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Abstract Many applications of synthetic biology involve engineering microbial strains to

express high-value proteins. Thanks to advances in rapid DNA synthesis and sequencing,

deep learning has emerged as a promising approach to build sequence-to-expression mod-

els for strain design and optimization. Such models, however, require large amounts of

training data that are costly to acquire, which creates substantial entry barriers for many

laboratories. Here, we study the relation between model accuracy and data efficiency in

a large panel of machine learning models of varied complexity, from penalized linear re-

gressors to deep neural networks. Our analysis is based on data from a large genotype-

phenotype screen in Escherichia coli, which was generated with a design-of-experiments

approach to balance coverage and depth of the genotypic space. We sampled these data

to emulate scenarios with a limited number of DNA sequences for training, as commonly

encountered in strain engineering applications. Our results suggest that classic, non-deep,

models can achieve good prediction accuracy with much smaller datasets than previously

thought, and provide robust evidence that convolutional neural networks further improve

performance with the same amount of data. Using methods from Explainable AI and model

benchmarking, we show that convolutional neural networks have an improved ability to

discriminate between input sequences and extract sequence features that are highly pre-

dictive of protein expression. We moreover show that controlled sequence diversity leads

to important gains in data efficiency, and validated this principle in a separate genotype-

phenotype screen in Saccharomyces cerevisiae. These results provide practitioners with

guidelines for designing experimental screens that strike a balance between cost and qual-

ity of training data, laying the groundwork for wider adoption of deep learning across the

biotechnology sector.
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I. INTRODUCTION16

Microbial production systems have found applications in many sectors of the economy1. In17

a typical microbial engineering pipeline, cellular hosts are transformed with heterologous genes18

that code for target protein products, and a key requirement is maximization of titers, productivity,19

and yield. Such optimization requires the design of genetic elements that ensure high transcrip-20

tional and translational efficiency2, such as promoter3 or ribosomal binding sequences4. However,21

prediction of protein expression is notoriously challenging and, as a result, strain development22

suffers from costly rounds of prototyping and characterization, typically relying on heuristic rules23

to navigate the sequence space towards increased production.24

Progress in batch DNA synthesis and high-throughout sequencing has fueled the use of deep25

mutational scanning to study genotype-phenotype associations. Several works have combined26

high-throughput mutagenesis with a diverse range of measurable phenotypes, including protein27

expression5–8, ribosome loading9, and DNA methylation10,11. As a result, recent years have wit-28

nessed a substantial interest in machine learning methods that leverage such data for pheno-29

typic prediction9,12–15. In synthetic biology, recent works have incorporated machine learning30

into the design-build-test cycle for predictive modelling of ribosomal binding sequences16, RNA31

constructs17, promoters18 and other regulatory elements19. Such sequence-to-expression models32

can be employed as in silico platforms for discovering variants with improved expression proper-33

ties, paving the way toward a new level of computer-aided design of production strains18.34

Deep learning algorithms, in particular, can uncover relations in the data on a scale that would35

be impossible by inspection alone, owing to their ability to capture complex dependencies with36

minimal prior assumptions20. Although deep learning models can produce highly accurate pheno-37

typic predictions12,21,22, they come at the cost of enormous data requirements for training, typically38

ranging from tens to hundreds of thousands of sequences; see recent examples in Supplementary39

Table S1. Little attention has been paid to deep learning models in synthetic biology applications40

where data sizes are far below the requirements of state-of-the-art algorithms and, moreover, there41

is a poor grasp of what makes a good training dataset for model training. This is particularly42

relevant in applications where the cost of strain phenotyping is a limiting factor, as this places an43

upper ceiling on the number of variants that can be screened. The challenge is then to design a lim-44

ited set of variants so that the resulting data can be employed to train useful predictors of protein45

expression. For example, if the sequence space has a broad and shallow coverage, i.e. composed46
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of distant and isolated variants, the resulting data may be difficult to regress because each sample47

contains little information that correlates with expression. Conversely, if the coverage of the screen48

is narrow and deep, i.e. composed of closely related sequence variants, models may be accurate49

but generalize poorly to other regions of the sequence space.50

Here, we trained a large number of sequence-to-expression models on datasets of variable size51

and sequence diversity. We employed a large screen of superfolder GFP-producing (sfGFP) strains52

in Escherichia coli23 that was designed to ensure a balanced coverage of the sequence space. We53

sampled these data so as to construct training datasets of varying size and controlled sequence54

diversity. We first establish the baseline performance of a range of classic, non-deep, machine55

learning models trained on small datasets with various phenotype distributions and using a range56

of strategies for encoding DNA sequences. This analysis revealed that for this particular dataset,57

accurate models can be trained on as few as a couple of thousand variants. We moreover show58

that convolutional neural networks (CNN), a common deep learning architecture, further improve59

predictions without the need to acquire further data. Using tools from Explainable AI24, we show60

that CNNs can better discriminate between input sequences than their non-deep counterparts and,61

moreover, the convolutional layers provide a mechanism to extract sequence features that are62

highly predictive of protein expression. We finally demonstrate that in limited data scenarios,63

controlled sequence diversity can improve data efficiency and improve predictive performance64

across larger regions of the sequence space. We validated this conclusion in a recent dataset of65

∼3,000 promoter sequences in Saccharomyces cerevisiae25. Our results provide a systematic char-66

acterization of sequence-to-expression machine learning models, with implications for the wider67

adoption of deep learning in strain design and optimization.68

II. RESULTS69

A. Size and diversity of training data70

We sought to compare various machine learning models using datasets of different size and71

diversity. To this end, we employed the genotype-phenotype association data from Cambray et72

al23. This dataset comprises fluorescence measurements for an sfGFP-coding sequence in Es-73

cherichia coli, fused with more than 240,000 upstream 96nt regions that were designed to perturb74

translational efficiency and the resulting expression level. The library of upstream sequences was75
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randomized with a rigorous design-of-experiments approach so as to achieve a balanced coverage76

of the sequence space and a controlled diversity of variants. Specifically, 96nt sequences were77

designed from 56 seeds with maximal pairwise Hamming distances. Each seed was subject to78

controlled randomization using the D-Tailor framework26, so as to produce mutational series with79

controlled coverage of eight biophysical properties at various levels of granularity: nucleotide80

sequence, codon sequence, amino acid sequence, and secondary mRNA structure (Figure 1A).81

The complete dataset contains 56 mutational series that provide wide coverage of the sequence82

space, while each series contains ∼4,000 sequences for local exploration in the vicinity of the83

seed. The dataset is particularly well suited for our study because it provides access to controllable84

sequence diversity, as opposed to screens that consider either fully random sequences with limited85

coverage, or single mutational series that lack diversity.86

To further characterize the sequence diversity across the library of 56 mutational series, we87

visualized the distribution of overlapping 4-mers using the Uniform Manifold Approximation and88

Projection (UMAP) algorithm for dimensionality reduction27. The resulting two-dimensional dis-89

tribution of sequences (Figure 1B) shows a clear structure of 56 clusters, each corresponding to90

a mutational series. Moreover, the sfGFP fluorescence data (Figure 1C, Supplementary Figure91

S2) display marked qualitative differences across mutational series, including near-Gaussian dis-92

tributions, left- and right-skewed distributions, as well as bimodal and uniform distributions. This93

indicates that the dataset is diverse in both genotype and phenotype space, and thus well suited for94

benchmarking machine learning models because it allows probing the impact of both genetic and95

phenotypic diversity on model accuracy.96

B. Impact of DNA encoding and sample size of training sequences97

To understand the baseline performance of classic (non-deep) machine learning models, we98

trained various regressors on datasets of varying sizes and with different DNA encoding strategies99

