the spindle is mathematically similar to spatial models of
animal grouping and swarming. The latter have a rich history of study [MEK99; BT11; BT13;
CCH14; SRS15], including stability, bifurcations, and numerical analyses, or inferring interactions
directly [LLEK10; Lu+19]. Here, we focus on characterizing the qualitative behavior of equilibria.
following along the lines of significant recent progress found in. We utilize tools developed for
the animal grouping models to study the spindle model. The choices of the parameter values in
the model are explained and justified below.
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3.1 Linear stability analysis in 1D

In order to isolate the effect of torque on the continuous model, we consider a much simpler setup:
the continuous model in one spatial dimension (1D) with no boundaries and no alignment or
torque terms. In this case, we use the forces exponentially decreasing with the distance between
pairs of interacting particles:

fCS−chrom(z) =
(
−fae−|z|/La + fre

−|z|/Lr
)
σ(z), (5a)

fCS−CS(z) = fse
−|z|/Lsσ(z), (5b)

fchrom−chrom(z) = fce
−|z|/Lcσ(z), (5c)

where σ(z) = sign(z). Here fa and fr (both are positive parameters) are the amplitudes of
the attraction (pulling the centromere of the CH toward the CS) and repulsion (polar ejection
force: pushing the CH arms away from the CS) forces; La and Lr are the spatial ranges of the
respective forces, all chosen to satisfy the biologically relevant regime of H-stability [D’O+06].
The parameters fs and fc are the amplitudes of interactions between the CS pairs and CH
pairs, respectively. There is a short-distance steric repulsion between the CH pairs, so fc > 0,
however, the CSs can either repel (if fs > 0) or attract (if fs < 0) each other. Ls and Lc are
the spatial ranges of the respective forces. Three of the force amplitudes (fs, fa and fr) are
proportional to respective net motor forces generated at the interpolar MT overlaps by kinesin-
14 and -5 and possibly cytoplasmic dynein, at the kinetochores by dynein, and at the CH arms
by chromokinesins, respectively. These amplitudes are proportional to the characteristic force
per motor multiplied by the average number of the respective motors. The exponential distance
dependence arises from the following factor: the farther apart the interacting organelles are,
the smaller number of MT plus ends reach from one organelle to the other (or smaller MT-MT
overlap between the organelles). In the simplest case, the MT length distribution is exponential,
in which case previous models showed that the forces decrease exponentially with the distance
[Fer+09].

In 1D, the system of equations (2) becomes

∂tS = DS∂xxS − ∂x {VSS} , (6a)
∂tC = DC∂xxC − ∂x {VCC} , (6b)

where CS and CH velocities are given by the convolutions of respective forces and densities (3),
now take the form

VS = µS (fCS−CS ∗ S + fCS−chrom ∗ C) , (7a)
VC = µC (fCS−chrom ∗ S + fchrom−chrom ∗ C) , (7b)

and the convolution (4) becomes

[K ∗ u] (x) =

∫ +∞

−∞
K(x− x′)u(x′) dx′.

We start the analysis by noting that this 1D model sustains a homogeneous steady-state solu-
tion: u(x) = [S(x), C(x)] = [S0, C0]. The system is invariant to translations, so we consider a
perturbation from this equilibrium of the form:

u = u0 + ũeiqx+λt =

[
S0
C0

]
+

[
S̃

C̃

]
eiqx+λt. (8)
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Substituting this perturbation into (6) and keeping only terms that are linear with respect to ũ,
we obtain the linear system of algebraic equations:

λũ =

{
−q2

[
DS 0
0 DC

]
− iq

[
f̂CS−CSS0 f̂CS−chromS0
f̂CS−chromC0 f̂chrom−chromC0

]}
ũ, (9)

in which the Fourier transforms for a general f(z) are defined by

f̂(q) :=

∫ ∞
−∞

f(z)e−iqz dz. (10)

Rewriting these equations in the matrix form:

λũ = M ũ, (11)

the stability boils down to the eigenvalues of the matrix M . This matrix can be computed
explicitly for our choice of the inter-particle forces (abbreviating k := q2 > 0):

M =

 k
(
−Ds − 2fsL2

sS0

kL2
s+1

)
2S0k

(
faL2

a
kL2

a+1
− frL2

r
kL2

r+1

)
2kC0

(
faL2

a
kL2

a+1
− frL2

r
kL2

r+1

)
k
(
−2C0fcL2

c
kL2

c+1
−Dc

)  :=

[
a b
c d

]
.

The eigenvalues of this 2× 2 matrix are real and give us the dispersion relation,

λ±(k) = a+ d±
√

(a− d)2 + 4bc

= k

[
−2C0fcL

2
c

kL2
c + 1

−Dc −Ds −
2fsL

2
sS0

kL2
s + 1

±
√(

2C0fcL
2
c

kL2
c+1

+Dc−Ds− 2fsL
2
sS0

kL2
s+1

)2

+16C0S0

(
faL

2
a

kL2
a+1
− frL

2
r

kL2
r+1

)2
]
.

(12)

This expression is challenging to understand directly. We can immediately see that λ(0) = 0
is expected due to the conservation of the number of particles. Beyond that, since it is always
useful to detect instabilities at low wave-numbers, which correspond to the aggregation-type
instabilities, we can expand the dispersion relation into Taylor series around k = 0:

λ±(k) = k
{
−2C0fcL

2
c −Dc −Ds − 2fsL

2
sS0

±
[
4S0

(
fsL

2
s

(
−2C0fcL

2
c −Dc +Ds

)
+ 4C0

(
faL

2
a − frL2

r

)2)
+
(
2C0fcL

2
c +Dc −Ds

)2
+ 4f2sL

4
sS

2
0

]1/2}
+O(k2).

(13)

This provides the sufficient (but not necessary) condition for an instability to occur:

fs <

4C0(faL2
a−frL2

r)
2

2C0fcL2
c+Dc

− Ds
S0

2L2
s

. (14)

Analysis of this instability criterion indicate that, intuitively, attraction between the CSs (fs < 0),
greater range of the CS-CS interaction, weaker repulsion between the CH pairs and smaller
diffusion coefficients promotes the aggregation instability. The quadratic term in the numerator
of the aggregation instability criterion indicates that the instability is promoted if net CS-CS
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attraction (quantified by the product faL2
a) is either much greater or much smaller, than the net

CS-CS repulsion (quantified by the product frL2
r).

