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Abstract: Recent progress in laboratory automation has enabled rapid and large-scale characterization of strains en-
gineered to express heterologous proteins, paving the way for the use of machine learning to optimize production
phenotypes. The ability to predict protein expression from DNA sequence promises to deliver large efficiency gains
and reduced costs for strain design. Yet it remains unclear which models are best suited for this task or what is the size of
training data required for accurate prediction. Here we trained and compared thousands of predictive models of protein
expression from sequence, using a large screen of Escherichia coli strains with varying levels of GFP expression. We
consider models of increasing complexity, from linear regressors to convolutional neural networks, trained on datasets
of variable size and sequence diversity. Our results highlight trade-offs between prediction accuracy, data diversity, and
DNA encoding methods. We provide robust evidence that deep neural networks can outperform classic models with the
same amount of training data, achieving prediction accuracy over 80% when trained on approximately 2,000 sequences.
Using techniques from Explainable Al, we show that deep learning models capture sequence elements that are known
to correlate with expression, such as the stability of mRNA secondary structure. Our results lay the groundwork for the

more widespread adoption of deep learning for strain engineering across the biotechnology sector.
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. INTRODUCTION

Microbial production systems have found applications
across many sectors of the economy. In protein manufacture
systems, microbial hosts are transformed with heterologous
genes that code for a target protein product. A key require-
ment for strain design is maximization of titers, productivity,
and yield. Such optimisation normally relies on the design
of bespoke DNA sequences that ensure high transcriptional
and translational efficiency?. This requires the optimisation
of various genetic elements such as codon usage, promoter
sequence, and ribosome-binding sequences. But since predic-
tion of protein expression is notoriously challenging, strain
development suffers from costly rounds of prototyping and
characterization using heuristic rules to navigate the sequence
space towards increased production.

Progress in laboratory automation has fuelled the use
of deep mutational scanning for the study of genotype-
phenotype associations. Several works have combined high-
throughput mutagenesis with a diverse range of measur-
able phenotypes, including protein expression®®, ribosome
loading”, and DNA methylation®?. As a result, recent years
have witnessed a substantial interest in machine learning
methods that leverage such data for sequence-function pre-
diction in natural systemsZ1%!2 For engineered systems, re-
cent works have incorporated machine learning models into
the design-build-test cycle of synthetic biology, e.g.  for
predictive modelling of ribosomal binding sequences'?, de-
sign of RNA constructs'®, or optimization of regulatory DNA
elements'>'1% Such models can be employed as in silico plat-
forms for discovering new variants with improved expression

properties, paving the way toward a new level of computer-
aided design for production strains. Deep learning algorithms,
in particular, can be used to infer relations between sequence
and function on a scale that would be impossible to grasp by
data inspection alone. Deep learning maximizes the benefits
of big data owing to its ability to capture complex dependen-
cies with minimal prior assumptions'”.,

Although deep learning models can produce highly accu-
rate predictions 1819 they come at the cost of enormous data
requirements for training, typically ranging from tens to hun-
dreds of thousands of sequences. Little attention has been
paid to the performance of deep learning in scenarios where
the data available for training is far below the requirements of
state-of-the-art models. Moreover, we have a poor grasp of
what makes a good training dataset or the impact of different
components of the model training pipeline, including e.g. the
choice of DNA encoding and machine learning models.

Here we address these questions by training a large number
of machine learning models on datasets of variable size and
diversity. We make use of a large screen of GFP-producing
strains in Escherichia colt*” that was designed to ensure bal-
anced coverage of the sequence space. These data are particu-
larly useful for comparing machine learning models, because
they can be sampled to construct training datasets of varying
size and controlled sequence diversity. We considered models
of increasing complexity, from linear regressors to deep neural
networks, and tested their ability to predict protein expression
from DNA sequence in a range of data scenarios. We first
trained a large catalogue of classic “non-deep” models and
found that these are sufficient for mildly accurate prediction
(R? > 50%) with fewer than 1,000 sequences for training. We
further show that two of the common caveats of deep learn-
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ing models, namely large data requirements and poor inter-
pretability, can be overcome with careful experimental design
and techniques from Explainable AI*!. Specifically, we pro-
vide robust evidence that deep learning models can improve
accuracy with the same amount of data as classic models. We
routinely obtained near state-of-the-art accuracy (R? > 80%)
with convolutional neural networks trained on approximately
2,000 sequences. We further show that this high accuracy can
be attributed to their ability to preferentially weigh sequence
elements known to correlate with low protein expression. Our
results provide a comprehensive characterisation of machine
learning models for predicting protein expression, with impli-
cations for the widespread adoption of deep learning in strain
design and optimization.