(Figure 2A). Sequence encoding is needed to featurize nucleotide strings into numerical vectors100

that can be processed by downstream machine learning models. We considered DNA encodings101

on three resolutions (Table I, Figure 2A): global biophysical properties (Figure 1A), DNA subse-102

quences (overlapping k-mers), and single nucleotide resolution (one-hot encoding).103

We trained models on five mutational series chosen because of their markedly different expres-104

sion distributions (Figure 1B), and with an increasing number of sequences for training (5%, 10%,105
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DNA encoding Resolution Dimension Positional
biophysical properties global 8 ×

k-mer counts subsequence 4k ×
k-mer ordinal subsequence L− k + 1 ✓
binary one-hot single base 4L ✓
ordinal one-hot single base L ✓

mixed multiple 4L+ 8 ✓

TABLE I. DNA encodings for model training. We considered sequence encodings at three resolutions,
which result in encoded vectors of different length. In the global encoding, sequences are described by the
eight biophysical features employed in the original experimental design23 (Figure 1A). At a subsequence
resolution, we considered two versions of overlapping k-mers: an ordinal version where each k-mer is
assigned a unique integer value between 1 and 4k, and k-mer counts containing the number of occurrences
of each unique k-mer along the sequence; in our results we generally employed k = 4 for model training,
but observed similar results for other choices of k. For base-resolution encodings, we employed two variants
of one-hot encoding: binary one-hot where a sequence of length L is encoded as a binary matrix of size
4× L, with each column having a one at the position corresponding to the base in the sequence, and zeros
elsewhere; ordinal one-hot encoding assigns a unique integer value to each of the four bases, resulting in
encoded vectors of length L. Mixed encodings were constructed from flattened one-hot encoded matrices
concatenated with the vector of biophysical properties, leading to feature vectors of dimension 4L+ 8.

25%, 50% and 75% of sequences per series). Given the variation in phenotype distributions, we106

stratified training samples to ensure that their distribution is representative of the full series. We107

considered four non-deep models: ridge regressor28 (a type of penalized linear model), multilayer108

perceptrons29 (MLP, a shallow neural network with three hidden layers), support vector regressor30
109

(SVR, based on linear separation of the feature space with a radial basis function kernel), and ran-110

dom forest regressor31 (RF, based on axis-aligned splits of the feature space). We chose this array111

of models because they markedly differ in their principle of operation and underlying assump-112

tions on the shape of the feature space. We tuned model hyperparameters using grid search and113

10-fold cross-validation on datasets assembled from aggregated fractions of all mutational series;114

this allowed us to determine a fixed set of hyperparameters for each of the four models with good115

performance across the whole dataset (see Methods and Supplementary Figure S3). In all cases,116

we assessed predictive accuracy using the coefficient of determination, R2 defined in Eq. (1),117

between measured and predicted sfGFP fluorescence computed on a set of ∼400 test sequences118

(Supplementary Figure S3) that were held-out from model training and validation.119

In line with expectation, the results in Figure 2B show that models trained on small datasets are120

generally poor irrespective of the encoding or regression method. Linear models (ridge) display121

exceptionally poor accuracy and are insensitive to the size of training set. In contrast, a shallow122
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neural network (multilayer perceptron) achieved substantial gains in accuracy with larger training123

sets, possibly owing to its ability to capture nonlinear relationships. Our results show that mildly124

accurate models (R2 ≥ 50%) can be obtained from training sets with ∼1,000 sequences using125

random forests and support vector regressors (Figure 2C). We found random forest regressors to126

be the most accurate among the considered models, consistently achieving R2 ≥ 50% for datasets127

with more than 1,000 samples and showing a stable performance when trained on other mutational128

series (Supplementary Figure S5). To produce robust performance metrics, the R2 scores in Figure129

2B are averages across five training repeats with resampled training and test sets (Monte Carlo130

cross-validation).131

We also observed a sizeable impact of DNA encodings on prediction accuracy. Subsequence-132

resolution encodings achieve varying accuracy that is highly dependent on the specific mutational133

series and chosen model (Figure 2B, Supplementary Figure S5). Overall we found a strong pref-134

erence for base-resolution encodings, with binary one-hot representations achieving the best accu-135

racy. A salient result is that the sequence biophysical properties led to poorer accuracy than most136

other encodings, possibly due to their inability to describe a high-dimensional sequence space137

with a relatively small number of features (8). Their poor performance is particularly surprising138

because the biophysical properties were used to design the sequences based on their presumed phe-139

notypic impact23; moreover, some of them (codon adaptation index, mRNA secondary structures)140

represent the state-of-the-art understanding of a sequence impact on translation efficiency23,32,33,141

while the best performing one-hot encodings lack such mechanistic information. In an attempt to142

combine the best of both approaches, we trained models on binary one-hot sequences augmented143

with the biophysical properties (“mixed” encoding in Table I, Figure 2B and Supplementary Fig-144

ure S5). This strategy led to slight gains in accuracy for small training sets; e.g. for ∼200 training145

sequences, the median R2 with mixed encoding is 0.30 vs a median of 0.26 for binary one-hot146

(Supplementary Figure S5). For larger training sets, however, binary one-hot encodings gave the147

best and most robust accuracy across models.148

C. Deep learning improves accuracy without more data149

Prior work has shown that deep learning can produce much more accurate predictions than150

non-deep models16,19. Deep learning models, however, typically require extremely large datasets151

for training; some of the most powerful deep learning phenotypic predictors, such as DeepBIND12,152
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Optimus 5-prime9, ExpressionGAN34, and Enformer14 were trained with tens to hundreds of thou-153

sands of variants. In the case of sequence-to-expression models, recent literature shows a trend154

towards more complex and data-intensive models (see Supplementary Table S1); the most recent155

sequence-to-expression model employed ∼20,000,000 promoter sequences to predict protein ex-156

pression in Saccharomyces cerevisiae25. It is often unclear if the accuracy of such deep learning157

predictors results from the chosen model architecture or simply from the sheer size of the training158

data. To test this idea with our data, we designed a convolutional neural network (CNN, a com-159

mon type of deep learning model) with an off-the-shelf architecture of similar complexity to those160

employed in recent literature25.161

Our CNN architecture (Figure 3A) processes a binary one-hot encoded sequence through three162

convolutional layers, followed by a four dense layers which are equivalent to a four-layer multi-163

layer perceptron. The convolutional layers can be regarded as weight matrices acting on an input164

sequence. By stacking several convolutional layers, the network can capture interactions between165

different components of the input. We designed the CNN architecture with a Bayesian optimiza-166

tion algorithm35 to determine the optimal number of network layers, as well as the optimal settings167

for the filters in each layer (see Supplementary Tables S4–S5 for details). In addition to the compo-168

nents shown in Figure 3A, we also included a dropout layer to prevent overfitting and max pooling169

to reduce the number of trainable parameters. Similar as with the non-deep models in Figure 2B,170

hyperparameter optimization was performed by splitting the data into separate sets for training171

and cross-validation (details in Methods and Supplementary Figure S3). This allowed us to find a172

single CNN architecture with good performance across the individual 56 mutational series and the173

whole dataset.174

When trained on up to 75% of the full dataset (∼160,000 sequences), our CNN model produced175

excellent predictions in test sets covering broad regions of the sequence space (average R2 = 0.82176

across five cross-validation runs, Figure 3B and Supplementary Figure S6). This suggests data177

size alone is sufficient for training accurate regressors, but our concern is that data of such scale178

are rarely available in synthetic biology applications. We thus sought to determine the capacity179

of CNNs to produce accurate predictions from much smaller datasets than previously considered180

in the literature. To this end, we trained CNNs with the same architecture in Figure 3A on each181

mutational series, using ∼1,000–3,000 sequences in each case; details on CNN training can be182

found in the Methods, Supplementary Figure S7, and Supplementary Tables S4–S5. We bench-183

marked the accuracy of the CNNs against non-deep models trained on the same 56 mutational184
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series. As benchmarks we chose two non-deep models: a shallow perceptron because it is also185

a type of neural network, and a random forest regressor because it showed the best performance186

so far (Figure 2B). We found that CNNs are consistently more accurate than non-deep models,187

regardless of the size of the training data (Figure 3C–D) and across most of the 56 mutational188

series. In fact, in more than half of mutational series, the CNNs achieve accuracy over 60% with189

