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Abstract

Live-cell imaging has become state of the art to accurately identify the nature of mitotic
and cell cycle defects. Low- and high-throughput microscopy setups have yield huge
data amounts of cells recorded in different experimental and pathological conditions.
Tailored semi-automated and automated image analysis approaches allow the analysis of
high-content screening data sets, saving time and avoiding bias. However, they were
mostly designed for very specific experimental setups, which restricts their flexibility
and usability. The general need for dedicated experiment-specific user-annotated
training sets and experiment-specific user-defined segmentation parameters remains a
major bottleneck for fully automating the analysis process. In this work we present
LiveCellMiner, a highly flexible open-source software tool to automatically extract,
analyze and visualize both aggregated and time-resolved image features with potential
biological relevance. The software tool allows analysis across high-content data sets
obtained in different platforms, in a quantitative and unbiased manner. As proof of
principle application, we analyze here the dynamic chromatin and tubulin cytoskeleton
features in human cells passing through mitosis highlighting the versatile and flexible
potential of this tool set.

Introduction 1

State of the art cell cycle and mitosis research strongly relies on advanced live-cell 2

microscopy for recording cells in model organisms and tissue cultures. With the help of 3

different labeling techniques (target protein fusion with fluorescent proteins, direct 4

fluorescent labeling of cellular targets, organelle specific fluorescent probes) subcellular 5

structures and cell cycle markers can be followed by high-content screening (HCS) 6

approaches. This allows investigating the different steps of life and fate of single cells 7

and cell populations. Such experiments generate massive amounts of data, which help 8

to pinpoint the nature of mitotic and cell cycle defects and to accurately identify and 9

characterize key molecular factors in different experimental conditions and clinically 10

relevant situations (for review, see [1–4]). 11

Analyzing high-content data sets is a formidable task where supervised machine 12

learning methods have been so far crucial [5–12]. More recently, convolutional neural 13

networks (CNN) further improved the possibilities for automatic detection, 14

segmentation and classification tasks [13–16]. Supervised machine learning approaches, 15
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however, are still time-consuming because they rely on user-curated phenotype 16

definitions and analysis. To overcome the limitations, unsupervised machine learning 17

without the need of manually-annotated morphology and phenotype-based 18

classifications recently demonstrated first promising results [17–20]. 19

Supervised and unsupervised phenotypic profiling of live-cell microscopy data is 20

emerging as a powerful tool for clinicians, pharmaceutical industry and biology research 21

in general. Multiparametric data analysis at single-cell level allows the integration of up 22

to hundreds of quantitative features to describe and distinguish phenotypes going far 23

beyond traditional approaches based on the analysis of one or a few features in 24

single-cell images. Phenotypic classifiers are extraordinarily useful for analyzing 25

complex populations. But because classes are categorical entities, they cannot 26

accurately quantify continuous time-dependent gradual changes, as usually assumed in 27

existing tools [10]. Moreover, in most of the cases where numerous features are 28

measured and integrated to generate high-dimensional phenotypic profiles, it is unclear 29

whether all of them are required for describing the phenotypic classes. However, the 30

quantification of simple morphological and shape parameters, e.g., of the cell nucleus, 31

has potential diagnostic value [21,22]. In this regard, most available tools are able to 32

measure health-related morphology profiles of tuneable complexity in static images of 33

fixed cell samples ( [23]; for review, see [3]). Moreover, general-purpose visual analytics 34

tools like [24] allow a versatile analysis of HCS-derived features but are unsuitable for 35

modeling temporal object dependencies and lack dedicated single-cell synchronization. 36

Therefore, tools for unbiased and comprehensive analysis of image features directly 37

reflecting time-dependent live-cell shape and morphology are urgently needed both in 38

basic and translational research [25]. 39

Another common limitation in the available HCS tools is the lack of 40

user-independent segmentation settings. The selection of a significant number of object 41

detection parameters depends on user choices. This could ultimately introduce bias into 42

phenotype classifiers because class-determining algorithms (whether supervised or 43

unsupervised) learn from image features that can be modulated by the segmentation 44

process. As first step, automated cell identification has recently been achieved using 45

deep learning, where CNNs are particularly applicable for the instance segmentation 46

task [16,26, 27]. These tools perform well when being trained with sufficiently different 47

modalities [16]. However, they tend to behave unpredictably when being applied to data 48

that significantly deviates from images seen during the training phase, and importantly, 49

lack of integrated tools to subsequently analyze quantitatively the features and/or 50

phenotypic profiles of live-cell image data sets. 51

Here, we introduce LiveCellMiner, a new open-source fully-automated software tool 52

for the quantitative analysis and comparison of 2D+t microscopy images of 53

fluorescently-labeled cells. The software allows automatic segmentation and tracking 54

and extracts quantitative features for all tracked objects. It enables automatic temporal 55

synchronization of extracted tracks and offers comprehensive data visualization and 56

selection possibilities. LiveCellMiner was primarily developed to analyze mitotic 57

phenotypes in cells but can be easily extended to other scenarios. Since mitosis is 58

characterized by a succession of distinctive chromatin morphologies, prophase, 59

prometaphase, metaphase, early anaphase, late anaphase and telophase, it offers an 60

excellent multi-level benchmark for the study of cytologic and temporal phenotypes. In 61

early mitosis, the nuclear envelope breaks down and the chromatin condenses generating 62

individualized and rod-shaped chromosomes, which are captured by the mitotic spindle 63

and segregated to sister chromatin masses during anaphase (for review, see [28,29]). 64

During telophase and early G1, the chromatin masses decondense allowing the 65

reassembly of functional nuclei able of gene transcription and genome replication (for 66

review, see [30–32]). Here, we reanalyze published and unpublished data sets of cells 67
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passing mitosis generated with different live-cell imaging platforms showing high 68

reproducibility between the systems. We confirm previously described mitotic 69

alterations after downregulation of the Lysine Specific Demethylase (LSD1), RecQ-like 70

Helicase 4 (RecQL4) and the Protein Phosphate PP2A-complex but identify also 71

phenotypes that so far escaped our attention. We also reanalyzed some available 72

data [33] from open repositories to demonstrate the suitability of LiveCellMiner as a 73

powerful tool to investigate high-throughput screening studies. 74

Design and Implementation 75

We developed LiveCellMiner, a new open-source software tool for studying the cytology 76

of cell division under different experimental conditions. LiveCellMiner is an extension 77

package for the general-purpose data mining MATLAB toolbox SciXMiner [34] and 78

makes use of some existing tools for object detection and segmentation [16,35,36] (see 79

Table S7 for a detailed list of dependencies). In the following sections, we present the 80

individual modules of LiveCellMiner and show how they are used for data import, 81

feature extraction, cell trajectory synchronization, data selection and visualization. The 82

presented proof of principle applications are based on existing data sets from previous 83

publications [37–39] where image data were acquired using 2D+t widefield and confocal 84

microscopy in different platforms (see Note S1 for details on the experimental setup). 85

Data Import 86

LiveCellMiner expects time series of 2D images of cells with chromatin-labeled nuclei 87

and optionally additional markers in other channels. The first step comprises the 88

detection, segmentation and tracking of all cell nuclei. We adapted the 89

Laplacian-of-Gaussian-based object detection method implemented in XPIWIT [35,36] 90

to perform automatic detection of nuclei centroids using a set of predefined processing 91

pipelines adjusted for various image resolutions. Detected centroids are tracked using 92

the methods described in [40]. Briefly, tracking is performed in a time-reversed manner 93

starting with the last frame and by sequentially linking objects to their predecessors 94

using hierarchical clustering with Ward’s linkage criterion [41]. The cluster cut-off can 95

either be explicitly specified based on prior knowledge or it can be determined 96

heuristically as half the average distance of each object to its eight spatially nearest 97

neighbors (default setting). If two objects with a different tracking id end up in the 98

same cluster, a cell division event is annotated. After tracking is performed, mitotic 99

trajectories are extracted that fulfil user-defined constraints like a minimum number of 100

successfully tracked frames before and after the cell division occurred (by default we set 101

this parameters to 30 and 60 frames before and after the cell division, respectively, 102

which corresponds to 90 minutes and 180 minutes with the 3 minutes sampling intervals 103

used in all our experiments). All detected centroids are then used to initialize the 104

automatic segmentation of the cells. We provide both a classical and a deep 105

learning-based solution to the segmentation. The classical segmentation method crops a 106

square region surrounding the current detection. First, the image is median filtered for 107

noise reduction (5× 5 window size) and then binarized using the arithmetic mean of a 108

threshold identified by Otsu’s method [42] and the minimum intensity observed in the 109

center part of the patch. The modified version of Otsu’s threshold is used to avoid 110

degenerate segmentations where a dim cell residing in the center of the patch could 111

potentially be removed if it is surrounded by more bright objects. As the cell of interest 112

is located in the center of the image patch, we initialize a seeded watershed with two 113

seeds, one for the center cell and another one for the background and neighboring cells. 114