Il. RESULTS
A. Size and diversity of the training data

We sought to compare various machine learning models
using datasets of different size and diversity. To this end,
we employed the genotype-phenotype association data from
Cambray et al*?. This dataset contains fluorescence measure-
ments for over 220,000 GFP-coding sequences expressed in
Escherichia coli, preceded by a variable 96nt upstream region
to control translational efficiency and the resulting expression
level. The library of upstream sequences was randomized with
a rigorous design-of-experiments approach so as to achieve
a balanced coverage of the sequence space and a controlled
diversity of variants. Specifically, the 96nt sequences were
designed from 56 seeds with maximal pairwise Hamming dis-
tances. Each seed was subject to further randomization us-
ing the D-Tailor framework?, so as to generate a mutational
series with a controlled coverage of eight biophysical prop-
erties. The considered properties describe sequence features
at four levels of granularity: nucleotide sequence, codon se-
quence, amino acid sequence, and secondary mRNA structure
(see Fig.[TA).

The complete dataset contains 56 mutational series that pro-
vide a global coverage of the sequence space, with each se-
ries containing ~4,000 sequences for local exploration of the
vicinity of the seed. The dataset is particularly well suited for
our study because it provides access to controllable sequence
diversity, as opposed to other screens that consider either ran-
dom sequences that obscure the effect of few specific muta-
tions, or specific mutants that lack diversity.

To characterise the diversity of the sequence space, we
visualised the distribution of overlapping 4-mers using Uni-
form Manifold Approximation and Projection (UMAP) al-
gorithm for dimensionality reduction®?. The resulting two-
dimensional distribution of sequences (Fig. [IB) shows a clear
structure of 56 clusters, each one corresponding to a muta-
tional series. Moreover, as shown in Fig. [IC the protein ex-
pression data displays marked qualitative differences across
mutational series, including near-Gaussian distributions, as
well as left- and right-tailed distributions, bimodal, and near-
uniform distributions. This indicates that the dataset is diverse

2

in both genotype and phenotype space, and thus ideally suited
for benchmarking different machine learning models.

B. Impact of encoding and sample size of the training
sequences

To first understand the baseline performance achievable
with classic (i.e. ‘“non-deep”’) machine learning models, we
trained a number of models on datasets of varying size with
different strategies for DNA encoding (Fig.[2A). Sequence en-
coding is needed to featurize nucleotide strings into numeri-
cal vectors that can be processed by a downstream machine
learning regressor. As shown in Table[[|and Fig. 2JA, we con-
sidered encodings on three levels: global resolution (biophysi-
cal properties), subsequence resolution (overlapping k-mers),
and single base resolution (one-hot encoding). Specifically,
we considered a global encoding where each sequence is de-
scribed by the eight biophysical properties in Fig. [[A. At a
subsequence resolution, we considered two versions of over-
lapping k-mer encodings: an ordinal version where each k-
mer is assigned a unique integer value between 1 and 4%, and
k-mer counts that contain the number of occurrences of each
unique k-mer along the sequence. For base-resolution encod-
ings, we employed two variants of one-hot encoding: binary
one-hot where a sequence of length L is encoded as a binary
matrix of size 4 X L, with each column having a one at a po-
sition corresponding to the base in the sequence, and zeros
elsewhere; ordinal one-hot encoding assigns a unique integer
value to each of the four bases, resulting in encoded vectors of
length L. To test the impact of combinations of DNA encod-
ings at different resolutions, we also considered binary one-
hot encoding augmented with the biophysical properties from
Fig. [TA. Each of the considered encodings produces vector
representations of different lengths, as shown in Table [}

DNA encoding Resolution Dimension
biophysical properties global 8
k-mer counts subsequence 4*
k-mer ordinal subsequence L—-k+1
one-hot binary single base 4L
one-hot ordinal single base L
mixed global and single base| 4L + 8

TABLE I. Strategies for encoding DNA sequences. We considered
sequence encodings at three resolutions, which result in encoded vec-
tors of varying dimension; L is sequence length in nucleotides. The
biophysical properties are described in Fig.[TIA.