To gain further insight from the dispersion relation (12) we made the following parameter
selection: Ds = 1, Dc = 10, La = 10, Ls = 7.5, Lc = 1, Lr = 5, fa = 1, fc = 0.5, S0 = 1, C0 = 4.
The rationale for these choices is as follows. Average CS density is chosen as the unit of density,
as there are a few tens of CHs in the spindle, while usually less than 10 CSs [Kwo+08], so we
choose the ratio of 4 CHs per 1 CS. The CS diffusion coefficient is set to 1 arbitrarily because
there is no respective experimental data and because the qualitative dependence of the results
on the values of the diffusion coefficients is relatively trivial. The CH diffusion coefficient is set
to 10 because the CHs are likely to be more mobile than the CSs [Fer+09], likely due to CSs
moving together with their large MT asters. The ranges of interactions are measured in units
of microns. The long-range of attraction between the CSs and centromere regions of the CHs
is set to 10, which is on the order of the spindle size [Kwo+08; Fer+09]. The repulsion range
between the CSs and chromosome arms is chosen twice shorter than the attraction range to make
sure that there is a preferred stable distance between a pair of CS and CH equal to roughly half
the spindle length, as observed in metaphase [Fer+09]. The range of interactions between the
CS pairs is chosen to be on the same order as those between the CSs and CHs, assuming that
the respective MTs have similar lengths. The range of the inter-CH steric repulsion is set to
1, on the order of the CH size. We lump the mobility coefficients together with the amplitude
of the forces, so effectively parameters f correspond to the velocity amplitudes. We choose the
amplitude of the CS-CH attractive velocity to be the velocity unit; the amplitude of the CH-CH
repulsive velocity is chosen arbitrarily (as respective biophysics was not investigated before), of
the same order of magnitude. Then, we explore the stability as function of two parameters,
interaction amplitude between CS pairs fs and repulsion amplitude between CS and CH arms
fr. The results are shown in Fig. 3.

From the figure, we see that rich spatial patterning emerges from even the 1D model: there
are four different possible stability regimes. The trivial stable equilibrium exists, interestingly,
only in a small sliver (region 1) of the parameter space that corresponds to roughly balanced CS-
CH attraction/repulsion and to significant inter-CS repulsion. If CS pairs attract (part of region
2 corresponding to negative values of fs), then the CSs aggregate. In order to understand the rel-
ative CS-CH localization, we numerically found the eigenvectors corresponding to the eigenvalues
of the linear stability equations and deduced the spatial pattern corresponding to the dominant
unstable mode close to the equilibrium from relative signs of the harmonics corresponding to
the CS and CH densities. That is, we compute the eigenvector u = [z, 1] corresponding to the
eigenvalue compute λ(k?), where k? = arg maxk(λ) to check the sign of z. In Fig. 3, the negative
sign corresponds to the CS and CH densities in anti-phase (segregated CSs and CHs), while the
positive sign means the co-aggregation of the CSs and CHs. We find that when the repulsion
between the CSs and CH arms is very weak (left part of region 2), then even if CSs repel each
other, the CSs and CHs co-aggregate (plus sign) because inter-species attraction overwhelms
intra-species repulsion. On the other hand, when the repulsion between the CSs and CH arms is
very strong, (right part of region 2), then when CSs repel each other, the CSs and CHs aggregate
(minus sign) into two opposite parts of space (inter-species repulsion overwhelms intra-species
repulsion). The most interesting pattern emerges when the CS-CH attraction/repulsion roughly
balance each other, while CSs repel each other (region 3). In this region, the periodic pattern
of equidistantly grouped interspersed CS and CH clusters emerges: the dominant CS-CH in-
teraction keeps the CS and CH clusters at preferable distance, overwhelming the CS-CS and
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Figure 3: Results of the stability analysis on the 1D model around the spatially homogeneous state. Colors
and numbers indicate the number of zeros of the dispersion kernel (12) and black line corresponding to
the stability condition in (14) arising the linearization around k = 0. The hatched (+) region corresponds
to where the eigenvector u = [z, 1] corresponding to the eigenvalue λ(k?), where k? = arg maxk(λ) has
sign z > 0.

CH-CH repulsion. Lastly, there is a small sliver of parameter space (region 4), in which the
dispersion relation has two maxima, one corresponding to the unstable aggregation mode (small
k), another - to the periodic spatial instability. The linear stability analysis cannot say which
of these patterns will emerge [MEK96], but the linear stability analysis otherwise provides great
insight. It is natural to consider whether this stability analysis extends to the 2D model. In the
supplementary materials, we follow recent work [FHK11; Kol+11; KHP13; CK14; OHS17; OEK18]
to analytically establish existence of ring equilibria of a modified model that is qualitatively like
the one proposed here. Instead, we turn to numerical simulations of the original model to explore
further.

3.2 Numerical solutions of the 2D continuous model with torque

We solve the full integro-PDE system (2) and (3) numerically as follows: we discretize the space
into 30×30 grid ( ∆x ≈ 1 micron), and the angular variable is discretized by 8 equidistant points
(∆θ = π/8). At each computational step, the convolution integrals are computed by using
trapezoidal rule. Then, the advection-diffusion equations are solved by using Crank-Nicolson
method. The boundary conditions are no-flux in both spatial dimensions and periodic boundary
conditions in the angular direction. The simulations were run for a fixed amount of time, chosen
such that an apparent equilibrium was attained. Snapshots of the simulations can be seen in
Fig. 4. In red, the CS density is shown, and in blue, CH density. Color intensity corresponds
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to magnitude of the density. Each spatial point is initiated with a single orientation θ and the
evolution of θ is therefore deterministic, and shown in the thin white line. The initial conditions,
distance dependence of the forces and parameter values are discussed below.

timeinitial con�g

bipolar

multipolar

monopolar

a

b

c
fs>0

fs<0

fs<0 s large

s small

Figure 4: Numerical solutions to the mean-field integro-PDE equations (2) for three parameter sets, each
for five time points with identical initial conditions. In red, the centrosomes (CS), and blue, chromosomes
(CH). Intensity of color shows magnitude of density and overlaid white lines indicate orientation θ. In
panel a, the condition with CS-CS attraction (fs < 0) with strong CS-chrom torque (τs large) is shown,
resulting in a bipolar spindle. In panel b, CS-CS repulsion (fs > 0) leads to multipolar spindles. In panel
c, when the torque τs becomes too small, even with CS-CS attraction (fs < 0), the spindle becomes
monopolar.