The seeded watershed is applied on an inverted Euclidean distance map with intensity 115
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minima located in the centers of the nuclei. As an alternative to the classical 116

segmentation pipeline, we integrated an interface to the recently published Cellpose 117

algorithm [16]. Cellpose is automatically started and parameterized to extract all 118

segments in each of the images. We then use the centroids of successfully tracked 119

objects and crop the results of the Cellpose segmentation using the same region size as 120

for the classical approach. In each patch, we only keep the single central cell to 121

constrain the feature extraction to this region. Although Cellpose generally provides 122

highly accurate segmentation results for the majority of the cells, we found that directly 123

using Cellpose to replace the LoG-based object detection yielded less reliable tracking 124

results. In some cases, Cellpose failed to properly segment rarely occurring cell shapes 125

observed in meta- and anaphase. Thus, we additionally included a fallback option for 126

cases where segmentations provided by Cellpose were missing and in these cases 127

occasionally switch back to the classical segmentation method for individual cells. A 128

quantitative assessment of the segmentation and tracking quality is provided in Table S1 129

and a qualitative demonstration of the detection and segmentation accuracy as well as 130

exemplary erroneous detections are depicted in Fig. S11. 131

Extraction of Quantitative Features and Project Fusion 132

The segmented image patches are subsequently used for feature extraction. In addition 133

to classical 2D features like area, centroid, major and minor axes, orientation, 134

circularity and intensity statistics, we extracted a set of Haralick texture features from 135

the gray level co-occurrence matrix [43] (see Table S2 and Table S3 for an overview of 136

all available features). We empirically set the number of gray levels to 64, removed the 137

background to foreground transitions from the co-occurrence matrices and computed 138

average values obtained for the neighbor relations [0, 1], [1, 0], [1, 1], [−1, 1]. Among 139

others, the Haralick features comprise measures of texture entropy, correlation, contrast 140

and variance (we refer to [43] for a complete definition and explanation of the individual 141

features). Finally, we apply a GoogLeNet pretrained on ImageNet database on each 142

image patch to obtain CNN-features that are used for automatic synchronization of the 143

cell trajectories [44]. In addition to the raw image snippets of all available channels, the 144

corresponding segmentations, GoogLeNet features and feature time series of all valid 145

trajectories are stored in a SciXMiner-compatible format. Additional meta information 146

like microscope, experiment ID, plate number and experimental conditions are saved as 147

well and can later be used by the flexible and powerful data selection possibilities of 148

SciXMiner. Individual projects obtained for different positions can be fused to a single 149

SciXMiner project, to analyze even large projects in a single and consistent project file. 150

After projects have been imported to the SciXMiner format, additional features can be 151

derived from the time series and single features. In addition to all available feature 152

transformations that are available by default in SciXMiner [34,45], we incorporated 153

dedicated features for the analysis of cell behavior. 154

Time series can be smoothed with a variable window size using any of the methods 155

implemented in MATLAB’s smooth function to remove small deviations in the 156

extracted feature values. Moreover, absolute feature values can be normalized to 157

predefined events of the cell cycle, such as the average interphase feature value or the 158

feature value of the first late anaphase frame. As different microscopes or acquisition 159

settings produce notably different absolute feature values, these normalization 160

procedures are beneficial to make time series comparable among different experiments 161

and to compute relative recovery time series of cell properties like fluorescence intensity 162

after mitosis. The rate of change for selected features at a particular time point (e.g., to 163

estimate the initial recovery rate of time series features immediately after cell division) 164

can be approximated by a linear regression of the feature values in a small temporal 165

window. The slope of these regression curves is stored as a single feature for each cell. 166
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Finally, to obtain a proxy for interphase recovery, we added a dedicated recovery feature 167

that measures the absolute percentage deviation of one or more features to their 168

respective interphase mean value with 100% indicating full recovery (average percentage 169

deviation if multiple features are selected). While arbitrary features can be combined to 170

a custom recovery feature, we used the features area, minor axis length, mean intensity, 171

intensity standard deviation for all figures in this paper. 172

Cell Trajectory Synchronization 173

To compensate for different duration of pro-, prometa- and metaphase, as observed also 174

in our data sets, synchronization can be adapted to every particular cell cycle event 175

under study. The LiveCellMiner toolbox provides different ways of synchronizing the 176

individual trajectories. We chose two characteristic events as the synchronization 177

anchors, to obtain properly aligned time series for quantitative comparisons. To this 178

end, we identify interphase to prophase transition (IP) or metaphase/early anaphase to 179

late anaphase transition (MA) as reference mark for alignment of interphase or 180

postmitotic frames, respectively. There are currently three options for automatic 181

alignment. The first approach uses the classical object features area, circularity, mean 182

intensity and intensity std. dev. to identify the IP transition by searching for two 183

clusters that minimize the within-class variance in the frames before the chromatin 184

masses separate using the temporally constrained combinatorial clustering (TC3) 185

method [17]. If the division time point that was identified during tracking corresponds 186

to early anaphase, the software can automatically reposition the MA transition. 187

Detecting early anaphase is accomplished by a heuristic that checks if the centroid 188

distance of the chromatin masses of both daughter cells exceeds a user-defined threshold. 189

As the classical method is originally applied to all trajectories, it may happen that the 190

project still contains invalid trajectories. The second method is similar to the first 191

method, but uses an additional auto-rejection of erroneous tracks. This is accomplished 192

with a trainable LSTM network [46] that assesses the validity of each trajectory as a 193

whole. The third method uses another LSTM network that was trained on sequences of 194

CNN features that were obtained from the pretrained GoogLeNet to predict the state 195

sequence for all-time points, as well as identifying which of the cell tracks are 196

valid/invalid. The predicted synchronization time points are post-processed with a 197

Hidden Markov Model (HMM) that only allows valid state transitions (e.g., state 198

sequences 1→ 2→ 3 for a valid track or 0 for an invalid track) [47]. Transition 199

probabilities are manually specified and based on the predicted states of the LSTM, and 200

we use the Viterbi algorithm to identify the most likely hidden state sequence [48]. 201

To inspect and optionally correct the automatic synchronization results, we provide 202

a simple graphical user interface to manually identify the state transitions (Fig. 1). This 203

facilitates man-machine feedback, decreasing the size of the classifiers, and training 204

time, if needed. It displays a set of cells, where two cells above one another are 205

daughters and image snippets are preloaded to smoothly interact with the GUI. A 206

manual annotation of two daughter cells can be accomplished with two clicks by 207

identifying the last frame considered as interphase to mark the IP transition and the 208

early anaphase frame to mark the MA transition. All intermediate frames are classified 209

accordingly, and the annotations of one of the daughter cells are directly copied to the 210

other daughter to have a consistent alignment. The GUI also allows rejecting entire 211

trajectories, e.g., if no mitotic event is present or due to erroneous tracking. The 212

manually synchronized cells can additionally be used for retraining the LSTMs of the 213

automatic synchronization methods, and it is possible to specify separate models for 214

different experimental conditions. We provide thorough validation of the different 215

synchronization possibilities in Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5 and in Table 216

S4. Once all cells are properly aligned, both qualitative and quantitative comparisons 217
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Fig 1. Graphical User Interface for Trajectory Synchronization. Using an
intuitive annotation scheme, users can verify and potentially correct the cell
synchronization. Moreover, erroneous tracks that do not contain a mitotic event can be
discarded. An initial synchronization can be automatically obtained using both classical
and machine learning-based synchronization methods as detailed in the main text.
Colors indicate interphase frames (green), pro-, prometa-, meta- and early anaphase
frames (magenta), late ana- and telophase (cyan) and erroneous trajectories (red).

between different experiments can be performed, as detailed in the next sections. 218

Data Selection and Visualization Capabilities 219

An important aspect for the analysis of a particular subset of cells is data selection. 220

