
ZARP: An automated workflow for
processing of RNA-seq data

Maria Katsantoni 1,2, Foivos Gypas 3, Christina J. Herrmann 1,2,
Dominik Burri 1,2, Maciej Bak 1,2, Paula Iborra 1,2, Krish Agarwal 1, Meric
Ataman 1,2, Anastasiya Börsch 1,2, Mihaela Zavolan 1,2,* & Alexander
Kanitz 1,2,*

1. Biozentrum, University of Basel, Basel, 4056, Switzerland
2. Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
3. Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland.
*  Corresponding author

Abstract
RNA sequencing (RNA-seq) is a crucial technique for many scientific studies and multiple
models, and software packages have been developed for the processing and analysis of such
data. Given the plethora of available tools, choosing the most appropriate ones is a
time-consuming process that requires an in-depth understanding of the data, as well as of the
principles and parameters of each tool. In addition, packages designed for individual tasks are
developed in different programming languages and have dependencies of various degrees of
complexity, which renders their installation and execution challenging for users with limited
computational expertise. The use of workflow languages and execution engines with support for
virtualization and encapsulation options such as containers and Conda environments facilitates
these tasks considerably. Computational workflows defined in those languages can be reliably
shared with the scientific community, enhancing reusability, while improving reproducibility of
results by making individual analysis steps more transparent.

Here we present ZARP, a general purpose RNA-seq analysis workflow which builds on
state-of-the-art software in the field to facilitate the analysis of RNA-seq data sets. ZARP is
developed in the Snakemake workflow language using best software development practices. It
can run locally or in a cluster environment, generating extensive reports not only of the data but
also of the options utilized. It is built using modern technologies with the ultimate goal to reduce
the hands-on time for bioinformaticians and non-expert users. ZARP is available under a
permissive Open Source license and open to contributions by the scientific community.

Contact: mihaela.zavolan@unibas.ch, alexander.kanitz@unibas.ch
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Introduction
Recent years have seen an exponential growth in bioinformatics tools [1], a large proportion of
which are dedicated to High Throughput Sequencing (HTS) data analysis. For example, for
transcript-level analyses there are tools to quantify the expression level of transcripts and genes
from RNA-seq data [2], identify RNA-binding protein (RBP) binding sites from crosslinking and
immunoprecipitation (CLIP) data [3,4], improve transcript annotation with the help of RNA
3’end-sequencing data [5,6], estimate gene expression at the single cell level [7] or improve the
annotation of transcripts and quantification of splicing events based on long read sequencing
(e.g., on the Oxford Nanopore platform) [8,9]. Such tools are written in different programming
languages (e.g., Python, R, C, Rust) and have distinct library requirements and dependencies.
In most cases, the tools expect the input to be in one of the widely accepted file formats (e.g.,
FASTQ [10], BAM [11]), but custom formats are also frequently used. In addition, the variations
in protocols or instruments across experiments may make it necessary to use different
parameterization for every sample, rendering a joint analysis of samples from multiple studies
challenging. Combining tools into an analysis protocol is a time-consuming and error-prone
process. As these tasks have become so common, and as the data sets and analyses continue
to increase in size and complexity, there is an urgent need for expertly curated, well-tested,
maintained and easy-to-use reusable computational workflows.

A number of feature-rich, modern workflow specification languages and corresponding
management systems [12,13] like Snakemake [14,15], Nextflow [16] and CWL [17] are now
gaining widespread popularity in life sciences, as they make it easier for such workflows to be
developed, tested, shared and executed. This leads to more reusable code and reproducible
results, while fostering scientific collaborations and Open Source Software along the way. In
addition, to facilitate the installation and execution of these workflows across different hardware
architectures and host operating systems, modern workflow management systems make use of
virtualization and encapsulation techniques relying on containers (e.g., Docker [18] and
Singularity [19]) and/or package managers (e.g., Conda [20] and Bioconda [21]). An added
advantage of using workflows is the metadata stored along with the expected results. These can
be invaluable for re-analyzing the data but may also provide additional insights into the results
and cost analyses (e.g., runtimes, resources usage).
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The aim of the presented work is the development of a flexible, easy-to use workflow for bulk
RNA-seq data processing. The inclusion of the most widely used and best performing tools for
the various processing steps minimizes time spent by users on making tool choices. Use of a
workflow language for the development ensures the reproducibility and reliable execution of
each analysis and it facilitates (meta)data management and reporting.