We solved the model equations numerically using the numerical methods explained in section
2 and the following distance dependence for the forces:

fCS−chrom(ξ, θ, θ′) =
(
−fae−‖ξ‖/La + fre

−‖ξ‖/Lr
) ξ

‖ξ‖
(15a)

+ τs
ξ⊥

‖ξ‖
, (15b)

fCS−CS(ξ, θ, θ′) = fse
−‖ξ‖/Ls ξ

‖ξ‖
, (15c)

f chrom−chrom(ξ, θ, θ′) = fce
−‖ξ‖/Lc ξ

‖ξ‖
. (15d)

The meaning of the parameters for the forces is the same as that explained for the 1D model.
We also use the following torque terms:

τCS−chrom(ξ, θ, θ′) = −τs

(
ξ⊥

‖ξ‖
· ι(θ)

)
e−‖ξ‖/Lr , (16a)

τchrom−chrom(ξ, θ, θ′) = −τc sin(2(θ − θ′))e−‖ξ‖/Lc , (16b)
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where ι is the unit-vector in the direction θ. The first torque effectively measures the angle
between ι(θ) and ξ = x− x′ and evolves toward equilibria of 0 and π.

In the simulations, we fixed the majority of the model parameters as follows: fa = 1, fc =
1, fr = 5, La = 15, Lc = 0.5, Lr = 5, Ls = 5, in the same units, on the same order of magnitude
and based on the same logic as was explained in the 1D model stability analysis. Similarly,
the viscous drag coefficients were lumped with the force terms, as explained above. We choose
torque amplitudes on the order of unity (characteristic force amplitude on the order of unity
multiplied by the CH arm length on the order of 1 micron, which is our length unit). We choose
the relatively weak strength of the CH alignment torque, τc = 0.2. Lastly, we chose relatively
small diffusion coefficients, Dc = 0.2, Ds = 0.2 to provide less influence than the advective terms
in lieu of any other knowledge of these parameters.

Then, we varied two parameters: fs, the amplitude of the CS-CS interaction (from -2 to 2),
and τs, the amplitude of the torque on the CSs (from 0 to 2). As the initial condition, we used
the physiologically meaningful CS and CH distributions, as shown in the left column of Fig. 4:
CHs distributed evenly in a disc and oriented randomly (same as the random distribution of
the chromosomes in the nucleus at the onset of mitosis), and CSs distributed uniformly in the
ring at the periphery of the CH disc (at prophase, multiple CSs are scattered near the nuclear
envelope).

We found that three qualitatively different solutions emerged. For positive values of fs (CS-
CS repulsion), at any value of τs, the multipolar spindle solutions evolved (Fig. 4, middle row,
movie 1). Specifically, the CH initial disc-like distribution at the center remained, but the disc
radius decreased to an equilibrium (the disc edge smeared due to the diffusion). Meanwhile, the
CHs largely align with one another. The ring-like CS distribution also stayed, but interestingly,
the ring became non-uniform due to the torque action: the CSs became more concentrated
at the ‘poles’, near the direction normal to that of the CH alignment, and depleted from the
‘equator’, near the direction parallel to that of the CH alignment. For negative values of fs
(CS-CS attraction), two different solutions evolved, depending on the torque magnitude. At
weak torque (τs < 0.5), the monopolar spindle solutions evolved (Fig. 4, lower row, movie 2).
Transiently, the initial ring of the CSs collapsed into a few clusters, and these clusters, attracting
to each other, pushed into the CH disc. Multiple small CS clusters do not constrain the CH
density enough in space, and the effective CH diffusion allows the CH density to ‘leak’ outward
between the CS clusters. This, in turn, allows the mutual CS-CS attraction to bring the CS
clusters closer together, ‘invading’ the CH density and displacing it to the periphery. Eventually,
the CSs merged into the single cluster at the center, while the CHs formed the ring (with a
break at the side). Locally, the CHs became aligned with the circumference of this ring. The
break in the CH ring visible in Fig. 4, is a consequence of the initial conditions. This break is
not permanent: over a long time (the short-range CH-CH repulsion does not accelerate the ring
closure), the effective CH diffusion will spread the CH density evenly in the ring.

Lastly, for negative fs and strong torque (τs > 1.5), the bipolar spindle solutions evolved
(Fig. 4, upper row, movie 3). The CHs remained in the center but condensed into an ellipse
simultaneously aligning along the long axis of the ellipse, resembling the metaphase plate. The
CSs remained at the periphery but condensed by torque into two opposite clusters at the spindle
poles. At the intermediate torque (0.5 < τs < 1.5), monopolar spindles tended to evolve at
greater negative values of fs, and bipolar spindles - at smaller negative values of fs. In principle,
the parameter space of the continuous model can be fully explored, and respective phase diagram
can be sketched. However, the continuous model is merely an approximation to the the discrete
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model in the limit of a continuous density. As there are only tens of CHs and but a few CSs,
whether these lessons hold for these numbers is unclear. Therefore, we resort to the discrete
model to confirm their existence even in this scenario.

3.3 Spindle configurations in the discrete particle model

We finally turn to numerical simulations of the discrete 2D model of the interacting particles
with torque (1). We use the same interaction functions described in the full 2D integro-PDE
simulations.