This can be accomplished by using class-based selection procedures that allow to group 221

the data according to imported metadata. For instance, it is possible to select 222

experiments that were acquired with a particular microscope, a subset of treatments, a 223

specific experiment or individual positions. It is also possible to use multiple properties 224

in combination, to specify a feature range for selection, and to use the basic 225

functionality of SciXMiner to add additional groupings derived from the individual or 226

time series features [34]. Subsequent visualization, quantification and manual 227

corrections are then automatically constrained to the selected cells. 228

In addition to the standard visualizations available in SciXMiner, we provide 229

dedicated visualizations for the LiveCellMiner toolbox. Time series can be visualized as 230

heatmaps, mean time series and combined line plots (Fig. 2A-C). In the heatmap 231

visualization, each line represents a feature time series of a single cell, with feature 232

values indicated by the color code. The identified synchronization time points are used 233

to properly align the cell tracks below each other. Rather than displaying each cell 234

separately, the mean ± std. dev. plots average the results of a particular position, 235

experiment or microscope (Fig. 2B). Averaging is performed on the aligned tracks to 236

ensure that only corresponding mitotic stages are compared. In addition to presenting a 237

single plot per selected group, it is also possible to combine all line plots including error 238

bars in a single plot for better comparison (Fig. 2C). Extracted single features can be 239

visualized as box or violin plots (Fig. 2D) and as histograms (Fig. 2E). 240

All visualizations and subplots can be adjusted according to the selected grouping of 241

the data. Aside from plotting all individual results in separate subplots, this allows 242

combining related experiments, e.g., visualizing the average response of a particular 243

treatment across experiments, summarizing different repetitions of the same experiment 244

or averaging responses across experiments. An example of three possible grouping 245

scenarios is depicted in Fig. 3. 246
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Fig 2. Visualization Options of LiveCellMiner. The LiveCellMiner extension
provides multiple ways of data visualization. (A) Temporally aligned heatmaps of
feature time series (color encodes the feature value, e.g., the area in numbers of pixels as
in this example), (B) mean ± std. dev. curves summarizing all trajectories of a
particular position or experiment in a separate subplot, (C) mean curves of multiple
experiments with error bars plotted in a single axis for better comparability, (D) violin
or box plots of single feature values and (E) histograms of individual data points
grouped according to the current selection.

Fig 3. Grouped Data Visualizations. The three panels illustrate the different
grouped visualization possibilities and were obtained using four experiments showing
the normalized mean intensity for two oligos (Scrambled, PP2A). Exp. 1, Rep. 1-3 are
three repetitions of the same experiment and Exp. 2, Rep. 1 is one separate experiment
that was acquired using a different modality (confocal instead of a widefield
microscope). The settings for combining the experiments (from left to right) are: (A)
average time series of all experiments and repeats, (B) time series averaged over the
repeats with separate plots per experiment and (C) individual plots for all experiments
and repeats. Error bars indicate one standard deviation and the vertical bars represent
the IP and the MA transitions.
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Although it is good to have a variety of features that users can freely select from, not 247

all features are necessarily relevant for characterizing a specific phenotype of interest. In 248

addition to the targeted visualizations, LiveCellMiner thus also provides an easy way to 249

obtain a ranked overview of all extracted features including statistical readouts like 250

minimum, maximum, mean, standard deviation and median in table form as well as 251

graphically using heat maps and combined line plots for all features. To identify which 252

features are potentially suitable for characterizing phenotypic differences, we compute 253

the n-fold change of each feature from the interphase average to the average of the first 254

two prophase frames and the first two anaphase frames (window for averaging can be 255

changed by the user). The generated report is exported in HTML format and can be 256

conveniently displayed with any conventional internet browser (see File S1 and File S2 257

for a demonstration of automatically generated reports). Last but not least, 258

LiveCellMiner can be used for statistical analysis of selected cells based on the single 259

features or based on time series features of each cell. The methods for comparing single 260

features across different groups comprise both parametric (two-sample t-test, ANOVA) 261

and non-parametric tests (Wilcoxon, Kruskal-Wallis) as well as a two-way ANOVA 262

(treatment × time) to be applied on selected time series. Results are exported as easily 263

accessible spreadsheet files including the test results and the p-values of the performed 264

tests. 265

Results 266

Cross-Platform Reproducibility of LiveCellMiner Readouts 267

To test the capabilities of LiveCellMiner on the output of common light microscopy 268

systems, we have reexamined the mitotic progression of cells after RNAi-mediated 269

downregulation with negative and positive controls from previously published [37–39] 270

and unpublished data sets (LSM710 confocal, see Note S1). Our routine positive control 271

is the RNAi-mediated downregulation of three subunits of the heterotrimeric PP2A 272

complex: PPP2CA (catalytic subunit alpha), PPP2R1A (scaffold subunit alpha) and 273

PPP2R2A (a regulatory subunit B55 alpha). This PP2A complex is involved in the 274

control of mitotic spindle assembly [49], and the spindle assembly checkpoint [50] 275

promotes mitotic exit, disassembly of the spindle-pole associated microtubules in 276

anaphase, resumption of nucleo-cytoplasmic transport, reclustering Golgi apparatus and 277

chromatin decondensation ( [51]; see [52] and [53] for review). 278

When this specific PP2A complex is downregulated, various defects of mitotic 279

progression are observed: prolongation of early mitosis (prophase, prometaphase and 280

metaphase), partial late anaphase arrest and delayed reestablishment of 281

nucleo-cytoplasmic transport [51]. In addition, PP2A downregulation leads to faulty 282

chromatin decondensation and results in a partial telophase arrest [38]. The analysis of 283

phenotypes using LiveCellMiner demonstrates that the biological effects of a given 284

treatment can be quantitatively extracted by measuring a basic set of image features 285

(Fig. 4), without the need for extensive training of phenotypic classifiers. This is done in 286

a reproducible manner across different live-cell microscopy platforms. In this case, area 287

and intensity measures were used as proxy for chromatin decondensation (Fig. 4A-C), 288

which is, as reported, delayed upon PP2A knockdown. In a similar way, deviations from 289

control values in nuclear geometrical descriptors, i.e., major and minor axes (Fig. 4D), 290

might indicate deformations and irregularities due to altered cytoskeleton or chromatin 291

regulation [54]. LiveCellMiner automatically detects interphase to prophase and 292

metaphase to anaphase transitions as well as the degree of rotation of the chromatin 293

mass (Fig. 4F, G). These readouts allow detecting important errors in early mitotic 294

progression. Delayed anaphase onset might arise from persistent chromosome 295
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Fig 4. Platform Comparison. Reproducibility study with different microscope
systems. The columns show exemplary quantifications of the same experiment
conducted on different microscopy platforms. We compare Scrambled (control, blue) vs.
PP2A knockdown cells (orange). The time series features involve the chromatin area
(µm2) (A), the chromatin mean intensity (a.u.) (B), the normalized mean intensity
(absolute intensity values divided by the interphase mean intensity of each cell, a.u.)
(C), the minor axis vs. major axis ratio (D) and interphase-recovery feature as detailed
in Table S2 (E). The violin plots show the duration between interphase-prophase and
meta-anaphase transition in minutes (F) and the sum of the absolute angular changes in
degrees (G). Widefield 10×: NScrambled = 1262, NPP2A = 1198; Confocal 10×:
NScrambled = 2830, NPP2A = 1008; Confocal 20×: NScrambled = 792, NPP2A = 668.
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misalignment and/or deficient spindle function as well as spindle misorientation, which 296

often lead to chromosomal instability (CIN), a common feature in many pathologies 297

including cancer ( [55,56], for review see [57,58]). 298

However, HeLa cells do not move much and display relatively stable morphology 299

with clearly distinguishable cytological changes, which facilitates segmentation and 300

tracking in time-lapse imaging experiments. As this is not necessarily common to other 301

cell types, we have challenged LiveCellMiner to compare the phenotype after PP2A 302

downregulation in RPE cells, which move much more than HeLa and have more 303

heterogeneous and changing nuclear morphologies. Applying the same segmentation and 304

tracking algorithms like for HeLa, LiveCellMiner performed reasonably good in 305

segmentation, tracking and synchronization (Fig. S4, Table S4). The results shown in 306