∼1000 training sequences, and in some cases they reach near state-of-the-art accuracy (R2 = 0.87190

averaged across five cross-validation runs, Figure 3C inset). When trained on ∼3,000 sequences,191

the CNNs outperformed the MLP in all mutational series, and the random forest regressor in all192

but four series (Figure 3D).193

To understand how CNNs can provide such improved accuracy without larger training data, we194

compared them against multilayer perceptrons (MLPs) of increasing depth. We note that the CNN195

in Figure 3C has ∼45-fold more trainable parameters than the MLPs, which suggests that such196

additional complexity may be responsible for the improved predictive accuracy. We thus sought to197

determine if increasing MLP complexity could bring their performance to a level comparable to the198

CNNs. We trained deep MLPs with an increasing number of hidden layers on ∼3,000 sequences199

from each mutational series. We found that the additional layers provide marginal improvements200

in accuracy, and that the performance gap between CNNs and MLPs exists even when both have201

a comparable number of trainable parameters (Supplementary Figure S8). This suggests that the202

higher accuracy of the convolutional network stems from its inbuilt inductive bias that enables203

it to capture local structure via the learned filters and more global structure through successive204

convolutional layers36. As a result, it can capture interactions between different components of the205

input and produce sequence embeddings that are highly predictive of protein expression.206

To further determine how the models process the input sequences, we employed methods from207

Explainable AI to quantify the sensitivity of both neural network models (shallow MLPs and208

CNNs) to changes in the input sequence. We utilized DeepLIFT37, a computationally efficient209

method that produces importance scores for each feature of the input; such scores are known as210

“attribution scores” in the Explanable AI literature24. When applied to one-hot encoded sequences,211

DeepLIFT produces scores at the resolution of single nucleotides (Figure 3E). We employed these212

scores to compute pairwise distances between sequences processed by the same model. The213

shorter that distance, the more the two sequences are detected as similar by the model. We com-214

puted such distances for all pairs of sequences in each test set processed by the MLP or CNN.215

The matrices of pairwise distances (Figure 3F) were then subjected to hierarchical clustering as a216
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means to contrast the diversity of responses elicited by test sequences on the two models. Using217

k-means clustering, we showed that the CNN produces less clustered attribution distances than the218

MLP (Figure 3G), thus highlighting the ability of the CNN to discriminate input sequences with219

finer granularity than the MLP. This trend was found in all but four of the CNNs (Supplementary220

Figure S10).221

D. Impact of sequence diversity on model coverage222

A well recognized caveat of sequence-to-expression models is their limited ability to produce223

accurate predictions in regions of the sequence space not covered by the training data25,38; this is224

commonly referred to as generalization performance in the machine learning jargon. In line with225

expectation, we found that the CNNs from Figure 3C, which were trained on a single mutational226

series each, performed poorly when tested on other mutational series (R2 ≤ 0 for most models,227

Supplementary Figure S11A); we observed similarly poor results for the non-deep models in Fig-228

ure 2 (Supplementary Figure S11B). Negative R2 scores indicate an inadequate model structure229

with a poorer fit than a baseline model that simply predicts the average observed fluorescence. This230

means that models trained on a particular region of the sequence space are too specialized, and231

their phenotypic predictions do not generalize to distant sequences. Although poor generalization232

can be caused by model overfitting, our cross-validation results (see Supplementary Figure S6A233

and Supplementary Figure S7) rule out this option and suggest that it is rather a consequence of the234

large genotypic differences between mutational series, compounded with the high-dimensionality235

of the sequence space.236

Recent work by Vaishnav and colleagues demonstrated that model generalization can be im-237

proved with CNNs of similar complexity to ours25 trained on extremely large data (∼20,000,00238

variants). Since the cost of such large screens is prohibitive in most synthetic biology applica-239

tions, we sought to understand how model coverage could be improved in scenarios where data240

size is strongly limited. The idea is to design a sequence space for training that can enlarge the241

high-confidence regions of the predictors with a modest number of variants; this is somewhat akin242

to the concept of “informed training sets” recently introduced in the context of protein design39.243

To this end, we performed a computational experiment designed to test the impact of sequence244

diversity on the ability of CNNs to produce accurate predictions across different mutational series.245

We trained CNNs on datasets of constant size but increasing sequence diversity (Figure 4A,246
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Supplementary Figure S12). We considered an initial model trained on 5,800 sequences sampled247

from the aggregate of two series chosen at random, e.g. 2,900 sequences from series 13 and 23,248

respectively (Figure 4A top row). We successively added two series to the aggregate and retrained249

a CNN while keeping a constant number of total sequences. This results in sparser sampling from250

each mutational series and an increasingly diverse training set. For example, the second model251

(Figure 4A) was trained on 1,450 sequences from series 13, 23, 48 and 55, respectively. Overall,252

we trained a total of 27 models, the last of which comprises as few as 107 sequences per mutational253

series. The resulting models display substantial variations in their predictive power (Figure 4A).254

Most models displayed variable R2 scores across different series, and we identified two salient255

patterns: some series that are consistently well predicted even in small data scenarios (e.g. series256

31 and 51), and some series are particularly hard to regress (e.g. series 28 and 54), which possible257

require a bespoke CNN architecture different from the one in Figure 3A. The results also show258

that increased diversity has a minor impact on model generalization; although some series not259

included in training do have improved prediction scores (e.g. series 53 in Figure 4A), we suspect260

this is likely a result of series being particularly easy to regress. In general, we observed patterns261

of low or negative R2 scores for series not included in the aggregate. Similar results were observed262

for other random choices of mutational series employed for training (Supplementary Figure S12).263

Crucially, the results in Figure 4B suggest that increased sequence diversity enlarges the region264

where the CNN can produce accurate predictions without increasing the size of the training data.265

We found that R2 > 30% in many regions of the sequence space can be achieved by models trained266

on just over a hundred sequences from those regions (e.g. model 27 in Figure 4A). For comparison,267

the CNN trained on all series without controlled diversity can double that accuracy, but with a 9-268

fold increase in the size of the training data (R2 = 0.65 for N =53,480 in Figure 3B). This means269

that model coverage can be enlarged with shallow sampling of previously unseen regions of the270

sequence space, which provides a useful guideline for experimental design of screens aimed at271

training sequence-to-expression models on a limited number of variants.272

To test the validity of this principle in a different expression chassis and construct library, we273

repeated the computational experiment in Figure 4 using a recent genotype-phenotype screen of274

promoter sequences in Saccharomyces cerevisiae25. These data are comparable to the screen in275

Cambray et al23 in the sequence length (80nt) and its highly clustered coverage of genotypic space276

(Figure 5A). This clustered structure results from the design of the library itself, which is com-277

posed of 3,929 variants of 199 natural promoters. A key difference between this new dataset and278
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Cambray et al23 is the construct architecture; unlike the UTR sequences in Figure 1B, promoter279

sequences account for regulatory effects but do not undergo transcription. Akin to our results280

in Figure 4, we aimed at testing the accuracy of machine learning regressors trained on datasets281

of constant size but increasing sequence diversity. Since this dataset contains a small number of282

variants for each gene (on average 20 variants/gene, see inset of Figure 5A), we first randomly ag-283

gregated the variant clusters into twelve groups containing an average of 327 sequences/group. We284

subsequently trained five Random Forest models on N = 400 binary one-hot encoded sequences285

drawn from different groups. For example, as shown in the Figure 5B, model 1 was trained on286