The meaning of the parameters for the forces is again the same as previously mentioned. In
the simulations, we kept most of the parameters fixed as follows: fa = 1, fc = 1, fr = 5, La =
15, Lc = 1, Lr = 5, Ls = 7.5, in the same units, on the same order of magnitude and based on
the same logic as was explained in the 1D model stability analysis. Similarly, the viscous drag
coefficients were lumped with the force terms, as explained above. We choose torque amplitudes
on the order of unity (characteristic force amplitude on the order of unity multiplied by the CH
arm length on the order of 1 micron, which is our length unit). We choose the relatively weak
strength of the CH alignment torque, τc = 0.5.
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2
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4

5mean # CS clusters
(from simulation)

, CS-CS force 

, CS-chrom
 torque 

1        2        3+ 

bipolar
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Figure 5: Results of numerical simulations of discrete particle model (1) for varying parameters fs
and τs. For each set of parameters, 100 simulations with random initial conditions are computed until
apparent equilibrium is reached. The mean number of CS clusters over these trials is shown, along with
characteristic cartoons of the corresponding typical equilibria. This phase diagram supports the claim
that CS-CS attraction fs < 0 and CS-CH torque τs > 0 promote bipolarity.

We simulate this model with Ns = 10 and Nc = 20 with CHs initially placed uniformly and
randomly within the disc ‖x‖ ≤ 10 and CSs initially spaced randomly and uniformly along a
circumference with radius ‖x‖ = 10 and the center being the center of the CH disc (movies 4-7).
This initial condition corresponds to biologically meaningful initial condition at the prometaphase
onset, in which the CHs are at the center, filling the former nuclear sphere after the nuclear
envelope breakdown, while the CSs are surrounding the former nuclear envelope. The simulations
are terminated when an apparent equilibrium has been reached, defined by the timestep when
the displacement for all particles is below 10−4 microns.
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We then varied two key parameters, fs, τs, and found that depending on the region of this 2D
parameter space, four qualitatively different spindle configurations evolved (Fig. 5, movies 4-7).
For positive values of fs (CS-CS repulsion), multipolar spindles evolve (Fig. 5, movie 4), with
aligned CHs in one cluster at the center, and CSs spread individually and almost equidistantly
along the circle around the CHs. In a triangular part of the parameter space with strong CS-
CS attraction and weak CS-CH torque, monopolar spindles evolved with all CSs in one cluster
at the center, and the CHs distributed almost uniformly along the circle around the CSs and
aligned locally along the circumference (Fig. 5, movie 5). In most of the rest of the parameter
space, corresponding to CS-CS attraction and moderate CS-CH torque, the bipolar spindles
evolved with the aligned CH cluster at the center and two CS clusters at the opposite sides of
the CHs, so that the CS-CS axis is normal to the CH orientation (Fig. 5, movie 6). All these
three spindle states and regions of the parameter space corresponding to them predicted by the
discrete 2D model are similar to those predicted by the continuous 2D model. Interestingly,
the discrete model predicts the fourth possible spindle state (Fig. 5, movie 7) not captured by
the continuous model. This peculiar state corresponds to a multipolar spindle, but of a special
kind: the CSs are not scattered in space individually, but rather grouped into more than two
clusters. Furthermore, the CHs aggregate into more than one cluster, in each of which the CHs
are aligned with each other, but CH orientation in different clusters is different. These spindle
states correspond to large values of CS-CH torque and relatively weak CS-CS attraction. It is
easy to understand the origin of these states: when, depending on the initial conditions, such
state emerges, due to random initial proximity of sub-groups of the mutually attractive CSs
and mutually aligning CHs, then multiple CS clusters do not merge further, because the strong
CS-CH torque puts barriers in the way of the CS-CS attraction. Also note that in some regions
of the parameter space multiple spindle states emerge at the same parameter values, depending
on random initial conditions. These boundary regions are the only locations of parameter space
with observable variation between the number of emergent CS clusters.

4 Discussion

The stability analysis of the simplified 1D continuous model without torque, expectedly, predicts
aggregation of all CSs into a single cluster when CSs mutually attract. Unexpectedly, this
model predicts a rich variety of spatial patterns when CSs repel each other, including either co-
aggregation or segregation of CSs and CHs and periodic patterns of multiple intermittent CS and
CH clusters. The numerical solutions of the 2D continuous model with the CS-CH torque then
confirm the hypothesis that the CS-CH torque combined with the CS-CS attraction result in the
bipolar spindle configuration. To test whether these predictions survive the transition to the finite
discrete system, and to explore the parameter space systematically, we then numerically simulate
the discrete model with torque and find that the bipolar spindles indeed evolve if moderate CS-
CH torque accompanies limited CS-CS attraction. Notably, greater torque leads to the spindle
configurations with not only multiple CS clusters, but also with multiple CH groups.

The modeling predictions qualitatively agree with a few experimental observations: CS clus-
tering is known to be promoted by upregulation of kinesin-14 [Kwo+08] and dynein [Qui+05]
motors which generate CS-CS attraction, noting that this interpretation relates specifically to
cytoplasmic dynein. CSs that lack CHs between them do not form a stable spindle-like MT array
[FCR02], exactly as our models predict. Multiple independent metaphase plates (CH clusters)
were also observed [Dun15], similar to the predicted multi-CH-cluster spindles emerging when
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the torque is too great, as seen in Fig. 5. Normally though, multipolar spindles are characterized
by a single, interconnected cluster of CHs at the center, with individual or clustered CSs at the
periphery [Bau+20]. The observed CH distribution in this single CH cluster within multipolar
spindles has branched, Y-, V-, or T-shaped configurations, with CHs aligning between multiple
spindle poles [Hen75; WW96; Bau+20; Gou+20], which resembles the model-predicted multipolar
state at high torque. (See also the transient Y-shaped CH distribution in movie 7). On the other
hand, the predicted multipolar spindle with the CSs encircling the single aligned metaphase CH
plate was never observed, which perhaps indicates that the CS-CS force is never repulsive at
this mitotic stage. Beyond equilibria, simulations ending in bipolar spindles commonly displayed
transient multipolarity, also noted experimentally [SC12]. Lastly, we are not proposing that
the CS-CH torque is the only factor preventing the CS-CS attraction from forming monopolar
spindles. Indeed, attraction of the CSs to the cell boundary also supports the bipolarity by
competing with the CS-CS attraction and separating two CS clusters to the opposite cell sides
[Cha+20]. Respective forces pulling the CSs to the cell cortex are generated by cortical dynein.
Note that dynein in fact promotes the CS clustering [Qui+05] rather than separation of the CSs,
however, we reiterate that dynein has multiple functions in mitosis and is regulated differently
in different parts of the cell. We hypothesize that both torque and dynein-mediated attraction
of the CSs to the cell boundary are integrated to make the spindle bipolarity more robust.