(Fig. S9) are in line with what was shown in HeLa cells above, supporting the functions 307

of PP2A across cell lines and the usability of LiveCellMiner with different cell types 308

regardless of cell morphology or mobility. We noticed an increased number of falsely 309

detected cell divisions that were successfully suppressed after training a synchronization 310

classifier (Fig. S4, Table S4). In future versions, we could potentially extend the 311

tracking algorithm of LiveCellMiner with a more complex division detection module to 312

decrease the fraction of invalid tracks. 313

Quantitative Characterization of Multiple Mitotic Phenotypes 314

To test LiveCellMiner for the quantitative study of a broad spectrum of mitotic 315

phenotypes, we reanalyzed changes of chromatin and tubulin cytoskeleton appearance 316

after LSD1 and RecQL4 RNAi-mediated downregulation in human cells using this tool. 317

We have previously described the Lysine Specific Demethylase, LSD1 (also known as 318

KDM1A), as a crucial factor for reassembly of a functional nucleus at the end of 319

mitosis [38]. Our recent work has shown that RecQ-like helicase 4 (RecQL4), whose 320

mutations are causative of the Rothmund–Thomson syndrome, is important for stable 321

chromosome alignment during mitosis [37]. These live-cell imaging experiments (Note 322

S1) were carried out in HeLa cells stably expressing H2B-mCherry, as chromatin marker, 323

and eGFP-Tubulin for the spindle apparatus, which is the molecular machinery in 324

charge of organizing and exerting the necessary forces to segregate chromatin. 325

Without the need of training experiment-specific phenotypic classifiers for the 326

chromatin morphology or spindle apparatus, LiveCellMiner corroborates reduced 327

chromatin decondensation rates, as area, mean intensity and interphase recovery in 328

LSD1 downregulated cells (Fig. 5A-C, E). In turn, these image features that describe 329

chromatin compaction state are unaffected by the RecQL4 downregulation (Fig. S8A-C). 330

The nuclear morphology can be also analyzed. In LSD1 and PP2A downregulated cells, 331

after cell division, the nuclei become rounder (Fig. 5D), as indicated by minor vs. major 332

axis ratios. By contrast, after RecQL4 downregulation, elongated nuclear shape is 333

evident (Fig. 5J). These anomalies might indicate an unbalance in the plethora of 334

dynamic processes, factors and structures that reform the nuclear compartment during 335

late mitosis (see [59] and [32] for review). The molecular reasons and consequences of 336

these, previously unnoticed, alterations in the nuclear morphology are not clear yet. 337

However, abnormalities in the nuclear shape and architecture are widely observed in 338

pathological conditions and ageing ( [60] for review), which hint new paths for 339

biomedical research regarding these protein targets. 340

Previous work indicate that downregulation of PP2A, LSD1 or RecQL4 delays early 341

mitotic progression. LiveCellMiner analysis shows the expected increase in the average 342

time spent from prophase to anaphase onset after RNAi mediated downregulation of 343

these targets (Fig. 5G-H, M-N). However, a high degree of metaphase plate rotation is 344

only observed in PP2A-downregulated cells, as the mean angle difference follows the 345

axis of cell division (Fig. 4G and Fig. 5I,O). This points to the different roles of PP2A 346
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Fig 5. Analysis of LSD1 and RecQL4 Knockdowns. Panels (A)-(I) show control
(Scrambled) vs. LSD1-1, LSD1-2 and PP2A, whereas panels (J)-(O) show control
(Scrambled) vs. RecQL4-1, RecQL4-2 and RecQL4-3 knockdown cells. The features
involve the normalized area (A), the mean intensity (B), the normalized mean intensity
(absolute intensity values divided by the interphase mean intensity of each cell, C), the
minor axis vs. major axis ratio (D, J), the interphase recovery ratio (E, K), distance
between sister chromatin masses (F, L) and cumulative histograms for the time in early
mitotic progression until anaphase onset (G, M). The violin plots show the duration
between interphase-prophase and meta-anaphase transition in minutes (H, N) and the
mean angular difference in degrees (I, O). Images of panels (A)-(I) were acquired with a
confocal microscope (LSM5L, 10×, 0.656µm/pixel). The plots combine extracted
trajectories from three independent repeats with a total number of NScrambled = 1262,
NLSD1-2 = 970, NLSD1-6 = 1332, NPP2A = 1198 cells. Images of panels (J)-(O) below
the dashed line were acquired with a confocal microscope (LSM5L, 20X,
0.328µm/pixel). The plots combine extracted trajectories from three independent
repeats with a total number of NScrambled = 1094, NRecQL4-1 = 814, NRecQL4-3 = 842,
NRecQL4-4 = 786 cells. See Table S2 and Table S3 for details on the depicted features.
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and LSD1/RecQL4 in the control of the spindle apparatus during mitosis, consistent 347

with current knowledge. The early mitotic delay after PP2A downregulation reflects 348

broad defects in spindle function at the level of microtubule–kinetochore 349

attachment [50] and bipolar spindle formation [49]. In turn, the abnormal fluctuations 350

in the orientation of metaphase chromatin indicates faulty function of the cortical 351

network and/or defective astral microtubules emanating from the spindle poles ( [55,56]; 352

see [61] for review). In the case of LSD1 downregulation, where no metaphase 353

chromatin rotation is observed, the early mitotic delay might arise from defects in 354

chromatin methylation impairing correct chromosome segregation ( [62]; see [63] for 355

review), and might reflect unbalances in the expression of three major players of the 356

mitotic control: PLK1 [64], BUBR1 and MAD2 [65], whose transcriptional regulation is 357

influenced by LSD1. Likewise, the absence of rotation of the metaphase plate in 358

RecQL4-downregulated cells suggests that the delay in early mitotic progression is not 359

due to malfunction of the astral microtubules and/or cortical network. 360

LiveCellMiner is able to measure the time-dependent distancing of daughter 361

chromatin masses after anaphase onset. This readout is a proxy for chromosome and 362

spindle dynamics during later mitotic stages. Consistent with known alterations in 363

spindle dynamics during mitotic exit upon PP2A downregulation, delayed chromatin 364

masses separation is observed early after anaphase onset (Fig. 5F, Fig. S7D). In turn, 365

RecQL4 downregulated cells follow similar kinetics than control cells right after 366

anaphase onset but decelerate the separation of the daughter nuclei later (Fig. 5F,L). 367

This might indicate that RecQL4 is involved in the complex regulation of cytoskeleton 368

dynamics during mitotic exit and cytokinesis (see [66–68]for review), and opens a new 369

research avenue. 370

Expressing fluorescent reporters in cells could perturb the phenomena under study. 371

For example, overexpression of highly charged core histones can replace the surfactant 372

effect that Ki-67 exerts in prometaphase in order to avoid excessive chromosome 373

clustering [69]. Additionally, cell-to-cell variability can introduce artefacts affecting the 374

dynamic range of the measure and preventing the detection of anomalies. To overcome 375

these problems, LiveCellMiner permits single-cell temporal normalization of the 376

extracted features. This allows extracting rates of change in comparable conditions 377

(Fig. 5B-C, Mean Int. vs. Mean Int. Norm, see also Fig. S8B-C). Furthermore, to avoid 378

or minimize the impact of cell-to-cell differences in expression of the reporters, 379

LiveCellMiner includes a module to select cell sub-populations fulfilling certain criteria, 380

e.g., a limited intensity range of the H2B-mCherry chromatin marker in a given part of 381

the cell cycle. For example, within the LSD1 data set, the oligo LSD1-1, but not the 382

LSD1-2, increases considerably the amount of cells with extremely high H2B-mCherry 383

signals (Fig. 5A, Mean Int.). LiveCellMiner enables us to discard effects from the 384

unequal reporter expression by confining the analysis, i.e., to cells with low chromatin 385

intensity values before entry into mitosis (Fig. S7). 386

The use of various fluorescent markers with different spectral properties is 387

particularly useful for studying complex phenotypes. For mitosis-related events, 388

studying the mitotic spindle by fluorescent labeling of different tubulin isoforms, e.g., 389

stable expression of eGFP-alpha-Tubulin, helps unraveling whether formation and/or 390

function of the spindle apparatus is affected. Here, LiveCellMiner can extract spindle 391

dynamics data by morphological dilation of the primary segmentation from the 392

chromatin channel with a disk-shaped structuring element with a 15 pixel radius (see 393

Table S3 for available features). PP2A but not RecQL4 or LSD1 RNAi-treated cells 394

show a reliable increase of the spindle intensity staining during mitotic exit 395