200 sequences from two groups, whereas model 2 was trained on 100 variants from four groups.287

The training results (Figure 5B) show a strikingly similar pattern to those observed in our origi-288

nal dataset in Figure 4, thus strongly suggesting that sequence diversity can be exploited to train289

models with broader coverage and improved data efficiency.290

III. DISCUSSION291

Progress in high-throughput methods has led to large improvements in the size and coverage of292

genotype-phenotype screens, fuelling an increased interest in deep learning algorithms for pheno-293

typic prediction9,12–14,16,17,19,34. Synthetic biology offers a host of applications that would benefit294

from such predictors, e.g. for optimization of protein-producing strains40, selection of enzymatic295

genes in metabolic engineering41, or the design of biosensors42. An often-overlooked limitation296

is that deep learning models require huge amounts of data for training, and the sheer cost of297

the associated experimental work is a significant barrier for most laboratories. Recent sequence-298

to-expression models have focused primarily on datasets with tens to hundreds of thousands of299

training sequences (Supplementary Table S1). While large data requirements are to be expected300

for prediction from long sequences such as entire protein coding regions, synthetic biologists often301

work with much shorter sequences to control protein expression levels (e.g. promoters3, riboso-302

mal binding sequences4, terminators43 and others). From a machine learning standpoint, shorter303

sequences offer potential for training models with smaller datasets, which can lower the entry304

barriers for practitioners to adopt deep learning for strain optimization.305

Here, we examined a large panel of machine learning models, with particular emphasis on306

the relation between prediction accuracy and data efficiency. We used data from an experimental307

screen in which sequence features were manipulated using a Design of Experiments approach to308
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perturb the translation efficiency of an sfGFP reporter in E. coli23. Thousands of local mutations309

were derived from more than fifty sequence seeds, yielding mutational series that enable deep310

focal coverage in distinct areas of the sequence space (Figure 1B). By suitable sampling of these311

data, we studied the impact of the size and diversity of training sequences on the quality of the312

resulting machine learning models.313

Our analysis revealed two key results that can help incentivize the adoption of machine and deep314

learning in strain engineering. First, in our dataset we found that the number of training sequences315

required for accurate prediction is much smaller than what has been shown in the literature so316

far8,12,16,17,25. Traditional non-deep models can achieve good accuracy with as few as 1,000-2,000317

sequences for training (Figure 2B). We moreover showed that deep learning models can further318

improve accuracy with the same amount of data. For example, our convolutional neural networks319

achieved gains of up to 10% in median prediction scores across all mutational series when trained320

on the same 2,000 sequences as the non-deep models (Figure 3C). Such performance improvement321

is a conservative lower bound, because we employed a fixed network architecture for all mutational322

series; further gains in accuracy can be obtained with custom architectures for different mutational323

series.324

Second, we found that sequence diversity can be exploited to increase data efficiency and en-325

large the sequence space where models produce reliable predictions. Using two different datasets326

with a similar structure of their sequence coverage, the E. coli library from Cambray et al23 as327

well as a recently published library of S. cerevisiae promoters25, we showed that machine learn-328

ing models can expand their predictions to entirely new regions of the sequence space by training329

on a few additional samples from that region (Figures 5). This means that controlled sequence330

diversity can improve the coverage of sequence-to-expression models without the need for more331

training data. In other words, instead of utilizing fully randomized libraries for training8,16–18, it332

may be beneficial to first design few isolated variants for coverage, and then increase the depth333

with many local variants in the vicinity of each seed. Our work strongly suggests that such balance334

between coverage and depth can be advantageous in small data scenarios, where fully randomized335

libraries would lead to datasets with faraway and isolated sequences that inherently require large336

datasets to achieve high accuracy. This principle is conceptually related to the “informed training337

sets” introduced by Wittmann and colleagues39 in the context of protein design, which have been338

shown to provide important advantages in case where data efficiency is a concern. Our obser-339

vations raise exciting prospects for Design of Experiments strategies purposely aimed at training340
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sequence-to-expression models that are accurate and data-efficient.341

Data requirements above 1,000 sequences are still too costly for most practical applications.342

Further work is thus required on DNA encodings that are maximally informative for training,343

as well as model architectures that can deliver high accuracy for small datasets. Both strategies344

have proven highly successful in protein engineering44,45, yet their potential for DNA sequence345

design remains largely untapped. We found that seemingly superficial changes to DNA encodings,346

e.g. from binary one-hot to ordinal one-hot encodings (Figure 2B), can have substantial impact on347

predictive performance. Moreover, although biophysical properties such as the CAI or the stability348

of mRNA secondary structures are not good predictors by themselves17, we observed small but349

encouraging improvements when these were employed in conjunction with one-hot encodings,350

particularly for small datasets. This suggests that richer mechanistic descriptors, e.g. by including351

positional information or base-resolution pairing probabilities of secondary structures, may yield352

further gains in accuracy.353

In agreement with other works46, we observed that sequence-to-expression models generalize354

poorly: their accuracy drops significantly for sequences that diverge from those employed for355

training. This limitation is particularly relevant for strain engineering, where designers may em-356

ploy predictors to navigate the sequence space beyond the coverage of the training data. A recent357

study by Vaishnav et al illustrated that these models can indeed generalize well25 using a massive358

training set with over 20,000,000 sequences. Data of such scale are far beyond the capacity of359

most laboratories, and therefore it appears that poor generalization is likely to become the key360

limiting factor in the field. We suggest that careful design of training libraries in conjunction with361

algorithms for controlled sequence design38 may help to improve sequence coverage and avoid362

low-confidence regions of the predictors.363

Deep learning models promise to deliver large gains in efficiency across a range of synthetic364

biology applications. Such models inevitably require training data and there is a risk that the365

associated experimental costs become an obstacle for many laboratories. In this work we have366

systematically mapped the relation between data size, diversity and the choice of machine learning367

models. Our results demonstrate the viability of more data-efficient deep learning models, helping368

to promote their adoption as a platform technology in microbial engineering.369
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IV. METHODS370

A. Data processing371

Data sources and visualization: The E. coli dataset presented by Cambray et al23 was obtained372

from the OpenScience Framework47. After removing sequences with missing values for sfGFP373

fluorescence and growth rate, the dataset contains ∼228,000 sequences. In all trained models, we374

employed the arithmetic mean of sfGFP fluorescence across replicates for the case of normal375

translational initiation23. To visualize sequences in a two dimensional space (Figure 1B), we376

employed the UMAP algorithm27 v0. 5. 1 on sequences featurized on counts of overlapping k-377

mers. We found that the UMAP projection improved for larger k, and chose k = 4 to achieve a378

good trade-off between computation time and quality of projection (Supplementary Figure S1); k-379

mer counting was done with custom Python scripts. In all cases, fluorescence measurements were380

normalized to the maximum sfGFP fluorescence across cells transformed with the same construct381

averaged over 4 experimental replicates of the whole library23.382

Training, validation, and test data: In Supplementary Figure S3A we illustrate our strategy383

to partition the full dataset into sets for training, cross-validation and model testing. For each384

mutational series, we first perform a split retaining 10% of sequences as a fixed held-out set for385

model testing. We use the remaining sequences as a development set and perform a second split to386

obtain two partitions for each series. The first partition is for model training and comprises 3200387

sequences from which we used varying fractions for training regressors in each series. The second388

partition was employed for hyperparameter optimization, containing ∼400 sequences from each389

series (10% of the whole series) that we then merged into a large validation set comprising 22,400390

sequences (56 series × 400 sequences per series) from all series. We kept the validation set391

fixed and employed it for hyperparameter optimization of both non-deep and deep models. In all392

data splits, we stratified the sfGFP fluorescence data to ensure that the phenotype distributions393

are preserved. Stratification was done with the verstack package, which employs binning for394

continuous variables; we further customized the code to gain control of the binning resolution.395