The notions of torque and pivoting in MT-motor systems appeared in a few recent studies.
Molecular motors generate torque when they move along the helical MT lattice [Nov+18]. Mul-
tiple motors crosslinking MT pairs can generate a bundling torque [Lam+19]. There may exist
a torque between a CS and an MT anchored into the CS [End+94]. Torques of unknown origin
in the spindle generate chiral MT structures [Mit+20]. Pivoting movements of MTs in spindles
also have been observed [Kal+13; Win+19; FDA21]. The idea of the progressive restriction of
the angle between a MT and a kinetochore to which this MT binds proposed in [Ede+20] is
similar to our idea of the CS-CH torque. Such torque would most naturally emerge if MTs were
cantilevered into kinetochores at normal angles, and if angular deformations of such connections
were resisted elastically. However, there is little evidence of such elasticity of the MT-KTs connec-
tions. Indeed, plastic angular displacements of the kinetochores were observed instead [Lon+07]
and swinging of MT bundles (K-fibers) projecting from the kinetochores over wide angles was
observed [Sik+14; Elt+14]. Therefore, we hypothesize that the CS-CH torque could arise due to
the geometric effect of the polar ejection force asymmetrically pushing on the proximal/distal
parts of the CH arms, with the centromere pulled toward the CS, effectively rotating them into
the orientation perpendicular to the CS-CH vector.

Our models have many limitations. To mention but two: (i) CH arms are very deformable, so
modeling them as rods is not very accurate; (ii) our 2D solutions miss characteristic ‘doughnut-
like’ spatial organization of the CH group in the spindle [Mag+15].

Although, prior studies have used non-local models for MT-motor-organelle organization
[Man+18] or local PDE models to describe the spindle MT array [OJB20], our non-local de-
scription of spindle organization appears novel. The resulting model bares great similarity to
descriptions of animal grouping [MEK99; LRC00; TB04; CK14] and models of particles interacting
with orientations [MEK96; OHS17; OEK18]. Exploring analogies and lessons from these fields
may create helpful intuition for understanding intracellular architecture or inspire new mathe-
matical pursuits in further understanding possible behaviors of these models.

Acknowledgements CEM and AM are supported by the National Science Foundation grant DMS 1953430 to AM.
The authors disclose no conflict of interests.

14/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.17.469054doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469054
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[Arm+15] Armond, J. W., Harry, E. F., McAinsh, A. D., and Burroughs, N. J. “Inferring the forces controlling
metaphase kinetochore oscillations by reverse engineering system dynamics.” PLoS Computational
Biology 11.11 (2015).

[Bas+08] Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., and Raff, J. W. “Centro-
some amplification can initiate tumorigenesis in flies.” Cell 133.6 (2008).

[Bau+20] Baudoin, N. C., Nicholson, J. M., Soto, K., Martin, O., Chen, J., and Cimini, D. “Asymmetric
clustering of centrosomes defines the early evolution of tetraploid cells.” eLife 9 (2020).

[BT11] Bernoff, A. J. and Topaz, C. M. “A primer of swarm equilibria.” SIAM Journal on Applied Dynamical
Systems 10.1 (2011).

[BT13] Bernoff, A. J. and Topaz, C. M. “Nonlocal aggregation models: A primer of swarm equilibria.” SIAM
Review 55.4 (2013).

[Ber+15] Bertozzi, A. L., Kolokolnikov, T., Sun, H., Uminsky, D., and Von Brecht, J. “Ring patterns and their
bifurcations in a nonlocal model of biological swarms.” Communications in Mathematical Sciences
13.4 (2015).

[BLL12] Bertozzi, A. L., Laurent, T., and Léger, F. “Aggregation and spreading via the newtonian potential:
The dynamics of patch solutions.” Mathematical Models and Methods in Applied Sciences 22 (2012).

[BV05] Bodnar, M. and Velazquez, J. J. L. “Derivation of macroscopic equations for individual cell-based
models: a formal approach.” Mathematical Methods in the Applied Sciences 28.15 (2005).

[CCH14] Carrillo, J. A., Choi, Y.-P., and Hauray, M. “The derivation of swarming models: mean-field limit
and Wasserstein distances.” Collective Dynamics from Bacteria to Crowds. 2014.

[Cha+20] Chatterjee, S., Sarkar, A., Zhu, J., Khodjakov, A., Mogilner, A., and Paul, R. “Mechanics of Multi-
centrosomal Clustering in Bipolar Mitotic Spindles.” Biophysical Journal 119.2 (2020).

[CK14] Chen, Y. and Kolokolnikov, T. “A minimal model of predator-swarm interactions.” Journal of The
Royal Society Interface 11.94 (2014).

[D’O+06] D’Orsogna, M. R., Chuang, Y.-L., Bertozzi, A. L., and Chayes, L. S. “Self-propelled particles with
soft-core interactions: patterns, stability, and collapse.” Physical Review Letters 96.10 (2006).

[DM09] Dumont, S. and Mitchison, T. J. “Force and length in the mitotic spindle.” Current Biology 19.17
(2009).

[Dun15] Duncan, A. W. “Changes in hepatocyte ploidy during liver regeneration.” Liver Regeneration. 2015.

[Ede+20] Edelmaier, C., Lamson, A. R., Gergely, Z. R., Ansari, S., Blackwell, R., McIntosh, J. R., Glaser,
M. A., and Betterton, M. D. “Mechanisms of chromosome biorientation and bipolar spindle assembly
analyzed by computational modeling.” eLife 9 (2020).

[Elt+14] Elting, M. W., Hueschen, C. L., Udy, D. B., and Dumont, S. “Force on spindle microtubule minus
ends moves chromosomes.” Journal of Cell Biology 206.2 (2014).