(Fig. S8D,G) as well as a delayed disappearance of the astral spindle signal (detected as 396

radial displacement of the intensity maximums in the GFP channel towards the polar 397

regions) (Fig. S8E,H). These measurements are consistent with previous findings which 398
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suggest that the PP2A-B55 holoenzyme regulates spindle-pole associated microtubules 399

disassembly in late anaphase [51]. Furthermore, LSD1 but not PP2A (Fig. S8D,F) or 400

RecQL4 (Fig. S8G,I) RNAi-treated cells show stronger spindle intensity during early 401

mitotic progression. This previously unnoticed phenotype could hint to additional roles 402

of LSD1 in spindle stability, finding that needs to be confirmed in the future. 403

Reanalysis of Mitotic Phenotypes Mediated by siRNA against 404

VPS72, H2A.Z and the ATPase Subunits from the Chromatin 405

Remodeling Complexes EP400, SRCAP and Ino80 406

We have recently shown that downregulation of VPS72, also referred to as YL-1, extends 407

telophase in cells [39] by using live cell imaging combined with CecogAnalyzer 1.5.2. [10] 408

analysis. VPS72 is part of the EP400 and the Snf2-related CBP-activator protein 409

(SRCAP) chromatin remodeling complexes, where it works as a chaperon for H2A.Z. We 410

also screened for telophase phenotypes after siRNA-mediated downregulation of EP400, 411

SRCAP and H2A.Z, including as control the chromatin remodeling complex INO80, 412

which does not contain VPS72. Here, we use the published data set to demonstrate the 413

flexibility and suitability of LiveCellMiner for the analysis of high-content screening 414

(HCS) data sets (Note S1). Box-and-whisker or violin plots allow for comprehensive 415

visualization of biologically relevant image features grouped by treatment, replicate 416

number, etc. to enable direct comparison between dozens of experiments and allowing 417

identification of samples with phenotypic deviations from a huge data set. 418

Reanalysis of the data set with LiveCellMiner revealed, for example, that 419

downregulation of INO80, SRCAP, EP400 and H2A.Z consistently lengthens early 420

mitotic progression compared to the scramble control, similar to the PP2A positive 421

control (Fig. S6A). In contrast, this is not observed upon VPS72 downregulation. These 422

observations support previous findings where INO80 [70] and SRCAP [71] associate 423

with the spindle apparatus and are required for proper mitotic progression. To our 424

knowledge EP400 has not been linked to spindle function yet. However, our reanalysis 425

raises the possibility that the EP400 chromatin remodeling complex is also involved in 426

mitotic processes. Furthermore, the slight extension of early mitosis in H2A.Z depleted 427

cells might indicate defective chromosome capture by the spindle apparatus due to 428

chromosome centromeres alteration, where H2A.Z acts as organizer [72]. 429

In a similar way, the detailed analysis of single features like chromatin area at 430

different times (here, 21 and 42 min after anaphase onset) reveals that in PP2A- and 431

VPS72-downregulated cells, nuclei at the end of mitosis are consistently smaller than in 432

control cells (Fig. S6B,C). In turn, PP2A siRNA-treated cells show additionally a delay 433

in the rate of recovery of interphase average area (Fig. S6D,E). This is consistent with 434

the function of PP2A in the disassembly of spindle-pole associated microtubules and the 435

reinitiation of nucleo-cytoplasmic transport in anaphase [51]. 436

With this comprehensive display, intra- and inter-experimental variability can be 437

analyzed (Fig. S6). For example, inter-experimental variability (for EXP1 and EXP2; 438

see (Fig. S6D,E) legend) for chromatin area and area recovery rates at 21 and 41 min 439

are observed for the treatments with the PP2A-siRNA but not for scramble and the 440

other siRNAs. 441

The concept of high-content screening implies that thousands of targets are tested in 442

parallel. Often these setups require imaging for more than three days and slower frame 443

frequency (i.e., 5 to 8 min), which is needed to avoid phototoxicity and to provide 444

enough time for the imaging loop through hundreds of positions. Longer times between 445

frames might negatively impact segmentation and tracking performance resulting in 446

inefficient phenotype recognition. Thus, we sought to test how LiveCellMiner performs 447

with very large data sets of live-cell image sequences. For this, we took advantage of an 448
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original data set where they screened for genes involved in chromosome condensation at 449

the beginning of mitosis in HeLa cells recorded every 8.5 min [33]. Constrained by our 450

computing capacity, we reanalyzed only 76 positions of this HCS data set corresponding 451

to solid-phase transfection of siRNA against scramble controls and two well-known 452

mitotic regulators: CDC20 and Aurora Kinase A (AurKA). LiveCellMiner performed 453

reasonably well in segmentation and tracking (Fig. S5, Table S4, Fig. S12), 454

accomplishing full analysis of each position in about 30 min with a single workstation. 455

Processing time could be considerably reduced by data-parallel computing, e.g., by 456

distributing the positions of a screen to separate nodes of a computing cluster. In line 457

with available knowledge, LiveCellMiner detects a delay in the early mitotic progression 458

for siRNA mediated downregulation of CDC20 [73] and AurKA [74] (Fig. S10C). Our 459

analysis also reflects the known role of CDC20 during mitosis exit [10] as a delay in 460

chromatin expansion after anaphase onset in CDC20 downregulated cells 461

(Fig. S10A,B,D and E). These results, along with those in Fig. S9, demonstrate the 462

ability of LiveCellMiner to successfully and rapidly analyze data, across a range of cell 463

types and frame frequencies, including those from HCS. 464

In the future, we will validate the hypotheses formulated here and investigate the 465

molecular mechanisms behind the newly described early mitotic phenotypes. In essence, 466

the reevaluation of the live cell imaging data sets confirmed previous findings regarding 467

late mitotic phenotypes. These examples illustrate the power of LiveCellMiner to screen 468

complex phenotypes in a quantitative manner using simple to complex live-cell imaging 469

experiments. Our examples focus on mitotic chromatin, but with modest modifications, 470

LiveCellMiner would also be applicable to other fluoresently labeled subcellular 471

structures. 472

Availability and Future Directions 473

The LiveCellMiner extension package can be obtained from the following repository 474

https://github.com/stegmaierj/LiveCellMiner. We provide detailed installation 475

instructions and an overview of all LiveCellMiner-specific functions on the landing page 476

of the repository. As potential improvements will be made available via the repository, a 477

snapshot of the latest version upon the submission time point can be obtained here 478

https://zenodo.org/badge/latestdoi/269630703. 479

While LiveCellMiner provides already all tools to perform in-depth analyses of 480

high-content screens, there are a few points we will address in future versions of the 481

software. In the current implementation, LiveCellMiner searches for mitotic events and 482

uses the anaphase onset as a reference for extracting the remaining frames for the 483

analysis. In future versions, we will also add the possibility to analyze non-mitotic 484

tracks and adapt the synchronization tools to other scenarios as well. The current 485

detection and segmentation methods sequentially process individual images one at a 486

time. To speedup processing for larger screens these steps could potentially be 487

parallelized to fully exploit multicore CPUs and GPUs as available in the respective 488

system. As a temporary workaround, one can run multiple instances of LiveCellMiner 489

and thereby distribute the processing of independent projects, e.g., on different cluster 490

nodes. The deep learning-based segmentation relies currently on the external pretrained 491

software tool Cellpose [16]. The advanced segmentation methods could be implemented 492

directly in MATLAB to streamline the processing with as little additional dependencies 493

as possible. Finally, the trajectory synchronization module of LiveCellMiner currently 494

involves a few semi-automatic steps that can become time-consuming for very large and 495

highly diverse screens. A future avenue of research will thus be improving the reliability 496

of unsupervised approaches like [17] to ultimately analyze high-content screens in a 497

fully-automatic fashion. 498
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Fig. S1 Validation of the Synchronization Performance for a Confocal 504

Data Set. The manually annotated data comprise three experiments with two 505

positions each (20× objective, physical spacing 0.415µm, 3 minute time intervals and 506

N = 832 trajectories in total). Columns show the results of the three different 507

synchronization methods (Classical, Classical+Auto Rejection and LSTM+HMM+Auto 508

Rejection) as described in the main text. The first two rows show histograms of the 509

frame offset of the automatically identified synchronization time points with respect to 510

a manually annotated ground truth (IP: interphase to prophase transition and MA: 511

metaphase to anaphase transition). For instance, a value of 1 indicates that the 512

synchronization time point is set one frame too late and 0 indicates a perfect match. 513