We first trained classical machine learning models on five
mutational series chosen on the basis of their markedly differ-
ent expression distributions (shown in Fig. [T[C), and using an
increasing number of sequences for training (5%, 10%, 25%,
50% and 75% of sequences per series). Given the variation
in phenotype distributions, we stratified training samples to
ensure that their distribution is representative of the full se-
ries. We considered four non-deep models, namely a ridge
regressor* (a type of penalised linear model) and a multilayer
perceptron® (MLP, a feed-forward neural network), plus two
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FIG. 1. Characterization of the training data. (A) We employed a large phenotypic screen in Escherichia coli” of a GFP coding gene
preceded by a variable 96nt sequence. The variable region was designed on the basis of eight sequence properties that affect translational
efficiency: nucleotide content (%AT), patterns of codon usage (codon adaptation index, CAI, codon ramp bottleneck position, Btlp, and
strength, Btls), hydrophobicity of the polypeptide (mean hydrophobicity index, MHI) and stability of three secondary structures tiled along
the transcript (MFE-1, MFE-2, and MFE-3). A total of 56 seed sequences were designed to provide a broad coverage of the sequence space,
and then subjected to controlled randomization to create 56 mutational series of ~4,000 sequences each. Violin plots show the distribution of
the average value of the eight properties, for each of the 56 mutational series; values were normalized to the range [0, 1]. (B) Two dimensional
visualization (UMAP%Y) of the overlapping 4-mers computed for the 228,000 sequences in the dataset; this representation reveals 56 clusters,
each one corresponding to a mutational series that locally explores the sequence space around its seed. (C) Phenotype distributions of five
mutational series as measured by FACS-sequencing of GFP fluorescence normalized to its maximal measured value; solid lines correspond to
a Gaussian kernel density estimate of the fluorescence distribution.

models that operate by partitioning the feature space: a sup-
port vector regressor<® (SVR, based on linear separation of the
feature space) and a random forest regressor*’ (RF, based on
a rectangular partition of the feature space). We chose this
array of models because they differ in their principle of oper-
ation and underlying assumptions on the shape of the feature
space.

The training results shown in Fig. 2B reveal a number of
insights on the relation between the training data and encod-
ing strategies. We first observe that the phenotype distribution
has a minor impact on model accuracy, indicating the bene-
fits of stratified sampling for training. The results show that
models trained on a small number of sequences are generally
poor (R? < 40%) irrespective of encoding method and type
regressor. Moreover, linear models (ridge) display exception-
ally poor accuracy (see example in Fig. 2JC) and are insensi-

tive to the size of training set. In contrast, substantial gains
in accuracy were achieved with the multilayer perceptron for
larger training sets (see example in Fig. [2C), possibly owing
to its ability to capture nonlinear relationships in the data. A
key finding is that approximately 1000 sequences appear to
be sufficient to train mildly accurate models (R? > 50%),
in particular when using regressors that rely on partitioning
the feature space (SVR and RF), regardless of the encoding
method. We found that random forest regressors are the most
accurate among the considered models, consistently achiev-
ing R? > 50% for datasets above 1000 samples in the five
mutational series (see example in Fig. 2[C).

The results in Fig. 2B also underscore the impact of
DNA encodings on predictive accuracy. We found that
subsequence-resolution encodings achieve varying accuracy
that is highly dependent on the specific mutational series and


https://doi.org/10.1101/2021.11.18.468948
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.18.468948; this version posted November 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4
A
0. o binary one-hot
p ¢}
0, 0g0 o iy )
02 % 00 8pi0® A
o 0,00 o ° 5o T 01
700y i C ([l
ridge multilayer support random ¢
regression perceptron vector regression forest ordinal one-hot 1234
(M
models encodings
k-mers counts 0 1
size [
train | k-mers ordinal 1 4*
5% 10% 25% 50% %% -~ |
— test
Q biophysical 0 1
\ o
. t used
~4,000 sequences/series notuse
B accuracy (average R?)
|| e
0 0.2 0.4 0.6 0.8 1
- binary
EE L- one-hot
4 I
= = ordinal
| one-hot "
m 4-mer 2
| | ] . ordinal 3
24 =- || ‘ A 4-mer e
“ counts @
a || N
= L. biophysical
o E- E . properties
@ | =
2 || = 0.72 04 | mixed
= ‘
o @ & &
g =M & &S &
> .
€ E= E c regressor algorithm
|| L
| S
[ i
2
>
g 5% R?=0.23 R?=0.55 R?=0.77
0 50 1000 50 100
predicted (%)
N=382 N=955 N=1910 N=2865
5% 10% 25% 50% 75%