Methods/Results

ZARP (Zavolan-Lab Automated RNA-seq Pipeline) is a general purpose RNA-seq analysis
workflow that allows users to carry out the most general steps in the analysis of Illumina
short-read sequencing libraries with minimum effort. The workflow is developed in Snakemake
[14,15], a widely used workflow language [12]. It relies on publicly available bioinformatics tools
that follow best practices in the field [22], and handles bulk, stranded RNA-seq data, single or
paired-end.

Workflow inputs
ZARP requires two distinct input files: (1) A tab-delimited file with sample-specific information,
such as paths to the sequencing data (FASTQ format), reference genome sequence (FASTA
format), transcriptome annotation (GTF format) and additional experiment protocol- and
library-preparation specifications like adapter sequences or fragment size. (2) A configuration
file in YAML format containing workflow-related parameters, such as results and log directory
paths and user-related information. Advanced users can take advantage of ZARP’s flexible
design to provide tool-specific configuration parameters via an optional third input file, which
allows adjusting the behaviour of the workflow to their specific needs. More information on the
input files can be found in ZARP’s documentation [23] .

Analysis steps
A general schema of the workflow in its current version (0.3.0) is presented in Figure 1 (see
Supplementary Figure 1 for a more technical representation of the entire workflow, including all
of its steps). Table 1 below lists the main tools/functionalities of ZARP:

Table 1. Core tools/functionalities included in ZARP. See main text for more information on
use cases for each tool and why we chose those tools to be included in ZARP.

Tool Description Reference

FastQC Generates various quality control metrics based on raw
FASTQ data.

[24]

Cutadapt Trims sequence fragments of non-biological origin or
low information content.

[25]
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STAR Aligns reads to reference genome. [26]

tin-score-calculation Calculates a Transcript INtegrity score (TIN) on aligned
reads that reflects the state of RNA degradation of a
sample.

[27]

ALFA Annotates read alignments based on gene/transcript
annotations.

[28]

kallisto Estimates gene/transcript expression levels. [29]

Salmon Estimates gene/transcript expression levels. [30]

zpca Performs principal component analyses of
gene/transcript expression level estimates across
samples in a given workflow run.

[31]

MultiQC Aggregates tool results and generates interactive
reports.

[32]

Calculation of per-sample quality statistics by applying FastQC [24] directly on the input files
(FASTQ) provides a quick assessment of the overall quality of the samples. These consist of a
considerable range of metrics, including, for example, GC content, overrepresented sequences
and adapter content. An excessive bias in GC content may affect downstream analyses and
may have to be corrected for [33]. Overrepresented sequences may be the result of PCR
duplication, which, if excessive, may skew expression estimates and other downstream
analyses. Information about adapter content may be used to cross-check whether it matches
with whatever the user has selected to trim. For more information on the metrics that FastQC
reports and how they can be interpreted, please refer to [24].

Trimming of any 5’ and/or 3’ adapters as well as poly(A/T) stretches using Cutadapt [25]
ensures a more reliable alignment as well as removal of contaminant adapter sequences. The
adapters and poly(A/T) stretches to be removed are indicated by the user.