The last row quantifies precision, recall, f-score and accuracy of the auto rejection 514

module that is intended to discard erroneous tracks. Validation was performed using a 515

6-fold cross validation by retraining the LSTM-based classifier on each split and testing 516

the classifier on each of the remaining test data. 517
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Fig. S2 Validation of the Synchronization Performance for a Widefield 519

Data Set. The manually annotated data comprise three experiments with two 520

positions each (10× objective, physical spacing 0.65µm, 3 minute time intervals and 521

N = 832 trajectories in total). Columns show the results of the three different 522

synchronization methods (Classical, Classical+Auto Rejection and LSTM+HMM+Auto 523

Rejection) as described in the main text. The first two rows show histograms of the 524

frame offset of the automatically identified synchronization time points with respect to 525

a manually annotated ground truth (IP: interphase to prophase transition and MA: 526

metaphase to anaphase transition). For instance, a value of 1 indicates that the 527

synchronization time point is set one frame too late and 0 indicates a perfect match. 528

The last row quantifies precision, recall, f-score and accuracy of the auto rejection 529

module that is intended to discard erroneous tracks. Validation was performed using a 530

6-fold cross validation by retraining the LSTM-based classifier on each split and testing 531

the classifier on each of the remaining test data. 532
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533

Fig. S3 Validation of the Synchronization Performance for the LSD1 Data 534

Set. The manually annotated data comprise three experiments with 16 positions each 535

(10× objective, physical spacing 0.656µm, 3 minute time intervals and N = 5878 536

trajectories in total). Columns show the results of the three different synchronization 537

methods (Classical, Classical+Auto Rejection and LSTM+HMM+Auto Rejection) as 538

described in the main text. The first two rows show histograms of the frame offset of 539

the automatically identified synchronization time points with respect to a manually 540

annotated ground truth (IP: interphase to prophase transition and MA: metaphase to 541

anaphase transition). For instance, a value of 1 indicates that the synchronization time 542

point is set one frame too late and 0 indicates a perfect match. The last row quantifies 543

precision, recall, f-score and accuracy of the auto rejection module that is intended to 544

discard erroneous tracks. Validation was performed by training on 1328 trajectories that 545

were evenly distributed among all positions and by applying it to a remaining set of 546

2990 trajectories. 547
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548

Fig. S4 Validation of the Synchronization Performance for the RPE Data 549

Set. The manually annotated data comprise one experiment with 6 positions (Nikon 550

microscope, 20x objective, physical spacing 0.33µm, 3 minute time intervals and 551

N = 388 trajectories in total). Columns show the results of the three different 552

synchronization methods (Classical, Classical+Auto Rejection and LSTM+HMM+Auto 553

Rejection) as described in the main text. The first two rows show histograms of the 554

frame offset of the automatically identified synchronization time points with respect to 555

a manually annotated ground truth (IP: interphase to prophase transition and MA: 556

metaphase to anaphase transition). For instance, a value of 1 indicates that the 557

synchronization time point is set one frame too late and 0 indicates a perfect match. 558

The last row quantifies precision, recall, f-score and accuracy of the auto rejection 559

module that is intended to discard erroneous tracks. Validation was performed using a 560

6-fold cross validation by retraining the LSTM-based classifier on each split and testing 561

the classifier on each of the remaining test data. 562

March 17, 2022 20/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.11.17.469067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469067
http://creativecommons.org/licenses/by/4.0/


Classical, N=2200

-4 -3 -2 -1 0 1 2 3 4

IP-Transition Offset (Frames)

0

500

1000

1500

2000

F
re

qu
en

cy

Classical, N=2200

-4 -3 -2 -1 0 1 2 3 4

MA-Transition Offset (Frames)

0

500

1000

1500

2000

F
re

qu
en

cy

Classical

Recall Precision F-Score Accuracy
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Classical + Auto Rejection, N=2200

-4 -3 -2 -1 0 1 2 3 4

IP-Transition Offset (Frames)

0

500

1000

1500

2000

F
re

qu
en

cy

Classical + Auto Rejection, N=2200

-4 -3 -2 -1 0 1 2 3 4

MA-Transition Offset (Frames)

0

500

1000

1500

2000

2500

F
re

qu
en

cy
Classical + Auto Rejection

Recall Precision F-Score Accuracy
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

LSTM + HMM + Auto Rejection, N=2200

-4 -3 -2 -1 0 1 2 3 4

IP-Transition Offset (Frames)

0

500

1000

1500

2000

F
re

qu
en

cy

LSTM + HMM + Auto Rejection, N=2200

-4 -3 -2 -1 0 1 2 3 4

MA-Transition Offset (Frames)

0

500

1000

1500

2000

F
re

qu
en

cy

LSTM + HMM + Auto Rejection

Recall Precision F-Score Accuracy
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

563

Fig. S5 Validation of the Synchronization Performance for the Public 564

Data Set by Hériché et al. [33]. The manually annotated data comprise twelve 565

experiments with 4 positions each (automated epifluorescence microscope, 20× objective, 566

physical spacing 0.32µm, 8.5 minute time intervals and N = 2200 trajectories in total). 567

Columns show the results of the three different synchronization methods (Classical, 568

Classical+Auto Rejection and LSTM+HMM+Auto Rejection) as described in the main 569

text. The first two rows show histograms of the frame offset of the automatically 570

identified synchronization time points with respect to a manually annotated ground 571

truth (IP: interphase to prophase transition and MA: metaphase to anaphase transition). 572

For instance, a value of 1 indicates that the synchronization time point is set one frame 573

too late and 0 indicates a perfect match. The last row quantifies precision, recall, f-score 574

and accuracy of the auto rejection module that is intended to discard erroneous tracks. 575

Validation was performed using a 6-fold cross validation by retraining the LSTM-based 576

classifier on each split and testing the classifier on each of the remaining test data. 577
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578

Fig. S6 Exemplary Readouts from a High-Content Screen. The different 579

panels show violin plots of the IP to MA duration in minutes (A), the area at 21 and 42 580

minutes after anaphase onset (B, C), the area recovery compared to the level at 581

interphase in % at 21 and 42 minutes after the anaphase onset (D, E) as well as a 582

combined recovery measure comprised of area, minor axis length, mean intensity and 583

intensity standard deviation at 60 minutes after anaphase onset (F). See Table S2 for a 584

more detailed description of the individual features. Numbers above each violin are the 585

respective median values. 586

March 17, 2022 22/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.11.17.469067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469067
http://creativecommons.org/licenses/by/4.0/


587

Fig. S7 Analysis of LSD1 with Constrained Intensity Range (40-46). 588

Images were acquired with a confocal microscope (LSM5L, 10×, 0.656µm/pixel). We 589

compare control (Scrambled), LSD1-1, LSD1-2 and PP2A knockdown cells. The basic 590

features involve the normalized area (A), the mean intensity (B), the normalized mean 591

intensity (C) and the sister cell displacement (D). The violin plots show the duration 592

between interphase-prophase and metaphase-anaphase transition in minutes (E) and the 593

mean orientation angle difference in degrees (F). The selection was constrained to cells 594

exhibiting an interphase mean intensity in the range of 40− 46, which yielded a set of 595

NScrambled = 84, NLSD1-1 = 18, NLSD1-2 = 190, NPP2A = 106 cells. 596
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597

Fig. S8 Analysis of LSD1 and RecQL4 Knockdowns (Additional Features). 598

Panels (A)-(F) show control (Scrambled) vs. RecQL4-1, RecQL4-2 and RecQL4-3, 599

whereas panels (G) - (I) show control (Scrambled) vs. LSD1-1, LSD1-2 and PP2A 600

knockdown cells. The features involve the normalized area (A), the mean intensity (B), 601

the normalized mean intensity (absolute intensity values divided by the interphase mean 602

intensity of each cell, C). Panels (D-I) exemplify features that were extracted from the 603

second fluorescence channel and include the normalized mean intensity (D,G), the 604

distance of the intensity maximum to the segmentation centroid (E,H) and the average 605

mean intensity between the IP and MA transitions (F,I). Images of panels (A)-(F) 606

above the dashed line were acquired with a confocal microscope (LSM5L, 20X, 607

0.328µm/pixel). The plots combine extracted trajectories from three independent 608

repeats with a total number of Nscrambled = 1094, NRecQL4-1 = 814, NRecQL4-3 = 842, 609