average no. of sequences for training

FIG. 2. Impact of data size and sequence encoding on the accuracy of classic machine learning models. (A) Schematic of our model
training strategy. We trained various models using datasets of variable size and with different strategies for DNA encoding. Sequences were
converted to numerical vectors with six encoding strategies (see Table[l). We considered four classic, non-deep, models trained on an increasing
number of sequences from five mutational series with different phenotype distributions (see Fig.[TIC); details on model training can be found in
the Methods. (B) Training results reveal a sizeable impact of DNA encoding and data size on model accuracy. Overall we found that random
forest regressors and binary one-hot encodings provide the best accuracy. We quantified model accuracy with the coefficient of determination
(R?) between predicted and measured GFP fluorescence, computed on a fixed held-out dataset with 10% of sequences from each series and
averaged across five repeats. (C) Examples of poor, mild and good accuracy predictors; plots show predictions on held-out sequences for
mutational series 39 with 4-mer ordinal encoding using ridge regression, support vector regression, and random forest models.

chosen model. We observed a consistently poor accuracy in
models trained on the sequence biophysical properties; this is
surprising because some of them, such as codon usage and
the minimum free energy of mRNA secondary structure, are
known to correlate with expressio. Moreover, models
trained on the one-hot encodings alone performed better than
those trained on one-hot encodings augmented with the bio-
physical properties. These results suggest that such biophys-

ical properties can be deleterious and not sufficiently infor-
mative for model training. A possible explanation is that the
small number of biophysical features limits are insufficient
to account for the diversity of the sequence space. Overall
we observed a strong preference for base-resolution encod-
ings, with binary one-hot representations achieving the most
the most accurate models, possibly due to their incorporation
of positional information.
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To identify which combinations of encodings and regres-
sors maximize accuracy across a broader space of training se-
quences, we trained a large catalogue of models on all 56 mu-
tational series. We excluded the ridge regressor due to its poor
performance in Fig. 2B and focused on training sets with at
least 25% of sequences in each mutational series, correspond-
ing to ~1,000 sequences per series. We thus trained 1,008
models models (56 series x 6 encodings x 3 models) for train-
ing datasets of three different sizes (25%, 50% and 75% of
each series), totalling 3,024 models shown in the swarm plots
in Fig. Some of the resulting R? distributions are heavy
tailed and contain a number of outliers; this highlights the
importance of contextual effects in the training set, whereby
specific combinations of regressors and encodings can lead to
exceptionally poor models in specific mutational series. We
generally found that the random forest regressor trained on bi-
nary one-hot encodings consistently outperformed other mod-
els and encodings across most conditions. Moreover, the re-
sults also indicate that binary one-hot encoded sequences lead
to a more consistent accuracy across the 56 mutational series,
as reflected by a much narrower distribution of R? values. In
agreement with the results of Fig.[2B, these larger scale results
reinforce the observation that the biophysical properties are a
poor description of DNA sequences for model training. The
results achieved with the mixed encoding consistently show
that inclusion of biophysical properties leads to poorer mod-
els than those trained on one-hot encodings alone.

C. Deep learning improves accuracy without more data

Prior work has demonstrated that deep learning can pro-
duce far more accurate predictions than classic methods2'12,
An important limitation of current deep learning models,
however, is their reliance on extremely large datasets. The
latest and most powerful deep learning predictors, such
as DeepBIND!Y, Optimus 5-prime?, ExpressionGANI®, and
Enformer!? were trained with tens and even hundreds of thou-
sands of sequence variants. Data of such size is unlikely to be
available in many synthetic biology laboratories and, more-
over, it is unclear if the accuracy of deep learning models is
a result of their architecture or the size of the training data.
We therefore sought to determine the capacity of convolu-
tional neural networks (CNN), a common type of deep learn-
ing model, to produce accurate models from much smaller
datasets than previously considered.

We designed a convolutional neural network that reads a bi-
nary one-hot encoded matrix of dimension 4 x 96 nucleotides
and processes it through three convolutional layers. These lay-
ers can be regarded as positional weight matrices acting on an
input sequence. By stacking several convolutional layers to-
gether, the network can capture interactions between different
components of the input sequence. We also added dropout
layers for regularization, followed by a multilayer perceptron
to integrate information across all positions of the input se-
quence. The output of the final layer is the predicted level of
protein expression. We employed Bayesian Optimization for
hyperparameter tuning>’ in conjunction with stochastic gra-
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FIG. 3. Model accuracy across the whole sequence space. For
each mutational series, we trained a total of 54 models (3 regressors
x 3 data sizes x 6 encodings). Each dot in the swarm plots repre-
sents one of the 3,024 models. The results show that random forests
in combination with binary one-hot encoding provide the best over-
all accuracy, and the least sensitivity to the shape of the sequence
space in each series. The biophysical properties from Fig. |I|A lead
to particularly poor models. As in Fig. 2B, accuracy is reported as
the average R? across 5 repeats, and computed on a fixed held-out
dataset containing 10% of sequences of each mutational series.

dient descent for training. More details on the network ar-
chitecture, training and hyperparameters can be found in the
Methods.