Alignment against a given set of genome resources (either only the genome or the genome and
a set of corresponding gene annotations) is the step where each read is assigned to the
genomic region from which it originated. Even though there are many available aligners, STAR
has been chosen [26][34]. BAM-formatted files that are then sorted (based on coordinates) and
indexed using SAMtools [11]. These steps enable faster random access and visualisation by
tools such as genome browsers. The sorted, indexed BAM files are further converted into the
BigWig (BedGraphtoBigWig from UCSC tools [35]) format, which allows for library
normalisation, and is thus convenient for visualising or comparing coverages across multiple
samples.
The aligned reads are also used to calculate per-transcript Transcript Integrity Numbers (TIN
scores) [36], a metric to assess the degree of RNA degradation in the sample. This is done with
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tin-score-calculation [27], which is based on a script originally included in the RSeQC package
[37] but modified by us to enable multiprocessing for increased performance.

To provide a high-level topographical/functional annotation of which gene segments (e.g., CDS,
3’UTR, intergenic) and biotypes (e.g., protein coding genes, rRNA) are represented by the
reads in a given sample, ZARP includes ALFA [28].

Salmon [30] and kallisto [29] along with a transcriptome are used to infer transcript and gene
expression estimates. Since both of these tools have been shown to be equally fast, memory
efficient and accurate [38], they are both included in ZARP. The main output metrics provided by
either tool are estimates of normalized gene/transcript expression, in Transcripts Per Million
(TPM) [39], as well as raw read counts per gene/transcript.

Within ZARP, TPM estimates are essential for performing principal component analyses (PCA)
[40] with the help of zpca [31], a tool created by us for the use in ZARP, but packaged
separately so that it can be easily used on its own or as part of other workflows. PCAs on
gene/transcript expression levels can help users understand whether differences in
gene/transcript expression levels across different sample groups are sufficiently high that
meaningful results in downstream analyses may be expected.

TPM and raw count estimates can be further used in downstream analyses, e.g., for differential
gene/transcript expression, differential transcript usage or gene set enrichment analyses. Given
that such analyses require an experiment design table and are difficult to configure generically
for a wide range of experiments, we chose not to include these in ZARP. However, to facilitate
downstream analyses, gene/transcript estimates are aggregated for all samples with the aid of
Salmon and merge_kallisto [41], which generate summary tables that can be plugged into a
variety of available tools.

ZARP produces two user-friendly, web-based, interactive reports: one with a summary of
sample-related information generated by MultiQC [32], the other with estimates of utilized
computational resources generated by Snakemake itself. Note that both for tin-score-calculation
and ALFA, we have created plugins so that the respective results can be explored interactively
through MultiQC.
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Figure 1. Schematic overview of the ZARP workflow.
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Reproducibility and reusability
To enhance reproducibility of results and reusability of the workflow, each step (referred to as
“rule” in Snakemake) of the workflow definition relies either on Conda environments mostly
hosted in the Bioconda channel [21] or on Docker images. The latter are converted by
Snakemake to Singularity images [19] on the fly where needed, enabling seamless execution of
the workflow in environments with limited privileges (e.g., HPC clusters). Users can choose
between Conda- and container-based execution by selecting or preparing an appropriate profile
when/before running a workflow. At the moment, we include profiles for the Slurm job scheduler
and we plan to add new profiles over time. For that, we encourage users to feed their own
profiles back to the original ZARP repository so that the entire community can benefit.

Output and documentation
In addition to the transcript/gene expression tables, ZARP collects log files and metadata for
downstream analyses. Intermediate files can be optionally cleaned up by ZARP to minimize disk
space usage. The workflow is hosted in its own GitHub repository, and each ZARP version
released is accompanied by an up-to-date workflow-oriented description.

Continuous Integration and Testing
To facilitate collaborative development of the workflow and associated software and to reduce
the chance of the codebase regressing with ongoing changes, ZARP is making use of a GitHub
Actions-based workflow for Continuous Integration and Delivery (CI/CD). Each modification to
the remote repository triggers a variety of integration tests (Conda environments test,
Snakemake graph test, dry run, minimal-example based run) to guarantee ZARP’s correct
execution throughout the development cycle as the source code is refactored and new features
are added.