NRecQL4-4 = 786 cells. Images of panels (G)-(I) below the dashed line were acquired 610

with a confocal microscope (LSM5L, 10×, 0.656µm/pixel). The plots combine extracted 611

trajectories from three independent repeats with a total number of NScrambled = 1262, 612

NLSD1-2 = 970, NLSD1-6 = 1332, NPP2A = 1198 cells. See Table S2 and Table S3 for 613

details on the depicted features. 614
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615

Fig. S9 Analysis of PP2A knockdowns in RPE cells. Images were acquired 48 616

h post transfection with with 20nM siRNA by the widefield module of a Ti2 Eclipse 617

(Nikon) equipped with a LED light engine SpectraX (Lumecor) and GFP/mCherry 618

filter sets, a Plan-Apochromat 20x NA 0.75 and scaling 0.33µm/pixel. We compare the 619

quantitation of features as in Fig. 5 for control (Scrambled) and PP2A knockdown. The 620

plots combine extracted trajectories from NScrambled = 104 and NPP2A = 20 cells. See 621

Table S2 and Table S3 for details on the depicted features. 622
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623

Fig. S10 Analysis of CDC20 and Aurora Kinase A knockdowns in HeLa 624

cells from the HCS data set published by Hériché et al. [33]. This data set is 625

publicly available at Image Data Resource (IDR) 626

(https://idr.openmicroscopy.org/webclient/?show=screen-102). There, HeLa 627

cells stably expressing HIST1H2BJ-mCherry and LMNA-eGFP were cultured in 628

siRNA-coated 96-well plates. The images were acquired with an Olympus IX-81 629

automated epifluorescence microscope with a 20× objective, physical spacing 0.32µm 630

and a time interval of 8.5 min for 44 h. Four independent replicates were acquired for 631

each siRNA treatment. The plots show pooled measures from 48 scrambled-, 24 632

siCDC20- and 4 AurKA-1- siRNA treated positions (NScrambled = 668, NCDC20 = 32, 633

NAurKA-1 = 86). See Table S2 and Table S3 for details on the depicted features. 634

March 17, 2022 26/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.11.17.469067doi: bioRxiv preprint 

https://idr.openmicroscopy.org/webclient/?show=screen-102
https://doi.org/10.1101/2021.11.17.469067
http://creativecommons.org/licenses/by/4.0/


635

Fig. S11 Illustration of the LoG-based Nucleus Detection and Cellpose 636

Segmentation. Cellpose provides highly accurate nuclei segmentation for most of the 637

cells. However, in some rare cases (e.g., in late anaphase), cells tend to flicker and 638

remain undetected for one or more frames. To prevent interrupted tracks for such 639

misdetections, LiveCellMiner provides a fallback option on classical image analysis 640

methods and uses a LoG-based nucleus detection coupled with a classical binary 641

threshold and watershed-based segmentation as detailed in the main text. The depicted 642

examples qualitatively demonstrate the accurate segmentation performance of Cellpose 643

and a few examples where detections were missed that are successfully identified by the 644

classical LoG-based detection method. We found that using both approaches in 645

combination resulted in complementary results and effectively in more complete tracks 646

as quantitatively demonstrated in Table S1. The average diameter of all cells and across 647

all time points in this example is 40.79 pixels and the Cellpose diameter parameter was 648

set to the default value of 30 pixels, to allow segmenting smaller objects like cells in 649

meta- and anaphase as well. 650
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651

Fig. S12 Examples of Temporally Aligned Cells from Different 652

Experiments. Each row shows a single cell of different experiments (see legend in the 653

figure for imaging details). Images were scaled to a consistent size, temporally aligned 654

and contrast was adapted for better visibility. The white bars indicate the interphase to 655

prophase transition (IP) and the metaphase to anaphase transition (MA). Time stamps 656

are in minutes and display the relative timing with respect to the transition time points. 657
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Table S1 Quantification of the Detection, Segmentation and Tracking 658

Performance. Measurements were performed on two manually annotated time series 659

of the Fluo-N2DL-HeLa data set that is part of the Cell Tracking Challenge [75] and 660

was most similar to our application scenario (acquisition was performed with an 661

Olympus IX81 microscope using a 10× /0.4 objective lens, a physical spacing of 662

0.645× 0.645µm and 30 minute time intervals). The used metrics are DET (detection 663

score), SEG (segmentation score), TRA (tracking score), OPCTB (average of SEG and 664

TRA) and OPCSB (average of DET and SEG). All metrics have a value range between 0 665

and 1 with 1 being the optimum (see [75] for details on the measures). While 666

Cellpose [16] yields better segmentation scores, it misses cells occasionally. On the other 667

hand, our classical approach based on multi-scale Laplacian-of-Gaussian blob detection 668

is able to find most cells with a slightly worse segmentation accuracy. Combining both 669

approaches, i.e., complementing the Cellpose segmentation with additional cells that 670

were only found by the classical method, yielded consistently the best results 671

(highlighted in bold face letters). The experiments described in the main paper were 672

consistently acquired with 3 minute time intervals, which further improves the tracking 673

performance. Please note that neither parameter tuning of the classical method nor any 674

retraining of Cellpose was performed. Thus, the top-scoring methods listed on the Cell 675

Tracking Challenge leader board are still slightly higher but we expect our method to 676

generalize better to unseen data sets.

Method Series DET SEG TRA OPCTB OPCSB

Classical 01 0.969 0.687 0.941 0.814 0.828
Cellpose 01 0.903 0.681 0.879 0.780 0.792
Cellpose+Classical 01 0.978 0.766 0.960 0.863 0.872
Classical 02 0.939 0.700 0.909 0.805 0.820
Cellpose 02 0.929 0.806 0.906 0.856 0.868
Cellpose+Classical 02 0.948 0.821 0.927 0.874 0.885
Classical Average 0.954 0.694 0.925 0.810 0.824
Cellpose Average 0.916 0.743 0.893 0.818 0.830
Cellpose+Classical Average 0.963 0.793 0.952 0.873 0.878

677
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Table S2 Description of the relevant time series (TS) and single features 678

(SF) used for characterizing cell behavior based on the chromatin channel.

Feature Name Type Description
xpos TS Spatial x coordinate of the centroid of each nucleus per time point.
ypos TS Spatial y coordinate of the centroid of each nucleus per time point.
Area TS Area of the segmented nucleus measured in µm2.
MajorAxisLength TS Length of the major axis the segmented nucleus measured in

µm [76].
MinorAxisLength TS Length of the minor axis the segmented nucleus measured in

µm [76].
Orientation TS Angle between the positive x-axis and the major axis measured in

degrees [76].
Circularity TS Measure for the roundness of a nucleus and defined as (4 ∗Area ∗

π)/(Perimeter2). A perfect circle has a value of 1 [76].
MeanIntensity TS Average intensity measured in the segmented area.
StdIntensity TS Standard deviation of the intensity measured in the segmented

area.
StdIntensityGradMag TS Standard deviation of a gradient magnitude measured in the seg-

mented area.
RecoveryFeature TS Interphase recovery in percent (100% indicates full recovery). Mea-

sures the absolute percentage deviation of one or more features to
their respective interphase mean value (average percentage devia-
tion if multiple features are selected). Default used for the figures
in this paper: Area, Circularity, MeanIntensity, StdIntensity.

AngularSecondMoment TS Angular Second Moment (Energy) derived from the graylevel co-
occurrence matrix as described in [43] and implemented in [77].

Contrast TS Contrast derived from the graylevel co-occurrence matrix as de-
scribed in [43] and implemented in [77].

Correlation TS Correlation derived from the graylevel co-occurrence matrix as
described in [43] and implemented in [77].

Variance TS Variance derived from the graylevel co-occurrence matrix as de-
scribed in [43] and implemented in [77].

Homogeneity TS Inverse Difference Moment (Homogeneity) derived from the
graylevel co-occurrence matrix as described in [43] and imple-
mented in [77].

SumAverage TS Sum Average derived from the graylevel co-occurrence matrix as
described in [43] and implemented in [77].

SumVariance TS Sum Variance derived from the graylevel co-occurrence matrix as
described in [43] and implemented in [77].

SumEntropy TS Sum Entropy derived from the graylevel co-occurrence matrix as
described in [43] and implemented in [77].

Entropy TS Entropy derived from the graylevel co-occurrence matrix as de-
scribed in [43] and implemented in [77].