To perform a thorough comparison between CNNs and
other non-deep models, we trained a total of 56 CNNs (one
for each mutational series) on 25%, 50% and 75% of all se-
quences in each series. We benchmarked the accuracy of the
resulting CNNs against two classic models: multilayer per-
ceptrons because they are an example of non-deep neural net-
works, and random forest regressors because we found them
to be the most accurate in Fig. B3] The results in Fig. @A
show that CNNs are consistently more accurate than the other
models, regardless of the size of the training data. In par-
ticular, we observe that some CNNs achieve accuracy over
60% for ~1000 sequences for training, and in some cases they
reach state-of-the-art accuracy (R? > 90%) when trained with
fewer than 3000 sequences, as shown in the inset of Fig. fA.
These results strongly suggest that deep learning models not
only outperform classic methods, but they can do so without
the need for additional training data.
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FIG. 4. Accuracy and interpretability of convolutional neural networks. (A) Comparison of CNNs against multilayer perceptrons and
random forest regressors trained on each of the 56 mutational series. Models were trained with binary one-hot encoding on data increasing
size. Violin plots show the distribution of average R? in 5 training repeats, computed for each of the 56 mutational series on a held-out dataset
with 10% of sequences per series. Inset shows predictions of a CNN trained on 75% of mutational series 39 (Fig. ), computed on 424
held-out sequences. The CNN consistently displays improved predictive accuracy without the need for more training data. (B) Attribution
scores computed with DeepLIFTm' for a CNN trained on 75% of the aggregate of series 2, 27, 32, 50, and 55. Plots show the absolute value of
the attribution scores for each position of ~2120 sequences in a test set; color denotes measured GFP expression. The CNN assigns importance
to the translation initiation region (first third of the sequence) of low producers. High producers do not display such localization of attribution
scores. We also did not observe any localization for the attribution scores of a multilayer perceptron trained and tested on the same sequences
(inset). (C) Pearson correlation (r) between GFP expression and the minimum free energy of RNA secondary structures for three tiled regions
(see Fig. [T]A) of the held-out sequences. The MFE for the first third of the sequence displays much higher correlation than the other two
regions. This suggests that the CNN selectively weighs sequence elements that impact expression.

To further understand why CNNs deliver such gains in ac- quence, yet computational costs limit the number and type
curacy, we employed methods from Explainable AR o quan- of mutations that can be simulated. Here we instead em-

tify how different regions of the input sequence are processed  ployed DeepLIF’[m‘, a computationally efficient method that
by the models. Poor interpretability is a major caveat of deep uses backpropagation to produce “attribution scores” for each
learning models, as it is challenging to examine the model feature of the input data (details in Methods). Such scores
parameters in a way that they can be meaningfully related  represent the importance that the network assigns to the in-

to the input sequence. A number of methods have been de- put features. When applied to one-hot encoded sequences,
veloped for this task, typically consisting of feature analyses DeepLIFT produces scores at the resolution of single nu-
based on activation-maximization and saliency map§3:ZI to re- cleotides for each sequence employed for training.

veal sequence motifs that the models considers relevant. Other
approaches employ in silico mutagenesiéﬂ to quantify the
sensitivity of predictions to point mutations in the input se-