Use Cases

Apart from quickly gaining insights into individual samples or smaller sets of samples, ZARP is
very well suited to analyze large RNA-Seq experiments or even run meta-analyses across
multiple different experiments.

To demonstrate how ZARP can be used to gain meaningful insights into typical RNA-seq
experiments, we tested it on an RNA-seq dataset that was generated by Ham et al. (GEO [42]
accession number GSE139213) while analyzing the role of mTORC1 signalling in the
age-related loss of muscle mass and function in mice [43]. The dataset consists of 20
single-ended RNA-seq libraries (read length: 101 nt, gzipped FASTQ file sizes ranging from 0.8
to 3.2 Gb, library sizes ranging from 18.5 to 75.3 reads), corresponding to four cohorts of
3-months old mice (with five biological replicates per cohort): (1) wild-type, (2)
rapamycin-treated, (3) tuberous sclerosis complex 1 (TSC1) knockout and (4) rapamycin-treated
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TSC1 knockout. The samples were mapped against ENSEMBL’s [44] GRCm38 genome primary
assembly and corresponding gene annotations (release: 99) for standard human chromosomes.
Other parameters for populating ZARP’s samples table were obtained from the GEO accession
entries of the respective samples. Sample tables and results for the test run are publicly
available [45].

In Figure 2, we are presenting a subset of the outputs that ZARP generated for this dataset. We
can see that the GC content of reads (Figure 2A) is slightly skewed towards being more AU-rich,
yet all samples pass the FastQC-defined threshold for GC bias. Moreover, GC content does not
exhibit a strong bias across samples. There is no evidence of extensive sequencing of residual
adapters (“adapter contamination”) (Figure 2B; black), as less than 1% of reads have been
discarded in each sample because of insufficient length after adapter trimming. Transcript
integrity across samples is also uniform and high (Figure 2C), with the highest density of
expressed transcripts at TIN scores of 75 to 85. Similarly, alignment statistics as reported by
STAR are also consistently high (Figure 2D), with rates of reads mapped uniquely against the
mouse genome of more than 72% across all samples (<4% unmapped), irrespective of
sequencing depth. As expected, ALFA analysis of transcript categories shows that uniquely
mapped reads overwhelmingly originated from protein coding genes (over 86% for all samples)
(Figure 2E). Taken together, these metrics indicate that all samples are of sufficiently high
quality for downstream analyses.

Figure 2. Selection of metrics reported by ZARP. Shown are (A) GC content, (B) adapter
removal report, (C) Transcript Integrity Number (TIN) score, (D) STAR alignment statistics, and
(E) ALFA biotypes for the test run described in the main text. Figures have been edited for
visibility purposes in order to group samples according to cohorts. Additionally, some biotypes
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have been omitted from (E) as they are not meaningfully represented. Note that in (C),
transcripts that are not expressed are assigned a TIN score of 0. The complete raw html report
can be found at [45].

In addition to sample-specific metrics, ZARP also provides tooling to compute principal
component analyses across samples (Figure 3). For the test run, the distribution of samples in
the space of the first two principal components shows a clustering by condition, with a clear
separation between knockout and wild type, as well as between the untreated and
rapamycin-treated TSC1 knockout mice. This separation is more pronounced at the gene
expression level (Figure 3A), but is also present at the transcript level (Figure 3B). This shows
that the differences across conditions are more pronounced than any replicate biases
(multiplicative noise, sequencing errors), i.e., the signal-to-noise ratio is favorable, which
strongly increases the likelihood that any subsequent analyses (e.g., differential gene/transcript
expression analysis) will provide targets of biological importance.