B. Model training396

Non-deep machine learning models: DNA encodings (Table I) were implemented with cus-397

tom Python code, and all non-deep models were trained using the scikit-learn Python package.398
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To determine model hyperparameters, we used a validation set for all combinations of encodings399

and regressors. As illustrated in Supplementary Figure S3B, for each model we explored each the400

hyperparameter search space (Supplementary Table S3) for all encodings using grid search with401

10-fold cross validation on 90% of our validation set (∼20,000 sequences), using mean squared402

error (MSE) as performance metric. This resulted in six hyperparameter configurations for each403

regressor (one for each encoding). For many regressors, we found that the same configuration was404

optimal for several encodings simultaneously, and we thus settled on most frequent configuration405

among the six encodings; in case of a tie between configurations, we settled for the one with the406

best MSE computed on the remaining 10% of our whole validation set.407

Convolutional neural networks: CNNs were trained on Tesla K80 GPUs from Google408

Colaboratory48. To design the CNN architectures, we use the Sequential class of the Keras409

package with the TensorFlow backend49,50. All CNNs were trained on binary one-hot encoded410

sequences with mean squared error as loss function, batch size of 64, learning rate 1 × 10−3, and411

using the Adam optimizer51. Since ADAM computes adaptive learning rates for each weight of412

the neural network, we found that the default options were adequate and did not specify a learning413

rate schedule. We set the maximum number of epochs to 100, and used 15 epochs without loss414

improvement over the validation set as early stopping criterion to prevent overfitting.415

Model hyperparameters were selected with Bayesian optimization implemented in the Hyper-416

Opt package35. Specifically, as shown in Supplementary Figure S3C, we performed five iterations417

of the HyperOpt routine using 90% of our validation set (∼20,000 sequences), where subsets of418

the search space were evaluated (Supplementary Table S4). We used the Tree of Parzen Estima-419

tors (TPE)52 as acquisition function, and set the number of architecture combinations to 50. This420

resulted in five candidate architectures, from which we chose the one with the best validation MSE421

computed on a stratified sample of size 10% of the whole validation set. The resulting model ar-422

chitecture is described in Supplementary Table S5. To verify that the selected architecture works423

best for our study, we performed an additional test (Supplementary Figure S9) where we trained424

CNNs of varying width and depth and compared them to the results in Figure 3C. To achieve this,425

we perturbed the number of convolutional filters and layers, for width and depth respectively, and426

trained the resulting architectures using 75% of sequences for each mutational series (Supplemen-427

tary Figure S9).428

Model testing: In all cases we did five training repeats on resampled training sets and a fixed

test set. Model accuracy was computed as coefficient of determination (R2) on held-out sequences,
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averaged across five training repeats. The R2 score for each training repeat was defined as:

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
, (1)

where yi and fi are the measured and predicted fluorescence of the ith sequence in the test set,429

respectively, and ȳ is the average fluorescence across the whole test set. Note that for a perfect fit430

we have R2 = 1, and conversely R2 = 0 for baseline model that predicts the average fluorescence431

(i.e. fi = ȳ for all sequences). Negative R2 scores thus indicate an inadequate model structure432

with worse predictions than the baseline model.433

C. Interpretability analysis434

For the interpretability results in Figure 3E–G, we employed DeepLIFT37 which utilizes back-435

propagation to produce importance or “attribution” scores for input features, with respect to a436

baseline reference input. We chose a blank sequence as a reference. We used the GenomicsDe-437

fault option that implements Rescale and RevealCancel rules for convolutional and dense layers,438

respectively. The line plots in Figure 3E are the attribution scores of 30 random test sequences for439

the CNN and MLP models trained on mutational series 21. The distance heatmaps in Figure 3F440

were produced by computing the cosine distance between vectors of attribution scores, and then441

using hierarchical clustering to compare both models. The degree of clustering was quantified by442

k-means scores (Figure 3G); lower scores suggest more clustering of the distance matrix. Results443

for all other mutational series can be found in S10.444

D. Impact of sequence diversity445

a. Escherichia coli dataset. The models in Figure 4 were trained on data of constant size446

and increasing sequence diversity. We successively aggregated fractions of mutational series to447

create new training sets with improved diversity. We employed the same CNN architecture and448

training strategy as in Figure 3A with the same hyperparameters (Supplementary Table S5) for449

all 27 models. To ensure a comparison solely on the basis of diversity, we fixed the size of the450

training set to 5,800 sequences. To increase diversity, for successive models we sampled training451

sequences from two additional series, as shown in Figure 4. The specific series for the aggregates452
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were randomly chosen; four training repeats with randomized selection of series can be found in453

Supplementary Figure S12.454

b. Saccharomyces cerevisiae dataset. We obtained the promoter dataset presented in Sup-455

plementary Figure 4F in Vaishnav et al25 from CodeOcean53. The data contains 3,929 yeast pro-456

moter sequences with YFP fluorescence readouts. To visualize the yeast sequences (Figure 5A),457

we employed the same strategy as in Figure 1B for the E. coli dataset, and used the UMAP al-458

gorithm for counts of overlapping 4-mers. Additional details can be found in the Supplementary459

Text.460

For the models in Figure 5B, we first aggregated sequences from the clusters in Figure 5A into461

twelve groups. We then employed the same strategy as in Figure 4, and successively aggregated462

fractions of groups to create new training sets with improved diversity. We used the same Random463

Forest configuration (Supplementary Table S6) for all 5 models. We fixed the size of the training464

set to 400 sequences, and to increase diversity for successive models, we sampled training se-465

quences from two additional groups at a time (Figure 5B). The specific groups for the aggregates466

were randomly chosen; four training repeats with randomized selection of groups can be found in467