We aggregated five mutational series chosen at random, and
constructed a new training dataset with 75% of the total num-
ber of aggregated sequences, corresponding to ~19,000 se-
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quences. We trained a CNN based on the same architecture
as in Fig.[4A, as well as a multilayer perceptron for compari-
son. The resulting CNN achieved an excellent prediction ac-
curacy, with R? ~ 79% on a held-out dataset consisting of
2,037 sequences; the accuracy for the perceptron was 71%
when trained and tested on the same data. We ran DeepLIFT
on both models and detected stark differences in their attri-
bution scores. As shown in Fig. @B, the CNN displays high
attribution scores localized on the first 32 positions of low pro-
ducers. High producers, on the contrary, showed consistently
low attributions across the whole sequence length. We found
no evidence of such localization in the attribution scores of
the multilayer perceptron (inset of Fig. @B). The contrast in
positional distributions of scores suggests that the CNN selec-
tively weighs the first third of the sequence in low producing
strains. This observation is in agreement with the previous
finding from Cambray et a/*V that low protein expression cor-
relates with the stability of the mRNA secondary structure of
the first third of the sequence. As shown in Fig. [[C, the min-
imum free energy of the first third of the sequence displays
a higher correlation with expression than downstream regions
of the sequence. This indicates that the CNN captures the im-
portance of sequence regions that strongly affect protein ex-
pression.

D. Impact of sequence diversity on model accuracy and
generalization

We finally sought to establish the ability of CNNs to gener-
alize predictions to regions of the sequence space that were
not included in training. We found that the CNNs from
Fig. fJA, which were trained on a single mutational series
each, performed poorly when tested on sequences from other
mutational series (not shown). To further understand how to
improve cross-series accuracy, we performed a computational
experiment designed to test the impact of sequence diversity
on the ability of CNNs to produce accurate predictions across
different mutational series.

We trained CNN models on datasets of increasing diversity
but constant in size. To this end, we trained an initial model
on 5,800 sequences sampled from the aggregate of two series
chosen at random (series 6 and 49, shown at the bottom row
of Fig. 5JA). We repeated this strategy so as to successively
increase the number of series in the aggregate, while keeping
a constant number of total sequences for training. As shown
in Fig. EE, we trained a total of 27 models, each one on an in-
creasingly diverse sequence space, but with a decreasing frac-
tion of sequences per series. For example, model 1 in Fig. A,
was trained on 2900 sequences per series, out of a total of 2
series, while the last model (top row of Fig. [5]A) was trained
on as few as ~107 sequences per series, from a total of 54
mutational series.

We compared the accuracy of the 27 models on 10% of
held-out sequences from the aggregate employed for training,
against 10% of sequences from each series not included in the
aggregate. The results (Fig.[5]A) show that models trained on
aggregate series perform well when tested in-series, even in
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cases when the training set contains just over a hundred se-
quences per series; since all these models were trained on the
same number of sequences, this suggests that sequence diver-
sity, and not the size of the dataset, is a key factor for accurate
predictions. We also found, however, that increasing the di-
versity of the training set had no impact on model generaliza-
tion, as we obtained an extremely low accuracy (R? < 10%)
when testing the models cross-series for all aggregates. This
result suggests that model generalization is a key limiting fac-
tor when using CNNs to predict protein expression from se-
quence. The data requirements per series for each model, and
the resulting diversity of each aggregate are shown in Fig. [5B.
In agreement with the swarm plots of Fig.[3] in this case we
also observed substantial heterogeneity in prediction scores
across mutational series. We overall identified three salient
patterns: (i) series that are consistently predicted well even
under severe data limitations. For example, series 6 and 51
retain R? ~ 70% in most cases, falling to R? ~ 40% only in
the last three models, which were trained on fewer than 116
sequences from them. (ii) Series that display good prediction
scores only when they are well represented in the training; for
example, series 49 is well predicted in the first three models,
which were trained on at least 725 sequences from that se-
ries, but accuracy drops sharply in subsequent models. (iii)
We observed multiple cases of series that appear particularly
hard to predict, across all models and irrespective of the num-
ber of sequences employed for training; for example, series
21, 27 and 54 display poor R? scores in all models. Alto-
gether, these results suggest that the shape of the sequence
space can prescribe our ability to train accurate models on
them, thus highlighting the importance of thorough use of
design-of-experiments when acquiring data for training.

lll. DISCUSSION

The ability to predict protein expression from DNA se-
quence can substantially accelerate the design cycle for many
biotechnology applications. An increasing number of works
have reported the construction of deep learning models with
excellent phenotypic predictions for both natural genes’%12
and synthetic constructs™"!®, Yet such models have been
trained on extremely large datasets that are unrealistic for
most design scenarios. In this study we have examined the
impact of size and diversity of training data on a large panel
of machine learning models. We made extensive use of a
genotype-phenotype screen’ that employed a careful design-
of-experiments approach to cover the sequence space with a
controlled sequence diversity. By sampling and combining
measurements from this large screen, we evaluated the joint
effect of models, DNA encodings, and size of the training set
on the predictive accuracy.