Figure 3. Principal component analysis. Principal component analysis (PCA) at the (A) gene
and (B) transcript level. PC1 and PC2 correspond to the first and second principal components,
respectively. Variances explained by each of them are stated in the parentheses of the
corresponding axes labels. Expression levels used in this figure are those reported by kallisto,
but ZARP also generates corresponding PCA plots for Salmon-based quantifications.

The total wall clock time to execute the entire test run was just over one hour (1.01h) for all 20
samples on our Slurm-managed HPC cluster [46], where we could make heavy use of ZARP’s
parallelization capabilities. This translates to a total CPU time of 68.79 h, out of which 6.68h
were run-specific, i.e., jobs that had to be executed only once for all samples. The accumulated
sample-specific CPU time used for each sample varied between 2.75h and 8.44h. While the
actual runtime may differ considerably across different compute environments, we project that
most users would be able to run even large-scale analyses with dozens to hundreds of samples
in less than a day on an HPC cluster, with very little hands-on time. Maximum memory usage for
any of the steps and across all samples was <32 Gb (for STAR indexing and mapping of/against
the human genome), indicating that ZARP is suitable for execution on state of the art
computers, albeit at considerably higher runtimes due to limited parallelization capabilities,
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particularly for large sample groups. None of the jobs took longer than ~20 min (wall clock time)
for any of the samples (Figure 4). Among the most time-consuming steps are the creation of
indices (STAR, Salmon, kallisto), which however have to be performed only once per set of
genome resources. Among the sample-specific steps, the calculation of the Transcript INtegrity
(TIN) score was the most time-consuming. However, we had already considerably reduced its
runtime by adding parallelization capabilities to the original script (see subsection “Analysis
steps” in section “Methods/Results” for details).
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Figure 4. Runtime statistics. Runtime (in seconds; wall clock time) of the different steps
(“rules”) of the workflow run are depicted for each sample. The workflow was executed in an
HPC cluster managed by the Slurm job scheduler, so the reported runtimes include the time that
jobs spent queuing. Additional variation in runtimes may result from individual jobs being
executed on cluster nodes with different specifications.

In summary, our test case demonstrates how ZARP can be used to quickly gain informative
insights (Figures 2 & 3) into a non-trivial real-world RNA-seq analysis in a reasonable timeframe
(Figure 4).

Discussion/Conclusions
ZARP is a general purpose, easy-to-use, reliable and efficient RNA-seq processing workflow
that can be used by molecular biologists with minimal programming experience. Scientists with
access to a UNIX-based computer (ideally a Linux machine with enough memory to align
sequencing reads) or a computing cluster can run the workflow to get an initial view of their data
on a relatively short time scale. ZARP has been specifically fine-tuned to process bulk RNA-seq
datasets, allowing users to run it out of the box with default parameters. At the same time,
ZARP allows advanced users to customize workflow behavior, thereby making it a helpful and
flexible tool for edge cases, where a more generic analysis with default settings is unsuitable.
The outputs that ZARP provides can serve as entry points for other project-specific analyses,
such as differential gene and transcript expression analyses. ZARP is publicly available and
open source (Apache License, Version 2.0), and contributions from the bioinformatics
community are welcome. Please address all development-related inquiries as issues at the
official GitHub repository [47].

Data and Software Availability

Data
Raw data analysed in section “Use Cases” are publicly available for anyone to download from
the NCBI:GEO server, accession number GSE139213.

Software
The ZARP code is available on GitHub at [47] and is published under Apache License, Version
2.0. A snapshot of the ZARP version described in this manuscript (0.3.0) has been additionally
uploaded to Zenodo for long-term storage [23]. Both services are public and allow anyone to
download the software without prior registration.
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Results
Analysis results presented in section “Use Cases” are publicly available for anyone to download
from Zenodo  .
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Supplementary material

Supplementary Figure 1. ZARP workflow schema. Graph-based representation of ZARP
v0.3.0, including all of its steps (“rules”), as produced by running Snakemake with the
--rulegraph option. Steps for both the single and the paired end workflows are shown.
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