Supplementary Figure S13. Additional details can be found in the Supplementary Text.468
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FIG. 1. Characterization of the training data. (A) We employed a large phenotypic screen in Escherichia coli23 of
an sfGFP coding gene preceded by a variable 96nt sequence. The variable region was designed on the basis of eight
sequence properties previously described as impacting translational efficiency: nucleotide content (%AT), patterns of
codon usage (codon adaptation index, CAI, codon ramp bottleneck position, BtlP, and strength, BtlS), hydrophobicity
of the polypeptide (mean hydrophobicity index, MHI) and stability of three secondary structures tiled along the
transcript (MFE-1, MFE-2, and MFE-3). A total of 56 seed sequences were designed to provide a broad coverage of
the sequence space, and then subjected to controlled randomization to create 56 mutational series of ∼4,000 sequences
each. After removal of variants with missing measurements, the dataset contains 228,000 sequences. Violin plots show
the distribution of the average value of the eight properties across the 56 mutational series; the biophysical properties
were normalized to the range [0, 1] and then averaged across series. (B) Two dimensional UMAP27 visualization of
overlapping 4-mers computed for all 228,000 sequences; this representation reveals 56 clusters, with each cluster
corresponding to a mutational series that locally explores the sequence space around its seed; we have highlighted five
series with markedly distinct phenotype distributions (labels denote the series number). Other UMAP projections for
overlapping 3-mers and and 5-mers are shown in Supplementary Figure S1. (C) Mutational series with qualitatively
distinct phenotypic distributions, as measured by FACS-sequencing of sfGFP fluorescence normalized to its maximal
measured value; solid lines are Gaussian kernel density estimates of the fluorescence distribution. Measurements
are normalized to the maximum sfGFP fluorescence across cells transformed with the same construct averaged over
4 experimental replicates of the whole library23. Fluorescence distributions for all mutational series are shown in
Supplementary Figure S2.
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FIG. 2. Accuracy of non-deep machine learning models. (A) We trained models using datasets of variable size
and with different strategies for DNA encoding. Sequences were converted to numerical vectors with five DNA
encoding strategies (Table I), plus an additional mixed encoding consisting of binary one-hot augmented with the
biophysical properties of Figure 1A; in all cases, one-hot encoded matrices were flattened as vectors of dimension
384. We considered four non-deep models trained on an increasing number of sequences from five mutational series
with different phenotype distributions (Figure 1B). (B) Impact of DNA encoding and data size on model accuracy.
Overall we found that random forest regressors and binary one-hot encodings provide the best accuracy; we validated
this optimal choice across the whole sequence space by training more than 5,000 models in all mutational series
(Supplementary Figure S5). Phenotype distributions have a minor impact on model accuracy thanks to the use of
stratified sampling for training. Model accuracy was quantified by the coefficient of determination (R2) between
predicted and measured sfGFP fluorescence, computed on ∼400 test sequences held-out from training and validation.
The reported R2 values are averages across five training repeats with resampled training and test sets (Monte Carlo
cross-validation). In each training repeat, we employed the same test set for all models and encodings. The full
cross-validation results (Supplementary Figure S4) show robust performance and little overfitting, particularly for the
best performing models. (C) Exemplar predictions on held-out sequences for three models from panel B (marked
with stars); the shown models were trained on 25% of mutational series 44 (bimodal fluorescence distribution; Figure
1C) using 4-mer ordinal encoding. Details on model training and hyperparameter optimization can be found in the
Methods, Supplementary Figure S3, and Supplementary Tables S2–S3.
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FIG. 3. Prediction accuracy of deep neural networks. (A) Architecture of the convolutional neural network
(CNN) employed in this paper; the output is the predicted sfGFP fluorescence in relative units. The CNN architecture
was designed with Bayesian optimization35 to find a single architecture for all mutational series; our strategy for
hyperparameter optimization can be found in the Methods, Supplementary Figure S3, and Supplementary Tables S4–
S5. (B) Accuracy of the CNN in panel A trained on all mutational series. R2 values were computed on held-out
sequences (10% of total) and averaged across 5 training repeats; bars denote the mean R2. (C) Prediction accuracy of
CNNs against random forest (RF) and multilayer perceptrons (MLPs) on all 56 mutational series using binary one-hot
encoding. The CNNs yield more accurate predictions with the same training data. Violin plots show the distribution
of 56 R2 values for each model averaged across 5 training repeats; R2 values were computed on held-out sequences
(10% of sequences per series). Inset shows predictions of a CNN trained on 75% of the mutational series with a
right-skewed phenotypic distribution (Figure 1B) computed on held-out test sequences. The CNNs are more complex
than the shallow MLPs (2,702,337 vs 58,801 trainable parameters, respectively), but we also found that the CNNs
outperform MLPs of comparable complexity (Supplementary Figure S8); this suggests that improved performance
is a result of the convolutional layers acting as a feature extraction mechanism. Details on CNN training can be
found in the Methods and Supplementary Figure S7. (D) Average R2 scores for each model across all 56 mutational
series using 75% of sequences for training. (E) DeepLIFT37 attribution scores per nucleotide position for a given test
sequence and trained model. Panels show scores of 30 sequences chosen at random from the same test set employed
in C for models trained on 75% of mutational series 21. (F) Attribution distances for models trained on series 21. We
computed the cosine distance between DeepLIFT scores for each sequence in the test set. Distance heatmaps were
hierarchically clustered to highlight the cluster structure that both models assign to the input sequences. (G) K-means
clustering of the distance matrices in panel E. Line plots show the optimal k-means score averaged across 20 runs
with random initial cluster assignments. Lower scores for all values of k suggests that the MLP clusters sequences
more heavily than the CNN; we found this pattern in all but four mutational series (Figure S10).
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FIG. 4. Impact of sequence diversity on model coverage. (A) We trained CNNs on datasets of constant size and
increasing sequence diversity. We trained a total of 27 models by successively aggregating fractions of randomly
chosen mutational series into a new dataset for training; the total size of the training was kept constant at 5,800
sequences. Training on aggregated sequences achieves good accuracy for mutational series in the training set, but
poor predictions for series not included in the training data. This suggests that CNNs generalize poorly across unseen
regions of the sequence space. Accuracy is reported as the R2 computed on 10% held-out sequences from each
mutational series. We excluded two series from training to test the generalization performance of the last model. (B)
Bubble plot shows the R2 values averaged across all mutational series for each model. Labels indicate the model
number from panel A, and insets show schematics of the sequence space employed for training; for clarity, we have
omitted model 1 from the plot. Improved sequence diversity leads to gains in predictive accuracy across larger regions
of the sequence space; we observed similar trends for other random choices of series included in the training set
(Supplementary Figure S12). The decreasing number of training sequences per series reflects better data efficiency,
thanks to an increasingly diverse set of training sequences. To quantify sequence diversity, we counted the occurrence
of unique overlapping 5-mers across all sequences of each training set, and defined diversity as 1/

∑100
i=1 ci, where ci

is the count of the i-th most frequent 5-mers.
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FIG. 5. Sequence-to-expression models using promoter data from Saccharomyces cerevisiae. (A) Genotypic
space of yeast promoter data from Vaishnav et al25 visualized with the UMAP27 algorithm for dimensionality re-
duction; sequences were featurized using counts of overlapping 4-mers, as in Figure 1B. The dataset contains 3,929
promoter variants (80nt long) of 199 native genes, as well as fluorescence measurements of a yellow fluorescent pro-
tein (YFP) reporter; inset shows the distribution of variants per gene across the whole dataset. (B) Bubble plots show
the accuracy of five random forest (RF) models trained on datasets of constant size and increasing sequence diversity,
following a similar strategy as in Figure 4A. We first aggregated variant clusters into twelve groups, and then trained
RF models by aggregating fractions of randomly chosen groups into a new dataset for training; the total size of the
training set was kept constant at 400 sequences. Accuracy was quantified with the R2 score averaged across test sets
from each group (∼30 sequences/group) that were held out from training. Inset shows model accuracy in each test
set. In line with the results in Figure 4A, we observe that model coverage can be improved by adding small fractions
of each group into the training set; we observed similar trends for other random choices of groups included in the
training set (Supplementary Figure S13). Details on data processing and model training can be found in the Methods
and Supplementary Text. Sequence diversity was quantified as in Figure 4B.
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Introduction571

Here, we detail the promoter dataset in Saccharomyces cerevisiae from Vaishnav et al25. In the572

original work, this dataset was employed as a test set to demonstrate the generalization perfor-573

mance of a model trained on ∼20M promoter sequences; these results are shown in Supplemen-574

tary Figure 4F of Vaishnav et al25. In our paper, we repurposed this dataset to train sequence-to-575

expression models with a reduced number of variants. In particular, we employed this new dataset576

to extend our conclusions on the relation between sequence diversity and model accuracy (Figure577

4 in the main text) to a different expression host and a different construct library.578

Dataset579

The dataset contains expression levels of 3,929 promoter sequences as measured by a gigantic580

parallel reporter assay (GPRA)8, in which 80bp sequences were embedded within a promoter con-581

struct and the expression of a YFP reporter was assayed in a S. cerevisiae strain lacking URA3.582

The library consists of native yeast promoter sequences from 199 genes, each one with an av-583

erage of 20 random single base mutations. Constructs were cloned within the -160:-80 region,584

relative to the transcription start site (TSS) of a synthetic promoter scaffold, a critical location for585

transcription factor binding54 and determinant of promoter activity8. The promoter construct was586
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placed in a dual reporter plasmid that contains URA3 (used as a selectable marker), a constitu-587

tive RFP reported (to control for extrinsic noise), and the YFP reporter under variable control.588