We found that with such a balanced coverage of the se-
quence space, accurate predictions can be obtained with train-
ing sets of a couple of thousand samples, by using simple ran-
dom forest regressors trained on one-hot encoded sequences.
We demonstrated that such accuracy can be further improved
with convolutional neural networks, without the need for more
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FIG. 5. Impact of sequence diversity on model generalization. (A) We trained CNNs on datasets of constant size and increasing diversity.
We trained a total of 27 models by successively aggregating fractions of different mutational series into a new dataset for training; the total size
of the training was kept constant at 5,800 sequences. Training with aggregated sequences achieves good accuracy for series in the training set,
but extremely poor predictions for series not included in the aggregate for training. This suggests poor generalization of the considered CNN
models. Accuracy is reported as the R? computed on 10% held-out sequences sampled from the series aggregate, and on 10% of each of the
series not employed for training. (B) Top: data requirements per series for each of the 27 models in panel A. Bottom: increasing diversity of
training sets for five models in panel A; diversity was quantified as the inverse of the top unique 5-mers of all sequences in each training set.

sequences for training. This challenges the notion that deep
learning models necessarily require extremely large datasets
for training. We also demonstrated that methods from Ex-
plainable AI*“! can provide mechanistic understanding on
why deep learning models can produce such gains in predic-
tion accuracy.

A salient result from our analysis is that sequence properties
commonly employed for strain optimization, such as the CAI,
% AT and other metrics, are particularly poor for model train-
ing. This is particularly striking in light of studies that have
shown that some of these correlate strongly with expressionS.,
In our case, we reasoned that the eight considered proper-
ties are insufficient to describe the diversity of the sequence
space employed for training, hence leading to poorly predic-
tive models. Other mitigating factors are the limitations on
how such metrics are computed. For example, CAI is com-
puted as a geometric average across codons that loses posi-
tional information. Likewise, the scores on RNA secondary
structures are the result of possibly imprecise free energy cal-
culations on windows of fixed length. Richer descriptions of
secondary structures, such as ensemble free energies or prob-
abilities of base pairing at each position, may improve the pre-
dictive power of the models.

Although our results suggest that model accuracy depends
critically on sequence diversity, and not the number of se-
quences themselves, we report data requirements above 1,000
sequences that are still too large for most applications. Fur-
ther work is required on DNA encodings that are maximally
informative for model training, as well as model architectures
that can deliver high accuracy. Such strategies have provided

important gains in data-efficiency for protein design®, where
unsupervised models can be trained on large databases to pro-
duce embeddings suitable for prediction. A second impor-
tant challenge is model generalization, as we consistently ob-
served that models are extremely weak at predicting expres-
sion for sequences that are sufficiently divergent from those
employed for training. This limitation is particularly relevant
for forward-engineering, where designers may utilize model
predictions to navigate the sequence space beyond the cover-
age of the training data. One avenue to address this problem
is via design-of-experiments approaches that ensure a cover-
age of the sequence space that is broad enough for the range
of constructs at hand. Such approach can potentially lead to
general rules on how to best construct a training set that leads
to accurate predictors of expression.

Deep learning models promise to deliver large gains in ef-
ficiency in many synthetic biology applications. But this in-
evitably requires the acquisition of strain characterization data
for training. The risk is that the cost of such experimental
work solely for the purpose of model training may outweigh
the perceived benefits of highly predictive models. Here we
have comprehensively mapped the relation between data size,
diversity and the choice of machine learning models, laying
the foundations for more data-efficient approaches that can
promote the adoption of deep learning as a platform technol-
ogy for strain design.
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IV. METHODS
A. Data processing

We obtained the full dataset from the OpenScience
Framework®. After removing sequences with missing val-
ues for GFP fluorescence, the dataset contains ~228,000 se-
quences with measured GFP fluorescence and the eight bio-
physicial properties in Fig.[TJA. In all trained models, we em-
ployed the arithmetic mean of GFP fluorescence across repli-
cates for the case of normal translational initiation“?. To vi-
sualize sequences in a two dimensional space (Fig. [IB), we
employed the UMAP algorithm®® on sequences featurized on
counts of overlapping k-mers. We found that the UMAP pro-
jection improved for larger k, and chose k = 4 to achieve a
good trade-off between computation time and quality of pro-
jection; k-mer counting was done with custom Python scripts.