[End+94] Endow, S. A., Chandra, R., Komma, D. J., Yamamoto, A. H., and Salmon, E. D. “Mutants of the
Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis.”
Journal of Cell Science 107.4 (1994).

[FVM11] Faggioli, F., Vezzoni, P., and Montagna, C. “Single-cell analysis of ploidy and centrosomes underscores
the peculiarity of normal hepatocytes.” PloS One 6.10 (2011).

[FCR02] Faruki, S., Cole, R. W., and Rieder, C. L. “Separating centrosomes interact in the absence of associated
chromosomes during mitosis in cultured vertebrate cells.” Cell Motility and the Cytoskeleton 52.2
(2002).

[Fer+09] Ferenz, N. P., Paul, R., Fagerstrom, C., Mogilner, A., and Wadsworth, P. “Dynein Antagonizes Eg5
by Crosslinking and Sliding Antiparallel Microtubules.” Current Biology 19.21 (2009).

[FHK11] Fetecau, R. C., Huang, Y., and Kolokolnikov, T. “Swarm dynamics and equilibria for a nonlocal
aggregation model.” Nonlinearity 24.10 (2011).

15/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.17.469054doi: bioRxiv preprint 

http://dx.doi.org/10.1137/100804504
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.4310/CMS.2015.v13.n4.a6
http://dx.doi.org/10.4310/CMS.2015.v13.n4.a6
http://dx.doi.org/10.1142/S0218202511400057
http://dx.doi.org/10.1142/S0218202511400057
http://dx.doi.org/10.1016/j.bpj.2020.06.004
http://dx.doi.org/10.1016/j.bpj.2020.06.004
http://dx.doi.org/10.1098/rsif.2013.1208
http://dx.doi.org/10.1016/j.cub.2009.09.025
http://dx.doi.org/10.1016/j.cub.2009.09.025
http://dx.doi.org/10.1088/0951-7715/24/10/002
http://dx.doi.org/10.1088/0951-7715/24/10/002
https://doi.org/10.1101/2021.11.17.469054
http://creativecommons.org/licenses/by-nc-nd/4.0/


[FDA21] Fong, K. K., Davis, T. N., and Asbury, C. L. “Microtubule pivoting enables mitotic spindle assembly
in S. cerevisiae.” Journal of Cell Biology 220.3 (2021).

[Gou+20] Goupil, A., Nano, M., Letort, G., Gemble, S., Edwards, F., Goundiam, O., Gogendeau, D., Pennetier,
C., and Basto, R. “Chromosomes function as a barrier to mitotic spindle bipolarity in polyploid cells.”
Journal of Cell Biology 219.4 (2020). e201908006.

[HS90] Hays, T. and Salmon, E. “Poleward force at the kinetochore in metaphase depends on the number of
kinetochore microtubules.” The Journal of Cell Biology 110.2 (1990).

[Hen75] Heneen, W. “Kinetochores and microtubules in multipolar mitosis and chromosome orientation.”
Experimental Cell Research 91.1 (1975).

[Kal+13] Kalinina, I., Nandi, A., Delivani, P., Chacón, M. R., Klemm, A. H., Ramunno-Johnson, D., Krull, A.,
Lindner, B., Pavin, N., and Tolić-Nørrelykke, I. M. “Pivoting of microtubules around the spindle pole
accelerates kinetochore capture.” Nature Cell Biology 15.1 (2013).

[Kap+00] Kapoor, T. M., Mayer, T. U., Coughlin, M. L., and Mitchison, T. J. “Probing spindle assembly
mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5.” Journal of Cell
Biology 150.5 (2000).

[KCH09] Ke, K., Cheng, J., and Hunt, A. J. “The distribution of polar ejection forces determines the amplitude
of chromosome directional instability.” Current Biology 19.10 (2009).

[KHP13] Kolokolnikov, T., Huang, Y., and Pavlovski, M. “Singular patterns for an aggregation model with a
confining potential.” Physica D: Nonlinear Phenomena 260 (2013).

[Kol+11] Kolokolnikov, T., Sun, H., Uminsky, D., and Bertozzi, A. L. “Stability of ring patterns arising from
two-dimensional particle interactions.” Physical Review E 84.1 (2011).

[Kwo+08] Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., and Pellman,
D. “Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.” Genes &
development 22.16 (2008).

[Lam+19] Lamson, A. R., Edelmaier, C. J., Glaser, M. A., and Betterton, M. D. “Theory of cytoskeletal reor-
ganization during cross-linker-mediated mitotic spindle assembly.” Biophysical Journal 116.9 (2019).

[Let+19] Letort, G., Bennabi, I., Dmitrieff, S., Nédélec, F., Verlhac, M.-H., and Terret, M.-E. “A computational
model of the early stages of acentriolar meiotic spindle assembly.” Molecular Biology of the Cell 30.7
(2019).

[LRC00] Levine, H., Rappel, W.-J., and Cohen, I. “Self-organization in systems of self-propelled particles.”
Physical Review E 63.1 (2000).

[Lon+07] Lončarek, J., Kisurina-Evgenieva, O., Vinogradova, T., Hergert, P., La Terra, S., Kapoor, T. M.,
and Khodjakov, A. “The centromere geometry essential for keeping mitosis error free is controlled by
spindle forces.” Nature 450.7170 (2007).

[Lu+19] Lu, F., Zhong, M., Tang, S., and Maggioni, M. “Nonparametric inference of interaction laws in systems
of agents from trajectory data.” Proceedings of the National Academy of Sciences 116.29 (2019).

[LLEK10] Lukeman, R., Li, Y.-X., and Edelstein-Keshet, L. “Inferring individual rules from collective behavior.”
Proceedings of the National Academy of Sciences 107.28 (2010).

[Mag+15] Magidson, V., Paul, R., Yang, N., Ault, J. G., O’Connell, C. B., Tikhonenko, I., McEwen, B. F.,
Mogilner, A., and Khodjakov, A. “Adaptive changes in the kinetochore architecture facilitate proper
spindle assembly.” Nature Cell Biology 17.9 (2015).