Finally, yeast cells were cultivated in synthetic defined medium lacking uracil (SD-Ura), sorted589

into 18 uniformly sized expression bins. Promoters in each bin were sequenced to estimate YFP590

expression level.591

Impact of sequence diversity on model accuracy592

Strategy For the results in Figure 5, we first aggregated the variant clusters into twelve groups,593

with each group containing variants from ∼16 randomly selected clusters. We then trained regres-594

sors on group aggregates, in a similar fashion to the analysis in Figure 4. The models in Figure595

5 were trained on datasets of constant size and increasing sequence diversity. We successively596

aggregated fractions of groups to create new training sets with improved diversity.597

Given the small size of the training data (∼330 sequences/group), we fixed the size of the598

training set to 400 sequences and focused on training Random Forest models. To increase diversity,599

for successive models we sampled training sequences from two additional groups, as shown in600

Figure 5B. The specific groups for the aggregates were randomly chosen; four training repeats601

with randomized selection of groups can be found in Supplementary Figure S13.602

Training, validation and test data To ensure a balanced held-out test set, we uniformly sam-603

pled 20% of the 20 sequences that include point mutations for each of the 199 native genes present604

in the yeast dataset. This resulted in 588 held-out sequences that we reserved for testing all down-605

stream random forest models. The remaining 80% of the total dataset was further partitioned in a606

similar manner to acquire 780 sequences that we used as a fixed validation set for hyperparameter607

optimization and 2560 sequences that we used for training.608

Hyperparameter selection We performed hyperparameter optimization using binary one-hot609

encoding and the 780 sequences in the validation set. Hyperparameters were determined via grid610

search with 10-fold cross-validation. The hyperparameter search space and the resulting random611

forest configuration, used for all models trained on the yeast dataset, can be found in Supplemen-612

tary Table S6. We employed the same hyperparameters for all 5 models in Figure 5B in the main613

text.614
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Supplementary Figure S1. Two dimensional projections of the 228,000 sequences employed for train-
ing. (A) UMAP projection for overlapping 3-mers; the choice of 3-mers does not have enough granularity
for UMAP to distinguish between mutational series. (B) UMAP projection for overlapping 5-mers, which
show a similar cluster structure as the one computed with 4-mers in Figure 1B. Colour coding is the same
as in Figure 1B.
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Supplementary Figure S2. Distributions of sfGFP fluorescence from the dataset in Cambray et al23.
(A) Phenotypic distributions for each of the 56 mutational series. (B) Phenotypic distribution of the com-
plete dataset with 56 mutational series and ∼228,000 sequence variants. Shown distributions are Gaussian
kernel density estimates of fluorescence measurements averaged across four experimental replicates. Mea-
surements are normalized to the maximum sfGFP fluorescence in the whole library.
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Supplementary Figure S3. Data splitting and hyperparameter optimization strategy. (A) Schematic of
data partitioning into separate sets for training, validation and testing. We first held-out 10% of each series
(∼400 sequences) for model testing; none of these sequences were used for training or cross-validation.
The remaining sequences were further partitioned into two: a training set, which we employed to train
models on varying data sizes, and a large validation set with 22,400 sequences drawn from all mutational
series. The validation set was employed to determine model hyperparameters with 10-fold cross-validation
(non-deep models) and Bayesian optimization (deep models). (B) Hyperparameter tuning for non-deep
models. We explored the hyperparameter space for each regressor (Supplementary Table S2) using grid
search and 10-fold cross-validation for each DNA encoding on 90% of the full validation set. This resulted
in one configuration per encoding, from which we selected the most frequent configuration among the six
encodings. For cases where there was no single most frequent configuration, we selected the one with the
smallest mean squared error (MSE) on the remaining 10% of the validation set. (C) Hyperparameter tuning
for CNN models. We ran five iterations of Bayesian optimization implemented in the HyperOpt package
(Supplementary Table S4) and obtained five candidate architectures, from which we settled on the one with
smallest MSE on the remaining 10% of the validation set.
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Supplementary Figure S4. Cross-validation of non-deep models in Figure 2B. Shown are the R2 scores
computed between measured and predicted fluorescence in held-out sets of sequences; dots are the R2

scores for each training repeat and stars denote the mean accuracy across the five training repeats (Monte
Carlo cross-validation); the plots show 600 models in total (i.e. 4 regressors × 5 data sizes × 6 encodings
× 5 mutational series). In each training repeat, we held-out 10% of randomly chosen variants in each
mutational series, and trained all models on the specified number of samples (N ); note that in each training
repeat, the test set was kept constant for all models to ensure fair comparisons across models, i.e. all models
were tested on the same set of held-out sequences. Overall, the results show robust accuracy across cross-
validation runs, particularly for the high-accuracy models. There is some variation in R2 values for low and
mid accuracy regressors, but the best performing models show little evidence of overfitting.
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Supplementary Figure S5. Accuracy of non-deep models trained on the whole sequence space. We
trained 5,040 models (3 regressors × 5 data sizes × 6 encodings × 56 mutational series); we excluded
the ridge regressor due to its poor performance (Figure 2B). Dots in the swarm plots are the prediction
accuracy scores for each model, computed as the R2 on a fixed held-out dataset with 10% of sequences of
each series, and averaged across 5 training repeats. Random forests with binary one-hot encoding provide
the best accuracy and the least sensitivity to the shape of the sequence space. Binary one-hot encoding also
lead to more consistent accuracy across series, as reflected by narrower distributions of R2 values.
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Supplementary Figure S6. Convolutional neural network trained on all mutational series. (A) Learning
curves computed as the mean squared error against training epoch for the validation (cyan) and training
(purple) sets for CNNs trained on 25%, 50%, and 75% of all sequences (Figure 3B). In all cases, we use the
same validation set, containing 22,400 sequences aggregated over all 56 mutational series (Supplementary
Figure S3A), and use 15 epochs without loss improvement on the validation set as early stopping criterion
to prevent overfitting. (B) Predictions of the CNN from Figure 3B trained on 75% of all sequences and
evaluated on held-out sequences (10% of total sequences). We note that although R2 = 0.82 is comparable
to the random forests models in Figure 2B, those models were trained and tested on a single mutational
series; the CNN produces accurate predictions across all mutational series.
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Supplementary Figure S7. Learning curves for convolutional neural networks trained on each muta-
tional series. Plots show the validation (cyan) and training (purple) mean squared error against training
epochs for individual CNNs trained on 25%, 50%, and 75% of the sequences in each mutational series. We
use fixed validation sets with 10% of sequences from each series, and 15 epochs without loss improvement
over the validation set as early stopping criterion to prevent overfitting.
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Supplementary Figure S8. Performance comparison between deep MLPs and CNNs. (A) Prediction
accuracy of MLPs of increasing depth against the CNNs in Figure 3C for each of the 56 mutational series
using binary one-hot encoding and 75% of sequences for training. The shallow and the first deep MLP have
the same number of layers, but different number of neurons per layer, with 100 versus 256 neurons respec-
tively. The remaining deep MLPs contain 256 neurons per layer, and were implemented in scikit-learn. The
CNNs outperformed the deep MLPs even in cases when they both have a comparable number of trainable
parameters (>2.7M parameters). This suggests that the convolutional layers can extract sequence features
that are highly informative for regressing the protein expression level. Violin plots show the distribution of
the 56 R2 scores for each model averaged across 5 training repeats; R2 values were computed on held-out
sequences (10% of sequences per series). Deep MLPs were trained with the ReLU activation function and
mean squared error as loss function, learning rate 1 × 10−3, and using the Adam optimizer51. To prevent
overfitting, we set the maximum number of epochs to 120 and used 15 epochs without loss improvement
over the validation set as early stopping criterion. (B) R2 scores averaged across five training repeats for
each model in panel A. The deep MLPs marginally outperform the CNNs in only two mutational series (no.
32 and 43).
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Supplementary Figure S9. Perturbation analysis of CNNs in Figure 3A. (A) Prediction accuracy of
retrained CNNs with a variable number of convolutional layers, against the CNN in Figure 3A for each
of the 56 mutational series using binary one-hot encoding and 75% of sequences for training. We varied
the number of convolutional layers from one to twenty and froze all other hyperparameters to the values in
Supplementary Table S4. Violin plots show the distribution of the 56 R2 scores for each mutational series
computed on held-out sequences (10% of sequences per series) and averaged across 5 training repeats; for
the deeper CNNs with {8, 16, 20} convolutional layers we used only one training repeat. The CNN with
one convolutional layer has a larger number of trainable parameters because of the lack of a max pooling
layer. In CNN architectures with few convolutional layers, most of the parameters are concentrated in
the dense layers. After flattening, the inputs to the dense layers are higher-dimensional than for deeper
CNNs. Note that for the deeper CNNs with {8, 16, 20} convolutional layers, we removed max pooling
layers and included batch normalization to stabilize the learning process. (B) Prediction accuracy of CNNs
with varying width (i.e. number of filters per layer) against the CNN in Figure 3A for each of the 56
mutational series using binary one-hot encoding and 75% of sequences for training. To implement CNNs of
varying widths, we retrained CNNs with a variable number of convolutional filters in the three convolutional
layers; all other CNN hyperparameters were frozen to the values in Supplementary Table S4. In line with
expectation, in panels A and B we found that the Bayesian optimized architecture (gray band, shown in
Figure 3A) outperforms the other architectures. In panel B, violin plots show the distribution of the 56
R2 scores for each mutational series computed on held-out sequences (10% of sequences per series) and
averaged across 5 training repeats.
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Supplementary Figure S10. Comparison of neural networks using DeepLIFT scores. We performed
k-means clustering on the attribution distance matrices (Figure 3F) for each of the 56 models. Bars show
the total k-means score for test sets in each of the CNNs shown in Figure 3C, averaged across 20 runs of
the k-means clustering algorithm; the total score is defined as