B. Model training

Classic machine learning models. Non-deep models in
Fig. PH4| were trained using the scikit-learn package. In all
cases, we stratified the protein expression data to ensure that
the phenotypic distributions are preserved in the samples em-
ployed for training and testing. Stratification was done with
the verstack package, which employs binning for continuous
variables; we further customised the code to gain control of
the binning resolution. For model training, we used varying
fractions of the stratified samples, and held-out 10% of se-
quences for model testing. In all cases except Fig. ] we did
five training repeats by resampling the mutational series; the
CNNs in Fig. [5]were trained only once. The accuracy reported
in Fig. 2H4] correspond to the average coefficient of determi-
nation (R?) between predicted and measured fluorescence in
the test set, averaged across the five training repeats. All DNA
encoding strategies (Table [[) were implemented with custom
Python code. Model hyperparameters were determined via a
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grid search and 10-fold cross validation. We performed the
optimization multiple times and chose a family of configura-
tions that worked equally well across libraries. We repeat this
process for all encodings, and finally chose a single best con-
figuration for all mutational series and encoding, see Table I}

Regressor Hyperparameter Value
ridge regressor regularization (o) |[107T, 107
kernel method RBF
support vector regressor | regularization (C') 30
margin tolerance (e) 0.5
activation function ReLU
hidden layers 3
multilayer perceptron 1o Of. neurons 100
optimizer Adam
early stopping Yes
learning rate 1073
no. of estimators 25
random forest .maximum depth 30
min samples per leaf 3
min samples to split 2

TABLE II. Hyperparameter for the four non-deep regressors. In
all models, except the ridge regressors, we employed the same hy-
perparameters for all combinations of mutational series and DNA
encodings. The regularization strength of the ridge regressor had to
be optimized on a case-by-case basis in the range above.

Convolutional neural networks. All CNN models were
trained on Tesla K80 GPUs from Google Colaboratory=~. To
design the CNN architectures, we use the Sequential class of
the Keras package with the TensorFlow backend***Z. Hyper-
parameters were designed with Bayesian optimization imple-
mented in the HyperOpt package®”. Since our goal was to
use a fixed architecture throughout this paper, we identified
a small family of architectures and choose the one that per-
forms best when trained on individual libraries, as well as on
aggregates of libraries. We thus performed multiple iterations
of the HyperOpt routine using stratified sets, and tested com-
binations of various hyperparameters. The resulting model
architecture is outlined in Table[ITll All CNNs were trained on
binary one-hot encoded sequences with mean squared error as
the loss function. We used a batch size of 64, set the learn-
ing rate to 1073, and employ the Adam optimizer*S. Since
ADAM computes adaptive learning rates for each weight of
the neural network, we found that the default options were
adequate and hence did not specify a learning rate schedule.
We set the maximum number of epochs to 100, and used the
number of epochs without loss improvement over the valida-
tion set as our early stopping criterion (15 epochs) to prevent
overfitting.

C. Interpretability analysis

We used DeepLIFT4Y, a back-propagation based approach
that produces attribution scores of inputs based on a reference
input. For both the CNN and MLP in Fig. @B, we chose a
blank sequence as a reference, i.e. a 4 x 96 matrix filled
with zeroes. We used the GenomicsDefault option that im-
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Blocks Hyperparameter Value
number of filters 256
filter width 13
Convolutional (1-3) drz(‘)(;cl)\lit;;gb. ROeIf;J
max-pooling 2,2)
hidden units 256
Dense (4-7) activation RelLU
dropout prob. 0.1
Dense (final) unit 1

TABLE III. Hyperparameters for the CNN architecture. We used
the same architecture and hyperparameters in the models trained in

Fig. @]

plements the Rescale and RevealCancel rules for convolu-
tional and dense layers, respectively. This process outputs
2,120 (424 test sequences for five mutational series) vectors
of length 96, containing an attribution score per base. Finally,
we use absolute values for Fig. , since we are interested
only in the size of the resulting attribution.

D. Impact of sequence diversity

The models in Fig. [§] were trained on data of constant size
and increasing sequence diversity. We successively aggre-
gated fractions of mutational series to create new training sets
with improved diversity. We employed the same training strat-
egy as in Fig. @A with the hyperparameters outlined in Ta-
ble [IIT] for all 27 models. To ensure a comparison solely on
the basis of diversity, we fixed the size of the training set to
5, 800 sequences. To increase diversity, for successive models
we sampled training sequences from two additional series, as
shown in Fig.[5] The specific series for the aggregates were
randomly chosen. Model accuracy was evaluated on 10% of
held-out sequences from the aggregates employed for train-
ing, and 10% of each series not employed for training.
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