[Man+18] Manhart, A., Windner, S., Baylies, M., and Mogilner, A. “Mechanical positioning of multiple nuclei
in muscle cells.” PLoS Computational Biology 14.6 (2018).

[Mit+20] Mitra, A., Meißner, L., Gandhimathi, R., Renger, R., Ruhnow, F., and Diez, S. “Kinesin-14 motors
drive a right-handed helical motion of antiparallel microtubules around each other.” Nature Commu-
nications 11.1 (2020).

[MEK96] Mogilner, A. and Edelstein-Keshet, L. “Spatio-angular order in populations of self-aligning objects:
formation of oriented patches.” Physica D: Nonlinear Phenomena 89.3-4 (1996).

[MEK99] Mogilner, A. and Edelstein-Keshet, L. “A non-local model for a swarm.” Journal of Mathematical
Biology 38.6 (1999).

16/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.17.469054doi: bioRxiv preprint 

http://dx.doi.org/10.1083/jcb.201908006
http://dx.doi.org/10.1016/j.physd.2012.10.009
http://dx.doi.org/10.1016/j.physd.2012.10.009
http://dx.doi.org/10.1103/PhysRevE.84.015203
http://dx.doi.org/10.1103/PhysRevE.84.015203
http://dx.doi.org/10.1101/gad.1700908
http://dx.doi.org/10.1007/s002850050158
https://doi.org/10.1101/2021.11.17.469054
http://creativecommons.org/licenses/by-nc-nd/4.0/


[Néd02] Nédélec, F. “Computer simulations reveal motor properties generating stable antiparallel microtubule
interactions.” The Journal of Cell Biology 158.6 (2002).

[Nov+18] Novak, M., Polak, B., Simunić, J., Boban, Z., Kuzmić, B., Thomae, A. W., Tolić, I. M., and Pavin, N.
“The mitotic spindle is chiral due to torques within microtubule bundles.” Nature Communications
9.1 (2018).

[ORA12] Ogden, A, Rida, P., and Aneja, R. “Let’s huddle to prevent a muddle: centrosome declustering as an
attractive anticancer strategy.” Cell Death & Differentiation 19.8 (2012).

[OEK18] O’Keeffe, K. P., Evers, J. H., and Kolokolnikov, T. “Ring states in swarmalator systems.” Physical
Review E 98.2 (2018).

[OHS17] O’Keeffe, K. P., Hong, H., and Strogatz, S. H. “Oscillators that sync and swarm.” Nature Communi-
cations 8.1 (2017).

[OJB20] Oriola, D., Jülicher, F., and Brugués, J. “Active forces shape the metaphase spindle through a me-
chanical instability.” Proceedings of the National Academy of Sciences 117.28 (2020).

[PT16] Pavin, N. and Tolić, I. M. “Self-organization and forces in the mitotic spindle.” Annual Review of
Biophysics 45 (2016).

[Qui+05] Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M., and Saunders, W. S. “Spindle multipo-
larity is prevented by centrosomal clustering.” Science 307.5706 (2005).

[Red+19] Redemann, S., Fürthauer, S., Shelley, M., and Müller-Reichert, T. “Current approaches for the anal-
ysis of spindle organization.” Current Opinion in Structural Biology 58 (2019).

[RG17] Rhys, A. D. and Godinho, S. A. “Dividing with Extra Centrosomes: A Double Edged Sword for
Cancer Cells.” Cell Division Machinery and Disease. Ed. by Gotta, M. and Meraldi, P. 2017.

[Sik+14] Sikirzhytski, V., Magidson, V., Steinman, J. B., He, J., Le Berre, M., Tikhonenko, I., Ault, J. G.,
McEwen, B. F., Chen, J. K., Sui, H., et al. “Direct kinetochore–spindle pole connections are not
required for chromosome segregation.” Journal of Cell Biology 206.2 (2014).

[SC12] Silkworth, W. T. and Cimini, D. “Transient defects of mitotic spindle geometry and chromosome
segregation errors.” Cell Division 7.1 (2012).

[SRS15] Szwaykowska, K., Romero, L. M.-y.-T., and Schwartz, I. B. “Collective motions of heterogeneous
swarms.” IEEE Transactions on Automation Science and Engineering 12.3 (2015).

[TB04] Topaz, C. M. and Bertozzi, A. L. “Swarming patterns in a two-dimensional kinematic model for
biological groups.” SIAM Journal on Applied Mathematics 65.1 (2004).

[WW96] Wheatley, S. P. and Wang, Y.-l. “Midzone microtubule bundles are continuously required for cytoki-
nesis in cultured epithelial cells.” The Journal of Cell Biology 135.4 (1996).

[Win+19] Winters, L., Ban, I., Prelogović, M., Kalinina, I., Pavin, N., and Tolić, I. M. “Pivoting of microtubules
driven by minus-end-directed motors leads to spindle assembly.” BMC Biology 17.1 (2019).

[ZG15] Zaytsev, A. V. and Grishchuk, E. L. “Basic mechanism for biorientation of mitotic chromosomes
is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules.”
Molecular Biology of the Cell 26.22 (2015).

17/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.17.469054doi: bioRxiv preprint 

http://dx.doi.org/10.1103/PhysRevE.98.022203
http://dx.doi.org/10.1038/s41467-017-01190-3
http://dx.doi.org/10.1007/978-3-319-57127-0_3
http://dx.doi.org/10.1007/978-3-319-57127-0_3
https://doi.org/10.1101/2021.11.17.469054
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1 Table of parameter values

parameter meaning value(s) in particle sim value(s) in PDE sim
fa strength of chrom-CS long-range attraction 1 1
fr strength of chrom-CS short-range repulsion 5 5
fc strength of chrom-chrom repulsion 1.5 1
fs strength of CS-CS repulsion (+) or attraction (-) varied between −10, 2 varied between −2, 2
La lengthscale of chrom-CS long-range attraction 15 15
Lr lengthscale of chrom-CS short-range repulsion 5 5
Lc lengthscale of chrom-chrom short-range repulsion 1 1
Ls lengthscale of CS-CS attraction or repulsion 7.5 5
τc strength of chrom-chrom torque 0.5 0.2
τs strength of chrom-CS torque varied between 0, 5 varied between 0.5, 1.5
DC chrom diffusion coefficient 0 0.2
Ds centrosome diffusion coefficient 0 0.2
NC number of chromosomes varied, 20 in most simulations varied, 20 in most simulations
NS number of centrosomes varied, 10 in most simulations varied, 10 in most simulations