∑20
i=1 si where si is the clustering score for

a fixed number of clusters k. Clusters were computed using DeepLIFT37 scores as feature vectors. The
CNNs display higher k-means scores in all but four mutational series, which suggests that they are better
at discriminating between similar sequences in a test set; all test sets contain 10% of sequences of each
mutational series (∼450 sequences/series).
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Supplementary Figure S11. Generalization performance of machine learning models trained on a sin-
gle mutational series. Heatmaps show the accuracy (R2) of CNNs trained on a single series and tested in
all other series. Models were trained on 75% of a single mutational series and tested on held-out sequences
from every other series (10% of each series). Values in the diagonal are the accuracy when tested on 10% of
held-out sequences from the same series employed for training. Accuracy is reported as the R2 computed on
a held-out test set and averaged across five training repeats. The results indicate that model generalization
is extremely poor, with all models achieving low or negative cross-series accuracy.
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Supplementary Figure S12. Convolutional neural networks trained on an increasingly diverse sequence
space. Shown are four repeats of the computational experiment shown in Figure 4, with randomized selec-
tion of mutational series employed for training.
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Supplementary Figure S13. Random forests trained on an increasingly diverse sequence space for
Saccharomyces cerevisiae. Shown are four repeats of the computational experiment shown in Figure 5,
with randomized selection of groups employed for training.
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SUPPLEMENTARY TABLES616

Reference Construct length No. of variants
de Boer et al, 20208 80nt 100,000,000

Vaishnav et al, 202225 80nt 20,000,000
Kotopka et al, 202018 246–312nt 1,000,000
Cuperus et al, 201719 50nt 500,000

Angenent-Mari et al, 202017 145nt 90,000
Höllerer et al, 202016 17nt 2,500–248,000

Supplementary Table S1. Recent sequence-to-expression machine learning models. The list focuses on
studies on prediction from short DNA or RNA sequences. The list excludes studies focused on whole gene
prediction14 or those that focus on other phenotypes beyond protein expression, such as transcription factor
binding12 or mRNA levels55; data sizes have been rounded.
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Regressor Hyperparameter Value

support vector regressor regularization (C) [1, 50]
margin tolerance (ϵ) [0.1, 2]

multilayer perceptron
activation function {ReLU, tanH}

hidden layers [1, 5]
no. of neurons [100, 400] incr. of 50

random forest

no. of estimators [5, 100] incr. of 10
maximum depth [15, 100] incr. of 5

min samples per leaf [1, 12]
min samples to split [2, 12]

Supplementary Table S2. Search space for hyperparameters for non-deep models in Figure 2. We
performed an exhaustive grid-search with 10-fold cross-validation over the specified parameter values of
each regressor, for all encodings. Square brackets correspond to ranges where all integer values were used;
we report the increment value for cases where only parts of the range were used. Curly brackets specify the
set of values used.
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Regressor Hyperparameter Value
ridge regressor regularization (α) [10−1, 102]

support vector regressor
kernel method RBF

regularization (C) 30
margin tolerance (ϵ) 0.5

multilayer perceptron
activation function ReLU

hidden layers 3
no. of neurons 100

random forest

no. of estimators 25
maximum depth 30

min samples per leaf 3
min samples to split 2

Supplementary Table S3. Hyperparameters for non-deep machine learning regressors. We employed
the same hyperparameters for all combinations of mutational series and DNA encodings in all models,
except the ridge regressor. The regularization strength of the ridge regressor was optimized on a case-by-
case basis in the range shown.
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Blocks Hyperparameter Range

Convolutional

number of layers [1, 6]
number of filters {32, 64, 128, 256, 512}

filter width {3, 5, 9, 13, 15, 17, 25}
dropout probability {0, 0.1, 0.15, 0.2, 0.25, 0.5}

Dense
number of layers [1, 6]

hidden units {32, 64, 128, 256, 512}
dropout probability {0, 0.1, 0.15, 0.2, 0.25, 0.5}

Supplementary Table S4. Search space for hyperparameters of the convolutional neural network in
Figure 3A. We used subsets of the search space to run five iterations of the HyperOpt routine. In each run,
HyperOpt performs Bayesian optimisation and assesses 50 combinations of hyperparameters in an informed
manner. Square brackets correspond to ranges where all integer values were used as input, whereas for curly
brackets only the specified values were used.
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Blocks Hyperparameter Value

Convolutional (1-3)

number of filters 256
filter width 13

dropout prob. 0.15
activation ReLU

max-pooling (2,2)

Dense (4-7)
hidden units 256
dropout prob. 0.1

activation ReLU
Dense (final) unit 1

Supplementary Table S5. Architecture of the convolutional neural network. For fair comparisons across
datasets, we used the same architecture and hyperparameters in all CNNs. We employed 2D convolutions,
without skip connections, and set the padding option to same for all layers, to ensure that all parts of the
sequences equally employed for training. We also included a max pooling layer to reduce the number of
trainable parameters.
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Hyperparameter Search space Chosen value
number of estimators [5, 100] incr. of 10 50

maximum depth [15, 100] incr. of 5 30
min samples per leaf [1, 12] 3
min samples to split [2, 12] 4

Supplementary Table S6. Hyperparameter tuning for random forest regressor trained on S. cerevisiae
promoter data25. We used the same search space for the random forest as in Supplementary Table S2 and
performed an exhaustive grid-search with 10-fold cross-validation with one-hot encoding. Square brackets
correspond to ranges where all integer values were used; we report the increment value for cases where
only parts of the range were used. Curly brackets specify the set of values used. We employed the same
hyperparameter values for all random forest models in Figure 5B.
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