DifferenceVariance TS Difference Variance derived from the graylevel co-occurrence matrix
as described in [43] and implemented in [77].

DifferenceEntropy TS Difference Entropy derived from the graylevel co-occurrence matrix
as described in [43] and implemented in [77].

InformationMeasureofCorrelationI TS Information Measure of Correlation I derived from the graylevel
co-occurrence matrix as described in [43] and implemented in [77].

InformationMeasureofCorrelationII TS Information Measure of Correlation II derived from the graylevel
co-occurrence matrix as described in [43] and implemented in [77].

MaximalCorrelationCoefficient TS Maximal Correlation Coefficient derived from the graylevel co-
occurrence matrix as described in [43] and implemented in [77].

manualSynchronization TS Synchronization stage assigned either automatically or manually.
Allowed values are −1 (invalid trajectory), 0 (unlabeled trajectory),
1 (interphase), 2 (prophase, metaphase, early anaphase), 3 (late
anaphase, telophase).

manuallyConfirmed SF Boolean value for each trajectory that indicates if the synchroniza-
tion time points were manually checked. Only manually checked
trajectories will be used for classifier training.

IPToMALength Frames SF Duration between the IP and MA synchronization time points
measured in number of frames.

IPToMALength Minutes SF Duration between the IP and MA synchronization time points
measured in minutes.

InterphaseMeanIntensity SF Average of the mean intensity during interphase.
AccumulatedOrientationDiffPMA SF Sum of the angular change of the major axis orientation for the

entire time interval measured in degrees.
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Table S3 Description of the relevant time series (TS) and single features 679

(SF) that can be extracted from the second channel (optionally, if available). 680

Note that all features mentioned in Table S2 can also be extracted for the secondary 681

channel and are not listed here. Moreover, each of the listed features can be computed 682

on a grown/shrunk/toroidal region obtained via morphological dilation/erosion of the 683

chromatin mass segmentation with a user-defined radius and structuring element.

Feature Name Type Description
Ch1-Ch2-MI-Ratio TS Ratio of the mean intensities between Ch1 and Ch2.
Ch2-Outer-Inner-Mean-Ratio TS Mean value of the brightest 25% pixels in the secondary channel

(measured in a toroidal region around the chromatin segmentation)
and the mean value of the 25% of the brightest pixels of the
secondary channel within the region of the chromatin segmentation.

Ch2-Max-Int-Displacement TS Euclidean distance between the intensity-weighted centroid of
the brightest 25% pixels in the secondary channel measured in
a toroidal region around the chromatin segmentation and the
centroid of the chromatin segmentation.

%TSNAME% %TIME%FramesAfterMA SF Extracts the value of a selected time series %TSNAME% at time
point %TIME% as a single feature.

684

Table S4 Quantification of the Synchronization Performance. Measurements 685

were performed on a confocal data set (LSM710, 20× objective, physical spacing 686

0.415µm, 3 minute time intervals and N = 1606 trajectories in total), a widefield data 687

set (NikonXLight, 10× objective, physical spacing 0.65µm, 3 minute time intervals and 688

N = 5248 trajectories in total), a confocal data set (LSM5L, 10× objective, physical 689

spacing 0.656µm, 3 minute time intervals and N = 2990 trajectories in total), the RPE 690

data set (Nikon microscope, 20x objective, physical spacing 0.33µm, 3 minute time 691

intervals and N = 388 trajectories in total) and the public data set by Hériché et 692

al. [33] (automated epifluorescence microscope, 20× objective, physical spacing 0.32µm, 693

8.5 minute time intervals and N = 2200 trajectories in total). True positives (TP), true 694

negatives (TN), false positives (FP) and false negative (FN) are summed over all folds 695

of the 6-fold cross-validation. Precision, recall, accuracy and F-Score were computed 696

individually on each fold and the displayed values are the mean ± SD. The last two 697

columns contain the mean ± SD values of the synchronization time point offsets for the 698

interphase prophase transition (IP) and the metaphase to anaphase transition (MA) 699

measured in frames (a deviation of 1 frame corresponds to 3 minutes for both data sets). 700

Bold-face letters indicate the best values for each measure and data set.

Microscope / Method TP TN FP FN Precision Recall Accuracy F-Score Avg. Dev. IP Avg. Dev. MA
Conf. / Classical 1464 0 142 0 0.91 ± 0.00 1.00 ± 0.00 0.91 ± 0.00 0.95 ± 0.00 0.17 ± 0.47 0.03 ± 0.17
Conf. / Classical + Auto Rej. 1464 140 2 0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.17 ± 0.47 0.03 ± 0.17
Conf. / LSTM + HMM + Auto Rej. 1464 142 0 0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 -0.07 ± 0.75 0.06 ± 0.81
Widef. / Classical 3838 0 1410 0 0.73 ± 0.09 1.00 ± 0.00 0.73 ± 0.09 0.84 ± 0.06 -0.11 ± 1.03 0.07 ± 0.35
Widef. / Classical + Auto Rej. 3656 1280 130 182 0.96 ± 0.02 0.95 ± 0.04 0.94 ± 0.03 0.96 ± 0.03 -0.08 ± 0.89 0.07 ± 0.33
Widef. / LSTM + HMM + Auto Rej. 3602 1302 108 236 0.97 ± 0.02 0.93 ± 0.04 0.93 ± 0.03 0.95 ± 0.03 -0.46 ± 1.46 -0.06 ± 1.74
LSD1 / Classical 2434 0 556 0 0.81 ± 0.00 1.00 ± 0.00 0.81 ± 0.00 0.90 ± 0.00 -0.09 ± 0.69 -0.40 ± 1.44
LSD1 / Classical + Auto Rej. 2418 448 108 16 0.96 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 -0.09 ± 0.68 -0.39 ± 1.43
LSD1 / LSTM + HMM + Auto Rej. 2398 476 80 36 0.97 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 -0.35 ± 1.08 -0.18 ± 1.71
RPE / Classical 120 0 264 0 0.31 ± 0.05 1.00 ± 0.00 0.31 ± 0.05 0.47 ± 0.06 -0.19 ± 1.47 -0.38 ± 1.80
RPE / Classical + Auto Rej. 119 248 16 3 0.88 ± 0.06 0.98 ± 0.04 0.95 ± 0.02 0.92 ± 0.04 -0.19 ± 1.46 -0.37 ± 1.80
RPE / LSTM + HMM + Auto Rej. 119 248 16 5 0.88 ± 0.07 0.96 ± 0.04 0.95 ± 0.02 0.92 ± 0.04 -0.48 ± 1.59 0.10 ± 1.10
Hériché et al. / Classical 764 0 348 0 0.69 ± 0.00 1.00 ± 0.00 0.69 ± 0.00 0.81 ± 0.00 0.18 ± 0.39 -0.12 ± 0.55
Hériché et al. / Classical + Auto Rej. 676 276 72 88 0.90 ± 0.01 0.88 ± 0.09 0.86 ± 0.06 0.89 ± 0.05 0.17 ± 0.37 -0.11 ± 0.52
Hériché et al. / LSTM + HMM + Auto Rej. 648 276 72 116 0.90 ± 0.01 0.85 ± 0.07 0.83 ± 0.05 0.87 ± 0.04 -0.25 ± 1.03 0.16 ± 1.73

701

Table S5 Statistical analysis. Statistical test results for the violin plots of Fig. 4, 702

Fig. 5, Fig. S6, Fig. S7 and Fig. S8 summarized in a supplementary spreadsheet file. 703
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Table S6 Statistical analysis. Statistical test results for the time series plots of 704

Fig. 4, Fig. 5, Fig. S6, Fig. S7 and Fig. S8 summarized in a supplementary spreadsheet 705

file. 706

Table S7 LiveCellMiner dependencies. LiveCellMiner uses the previously 707

published tools XPIWIT [36], Cellpose [16] and SciXMiner [34] for object detection, 708

segmentation, project organization and GUI development, respectively. This table lists 709

the third party dependencies of LiveCellMiner. 710

File S1 Generated Report for the LSD1 Data Set. All existing single features 711

and time series features are contained and accessible from an HTML-based overview file. 712

Extract the archive to a folder of your choice and open the HTML file in the root 713

directory using any web browser. 714

File S2 Generated Report for the RecQL4 Data Set. All existing single 715

features and time series features are contained and accessible from an HTML-based 716

overview file. Extract the archive to a folder of your choice and open the HTML file in 717

the root directory using any web browser. 718
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