S2 Annular equilibria of modified system

The results of the 1d stability analysis suggest that a monopolar spindle should evolve when CSs attract each
other, so that all CSs concentrate in a small region of space, and the CHs tend to concentrate at a certain distance
from the CSs, where the CS-CH centromere attraction balances the CS-CH arm repulsion. In 2D this will look
like a ring pattern with CSs at the origin, and CHs in the ring with the center at the origin. Similarly, when CSs
repel each other, one would expect that a ring of the CSs around the CH cluster in the center could be the steady
state in the 2d continuous model. In this section, we verify these equilibria analytically in the 2d continuous
model without diffusion, alignment and torque terms. To do so, we rely on the results of [FHK11; BLL12; CK14;
Ber+15] that observe that for a certain choice of Newtonian interaction potentials between interacting particles,
some analytical solutions in 2d interacting particles models can be found explicitly.

setup 1 setup 2

R1R2 R

Figure S1: Two annular equilibria considered in the supplement. The explicit calculation is for a monopo-
lar solution, shown in setup 1, but setup 2 (multipolar) follows from similar arguments.

In order to do so, we omit the diffusion and torque terms in the model, and also modify the distance dependent
of the forces as follows:

fCS−chrom = fr
ξ

‖ξ‖2 − faξ, (S1a)

fCS−CS = fs
ξ

‖ξ‖2 , (S1b)

fchrom−chrom = fc
ξ

‖ξ‖2 . (S1c)
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Here ξ is the 2d vector between interacting particles ξ = x − x′. Note that in this case, the force amplitudes
fr, fa, fs, fc are the same as introduced above; however, the distance dependence of the forces is not exponential.
Instead, the force distance dependence is scale-less, and the forces are the power functions. Namely, the attraction
between the CS and the CH centromere is spring-like, proportional to the CS-CH mutual distance, while all three
other forces decrease as the inverse distance, similar to the gravity and electrostatic forces.

The density equations, in the absence of the diffusion terms, become drift equations and can be solved by the
method of lines. The characteristic curves for the CH density starting at t = 0 at position x0 satisfy:

dX
dt

= VC(X, t), X(x0, 0) = x0. (S2)

The CH density itself along these characteristics, x = X(x0, t), satisfies:

dC
dt

= −(∇x · VC)C. (S3)

The velocity of the CHs is determined by (assuming τ = 0)

VC = fCS−chrom ∗ S + fchrom−chrom ∗ C. (S4)

The analytical solutions are enabled by the fact that, in 2d only

∇x ·
x− x′

‖x− x′‖2 = 2πδ(x− x′). (S5)

We assume that the monopolar solution is characterized by S(x) = 2πS̄δ(x− z). In this case

−∇x · VC = −
∫ [

2πfrδ(x− x′)− 2fa
]
S(x′) dx′

+

∫
2πfcδ(x− x′)C(x′)dx′

= −2πfrδ(x− z) + 2faS̄ − 2πfcC(x) (S6)

We look for the solution in which the CS and CH populations do no overlap, so x 6= z and

−∇x · VC = 2fAS̄ − 2πfCC. (S7)

Plugging this expression into the characteristic equation, we have

dC
dt

= −(∇x · VC)C = (2fAS̄ − 2πfCC)C. (S8)

Since C > 0, this means that the CH stationary density is constant, and satisfies

C̃ =
fAS̄

πfC
. (S9)

We now also resort to the observation that in 2d

x

‖x′‖≤R

x− x′

‖x− x′‖2 dx′ =

{
πR2x
‖x‖2 ‖x‖ > R

πx ‖x‖ ≤ R
. (S10)

Let us consider the annular region, in which the CH density is non-zero: A = R1 ≤ ‖x‖ ≤ R2. We have

VC =

∫
A

[
fr

x− x′

‖x− x′‖2 − fa(x− x′)
]
S(x′) dx′

+

∫
A
fc

x− x′

‖x− x′‖2C(x′) dx′

= fr
x− z
‖x− z‖2 S̄ − fa(x− z)S̄ + πfcC̃

(
x−R2

1
x

‖x‖2

)
. (S11)

Assuming that the CSs aggregate at the origin (z = 0), so S(x) = S̄δ(x), this reduces to:

VC = fr
x

‖x‖2 S̄ − faxS̄ + πfcC̃

(
x−R2

1
x

‖x‖2

)
. (S12)
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Since this velocity must be uniformly equal to zero, we have the following conditions:

0 = frS̄ − πC̃fcR2
1, (S13)

0 = −faS̃ + πfcC̃. (S14)

The first condition tells us that:

R2
1 =

frS̄

πC̃fc
. (S15)

The second condition looks like a new condition, but is exactly equivalent to (S9) after algebra. The outer radius
is then constrained by the conservation of the total CH number, manifesting as:∫

R1≤‖x′‖≤R2

C(x′) dx′ = C0. (S16)

Consequently, this is indeed an equilibrium of the model.
A nearly identical calculation shows that the configuration with CHs concentrated at the origin and mutually

repulsive (fs > 0) CSs distributed along an annulus with the center at the origin, corresponding to the multipolar
spindle, is also a valid solution of the 2d continuous model, if CH self-repulsion, torque and diffusion terms are
neglected. Investigating the stability of each these ansatz solutions by using the perturbation technique of [CK14]
seems natural, however, we want to understand the solutions in the presence of torque. We were unable to
complete the stability analysis with torque seemingly because the torque and linear force terms are not separable
as a product. We therefore resort to numerical solutions of the 2d continuous and discrete models. This is an
interesting avenue of future study: whether stability analysis on the full model is possible, or if there is a viable
approximation to the torque terms that enables this analysis.
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